Shourya Bose commited on
Commit
6dd3ebe
·
1 Parent(s): 001cf70

upload model definitions and weights

Browse files
Files changed (47) hide show
  1. __pycache__/model_kwargs.cpython-310.pyc +0 -0
  2. model_kwargs.py +55 -0
  3. models/Autoformer.py +567 -0
  4. models/Informer.py +459 -0
  5. models/LSTM.py +57 -0
  6. models/LSTNet.py +95 -0
  7. models/TimesNet.py +262 -0
  8. models/Transformer.py +396 -0
  9. models/__pycache__/Autoformer.cpython-310.pyc +0 -0
  10. models/__pycache__/LSTM.cpython-310.pyc +0 -0
  11. models/__pycache__/LSTNet.cpython-310.pyc +0 -0
  12. weights/autoformer_L_96_T_48_HET.pth +3 -0
  13. weights/autoformer_L_96_T_48_HOM.pth +3 -0
  14. weights/autoformer_L_96_T_4_HET.pth +3 -0
  15. weights/autoformer_L_96_T_4_HOM.pth +3 -0
  16. weights/autoformer_L_96_T_96_HET.pth +3 -0
  17. weights/autoformer_L_96_T_96_HOM.pth +3 -0
  18. weights/informer_L_96_T_48_HET.pth +3 -0
  19. weights/informer_L_96_T_48_HOM.pth +3 -0
  20. weights/informer_L_96_T_4_HET.pth +3 -0
  21. weights/informer_L_96_T_4_HOM.pth +3 -0
  22. weights/informer_L_96_T_96_HET.pth +3 -0
  23. weights/informer_L_96_T_96_HOM.pth +3 -0
  24. weights/lstm_L_96_T_48_HET.pth +3 -0
  25. weights/lstm_L_96_T_48_HOM.pth +3 -0
  26. weights/lstm_L_96_T_4_HET.pth +3 -0
  27. weights/lstm_L_96_T_4_HOM.pth +3 -0
  28. weights/lstm_L_96_T_96_HET.pth +3 -0
  29. weights/lstm_L_96_T_96_HOM.pth +3 -0
  30. weights/lstnet_L_96_T_48_HET.pth +3 -0
  31. weights/lstnet_L_96_T_48_HOM.pth +3 -0
  32. weights/lstnet_L_96_T_4_HET.pth +3 -0
  33. weights/lstnet_L_96_T_4_HOM.pth +3 -0
  34. weights/lstnet_L_96_T_96_HET.pth +3 -0
  35. weights/lstnet_L_96_T_96_HOM.pth +3 -0
  36. weights/timesnet_L_96_T_48_HET.pth +3 -0
  37. weights/timesnet_L_96_T_48_HOM.pth +3 -0
  38. weights/timesnet_L_96_T_4_HET.pth +3 -0
  39. weights/timesnet_L_96_T_4_HOM.pth +3 -0
  40. weights/timesnet_L_96_T_96_HET.pth +3 -0
  41. weights/timesnet_L_96_T_96_HOM.pth +3 -0
  42. weights/transformer_L_96_T_48_HET.pth +3 -0
  43. weights/transformer_L_96_T_48_HOM.pth +3 -0
  44. weights/transformer_L_96_T_4_HET.pth +3 -0
  45. weights/transformer_L_96_T_4_HOM.pth +3 -0
  46. weights/transformer_L_96_T_96_HET.pth +3 -0
  47. weights/transformer_L_96_T_96_HOM.pth +3 -0
__pycache__/model_kwargs.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
model_kwargs.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ autoformer_kwargs = lambda lookback,lookahead:{
2
+ 'enc_in': 6,
3
+ 'dec_in': 2,
4
+ 'c_out': 1,
5
+ 'pred_len': lookahead,
6
+ 'seq_len': lookback,
7
+ 'd_model': 32*4,
8
+ 'data_idx': [0,3,4,5,6,7],
9
+ 'time_idx': [1,2]
10
+ }
11
+
12
+ informer_kwargs = lambda lookback,lookahead:{
13
+ 'enc_in': 6,
14
+ 'dec_in': 2,
15
+ 'c_out': 1,
16
+ 'pred_len': lookahead,
17
+ 'd_model': 32*4,
18
+ 'data_idx': [0,3,4,5,6,7],
19
+ 'time_idx': [1,2]
20
+ }
21
+
22
+ timesnet_kwargs = lambda lookback,lookahead:{
23
+ 'enc_in': 6,
24
+ 'dec_in': 2,
25
+ 'c_out': 1,
26
+ 'pred_len': lookahead,
27
+ 'seq_len': lookback,
28
+ 'd_model': 32*4,
29
+ 'data_idx': [0,3,4,5,6,7],
30
+ 'time_idx': [1,2]
31
+ }
32
+
33
+ transformer_kwargs = lambda lookback,lookahead:{
34
+ 'enc_in': 6,
35
+ 'dec_in': 2,
36
+ 'c_out': 1,
37
+ 'pred_len': lookahead,
38
+ 'd_model': 32*4,
39
+ 'data_idx': [0,3,4,5,6,7],
40
+ 'time_idx': [1,2]
41
+ }
42
+
43
+ lstm_kwargs = lambda lookback,lookahead:{
44
+ 'input_size': 8,
45
+ 'hidden_size': 8*4,
46
+ 'num_layers': 2,
47
+ 'lookback': lookback
48
+ }
49
+
50
+ lstnet_kwargs = lambda lookback,lookahead:{
51
+ 'num_features':8,
52
+ 'conv1_out_channels':8*4,
53
+ 'conv1_kernel_height':3*4,
54
+ 'recc1_out_channels':32*4
55
+ }
models/Autoformer.py ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import math
5
+ import numpy as np
6
+
7
+ class AutoCorrelation(nn.Module):
8
+ """
9
+ AutoCorrelation Mechanism with the following two phases:
10
+ (1) period-based dependencies discovery
11
+ (2) time delay aggregation
12
+ This block can replace the self-attention family mechanism seamlessly.
13
+ """
14
+
15
+ def __init__(self, mask_flag=True, factor=1, scale=None, attention_dropout=0.1, output_attention=False):
16
+ super(AutoCorrelation, self).__init__()
17
+ self.factor = factor
18
+ self.scale = scale
19
+ self.mask_flag = mask_flag
20
+ self.output_attention = output_attention
21
+ self.dropout = nn.Dropout(attention_dropout)
22
+
23
+ def time_delay_agg_training(self, values, corr):
24
+ """
25
+ SpeedUp version of Autocorrelation (a batch-normalization style design)
26
+ This is for the training phase.
27
+ """
28
+ head = values.shape[1]
29
+ channel = values.shape[2]
30
+ length = values.shape[3]
31
+ # find top k
32
+ top_k = int(self.factor * math.log(length))
33
+ mean_value = torch.mean(torch.mean(corr, dim=1), dim=1)
34
+ index = torch.topk(torch.mean(mean_value, dim=0), top_k, dim=-1)[1]
35
+ weights = torch.stack([mean_value[:, index[i]] for i in range(top_k)], dim=-1)
36
+ # update corr
37
+ tmp_corr = torch.softmax(weights, dim=-1)
38
+ # aggregation
39
+ tmp_values = values
40
+ delays_agg = torch.zeros_like(values).float()
41
+ for i in range(top_k):
42
+ pattern = torch.roll(tmp_values, -int(index[i]), -1)
43
+ delays_agg = delays_agg + pattern * \
44
+ (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length))
45
+ return delays_agg
46
+
47
+ def time_delay_agg_inference(self, values, corr):
48
+ """
49
+ SpeedUp version of Autocorrelation (a batch-normalization style design)
50
+ This is for the inference phase.
51
+ """
52
+ batch = values.shape[0]
53
+ head = values.shape[1]
54
+ channel = values.shape[2]
55
+ length = values.shape[3]
56
+ # index init
57
+ init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda()
58
+ # find top k
59
+ top_k = int(self.factor * math.log(length))
60
+ mean_value = torch.mean(torch.mean(corr, dim=1), dim=1)
61
+ weights, delay = torch.topk(mean_value, top_k, dim=-1)
62
+ # update corr
63
+ tmp_corr = torch.softmax(weights, dim=-1)
64
+ # aggregation
65
+ tmp_values = values.repeat(1, 1, 1, 2)
66
+ delays_agg = torch.zeros_like(values).float()
67
+ for i in range(top_k):
68
+ tmp_delay = init_index + delay[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)
69
+ pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay)
70
+ delays_agg = delays_agg + pattern * \
71
+ (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length))
72
+ return delays_agg
73
+
74
+ def time_delay_agg_full(self, values, corr):
75
+ """
76
+ Standard version of Autocorrelation
77
+ """
78
+ batch = values.shape[0]
79
+ head = values.shape[1]
80
+ channel = values.shape[2]
81
+ length = values.shape[3]
82
+ # index init
83
+ init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda()
84
+ # find top k
85
+ top_k = int(self.factor * math.log(length))
86
+ weights, delay = torch.topk(corr, top_k, dim=-1)
87
+ # update corr
88
+ tmp_corr = torch.softmax(weights, dim=-1)
89
+ # aggregation
90
+ tmp_values = values.repeat(1, 1, 1, 2)
91
+ delays_agg = torch.zeros_like(values).float()
92
+ for i in range(top_k):
93
+ tmp_delay = init_index + delay[..., i].unsqueeze(-1)
94
+ pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay)
95
+ delays_agg = delays_agg + pattern * (tmp_corr[..., i].unsqueeze(-1))
96
+ return delays_agg
97
+
98
+ def forward(self, queries, keys, values, attn_mask):
99
+ B, L, H, E = queries.shape
100
+ _, S, _, D = values.shape
101
+ if L > S:
102
+ zeros = torch.zeros_like(queries[:, :(L - S), :]).float()
103
+ values = torch.cat([values, zeros], dim=1)
104
+ keys = torch.cat([keys, zeros], dim=1)
105
+ else:
106
+ values = values[:, :L, :, :]
107
+ keys = keys[:, :L, :, :]
108
+
109
+ # period-based dependencies
110
+ q_fft = torch.fft.rfft(queries.permute(0, 2, 3, 1).contiguous(), dim=-1)
111
+ k_fft = torch.fft.rfft(keys.permute(0, 2, 3, 1).contiguous(), dim=-1)
112
+ res = q_fft * torch.conj(k_fft)
113
+ corr = torch.fft.irfft(res, dim=-1)
114
+
115
+ # time delay agg
116
+ if self.training:
117
+ V = self.time_delay_agg_training(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2)
118
+ else:
119
+ V = self.time_delay_agg_inference(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2)
120
+
121
+ if self.output_attention:
122
+ return (V.contiguous(), corr.permute(0, 3, 1, 2))
123
+ else:
124
+ return (V.contiguous(), None)
125
+
126
+
127
+ class AutoCorrelationLayer(nn.Module):
128
+ def __init__(self, correlation, d_model, n_heads, d_keys=None,
129
+ d_values=None):
130
+ super(AutoCorrelationLayer, self).__init__()
131
+
132
+ d_keys = d_keys or (d_model // n_heads)
133
+ d_values = d_values or (d_model // n_heads)
134
+
135
+ self.inner_correlation = correlation
136
+ self.query_projection = nn.Linear(d_model, d_keys * n_heads)
137
+ self.key_projection = nn.Linear(d_model, d_keys * n_heads)
138
+ self.value_projection = nn.Linear(d_model, d_values * n_heads)
139
+ self.out_projection = nn.Linear(d_values * n_heads, d_model)
140
+ self.n_heads = n_heads
141
+
142
+ def forward(self, queries, keys, values, attn_mask):
143
+ B, L, _ = queries.shape
144
+ _, S, _ = keys.shape
145
+ H = self.n_heads
146
+
147
+ queries = self.query_projection(queries).view(B, L, H, -1)
148
+ keys = self.key_projection(keys).view(B, S, H, -1)
149
+ values = self.value_projection(values).view(B, S, H, -1)
150
+
151
+ out, attn = self.inner_correlation(
152
+ queries,
153
+ keys,
154
+ values,
155
+ attn_mask
156
+ )
157
+ out = out.view(B, L, -1)
158
+
159
+ return self.out_projection(out), attn
160
+
161
+ class my_Layernorm(nn.Module):
162
+ """
163
+ Special designed layernorm for the seasonal part
164
+ """
165
+
166
+ def __init__(self, channels):
167
+ super(my_Layernorm, self).__init__()
168
+ self.layernorm = nn.LayerNorm(channels)
169
+
170
+ def forward(self, x):
171
+ x_hat = self.layernorm(x)
172
+ bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
173
+ return x_hat - bias
174
+
175
+
176
+ class moving_avg(nn.Module):
177
+ """
178
+ Moving average block to highlight the trend of time series
179
+ """
180
+
181
+ def __init__(self, kernel_size, stride):
182
+ super(moving_avg, self).__init__()
183
+ self.kernel_size = kernel_size
184
+ self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
185
+
186
+ def forward(self, x):
187
+ # padding on the both ends of time series
188
+ front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
189
+ end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
190
+ x = torch.cat([front, x, end], dim=1)
191
+ x = self.avg(x.permute(0, 2, 1))
192
+ x = x.permute(0, 2, 1)
193
+ return x
194
+
195
+
196
+ class series_decomp(nn.Module):
197
+ """
198
+ Series decomposition block
199
+ """
200
+
201
+ def __init__(self, kernel_size):
202
+ super(series_decomp, self).__init__()
203
+ self.moving_avg = moving_avg(kernel_size, stride=1)
204
+
205
+ def forward(self, x):
206
+ moving_mean = self.moving_avg(x)
207
+ res = x - moving_mean
208
+ return res, moving_mean
209
+
210
+
211
+ class series_decomp_multi(nn.Module):
212
+ """
213
+ Multiple Series decomposition block from FEDformer
214
+ """
215
+
216
+ def __init__(self, kernel_size):
217
+ super(series_decomp_multi, self).__init__()
218
+ self.kernel_size = kernel_size
219
+ self.series_decomp = [series_decomp(kernel) for kernel in kernel_size]
220
+
221
+ def forward(self, x):
222
+ moving_mean = []
223
+ res = []
224
+ for func in self.series_decomp:
225
+ sea, moving_avg = func(x)
226
+ moving_mean.append(moving_avg)
227
+ res.append(sea)
228
+
229
+ sea = sum(res) / len(res)
230
+ moving_mean = sum(moving_mean) / len(moving_mean)
231
+ return sea, moving_mean
232
+
233
+
234
+ class EncoderLayer(nn.Module):
235
+ """
236
+ Autoformer encoder layer with the progressive decomposition architecture
237
+ """
238
+
239
+ def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"):
240
+ super(EncoderLayer, self).__init__()
241
+ d_ff = d_ff or 4 * d_model
242
+ self.attention = attention
243
+ self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
244
+ self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
245
+ self.decomp1 = series_decomp(moving_avg)
246
+ self.decomp2 = series_decomp(moving_avg)
247
+ self.dropout = nn.Dropout(dropout)
248
+ self.activation = F.relu if activation == "relu" else F.gelu
249
+
250
+ def forward(self, x, attn_mask=None):
251
+ new_x, attn = self.attention(
252
+ x, x, x,
253
+ attn_mask=attn_mask
254
+ )
255
+ x = x + self.dropout(new_x)
256
+ x, _ = self.decomp1(x)
257
+ y = x
258
+ y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
259
+ y = self.dropout(self.conv2(y).transpose(-1, 1))
260
+ res, _ = self.decomp2(x + y)
261
+ return res, attn
262
+
263
+
264
+ class Encoder(nn.Module):
265
+ """
266
+ Autoformer encoder
267
+ """
268
+
269
+ def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
270
+ super(Encoder, self).__init__()
271
+ self.attn_layers = nn.ModuleList(attn_layers)
272
+ self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
273
+ self.norm = norm_layer
274
+
275
+ def forward(self, x, attn_mask=None):
276
+ attns = []
277
+ if self.conv_layers is not None:
278
+ for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
279
+ x, attn = attn_layer(x, attn_mask=attn_mask)
280
+ x = conv_layer(x)
281
+ attns.append(attn)
282
+ x, attn = self.attn_layers[-1](x)
283
+ attns.append(attn)
284
+ else:
285
+ for attn_layer in self.attn_layers:
286
+ x, attn = attn_layer(x, attn_mask=attn_mask)
287
+ attns.append(attn)
288
+
289
+ if self.norm is not None:
290
+ x = self.norm(x)
291
+
292
+ return x, attns
293
+
294
+
295
+ class DecoderLayer(nn.Module):
296
+ """
297
+ Autoformer decoder layer with the progressive decomposition architecture
298
+ """
299
+
300
+ def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None,
301
+ moving_avg=25, dropout=0.1, activation="relu"):
302
+ super(DecoderLayer, self).__init__()
303
+ d_ff = d_ff or 4 * d_model
304
+ self.self_attention = self_attention
305
+ self.cross_attention = cross_attention
306
+ self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
307
+ self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
308
+ self.decomp1 = series_decomp(moving_avg)
309
+ self.decomp2 = series_decomp(moving_avg)
310
+ self.decomp3 = series_decomp(moving_avg)
311
+ self.dropout = nn.Dropout(dropout)
312
+ self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1,
313
+ padding_mode='circular', bias=False)
314
+ self.activation = F.relu if activation == "relu" else F.gelu
315
+
316
+ def forward(self, x, cross, x_mask=None, cross_mask=None):
317
+ x = x + self.dropout(self.self_attention(
318
+ x, x, x,
319
+ attn_mask=x_mask
320
+ )[0])
321
+ x, trend1 = self.decomp1(x)
322
+ x = x + self.dropout(self.cross_attention(
323
+ x, cross, cross,
324
+ attn_mask=cross_mask
325
+ )[0])
326
+ x, trend2 = self.decomp2(x)
327
+ y = x
328
+ y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
329
+ y = self.dropout(self.conv2(y).transpose(-1, 1))
330
+ x, trend3 = self.decomp3(x + y)
331
+
332
+ residual_trend = trend1 + trend2 + trend3
333
+ residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
334
+ return x, residual_trend
335
+
336
+
337
+ class Decoder(nn.Module):
338
+ """
339
+ Autoformer encoder
340
+ """
341
+
342
+ def __init__(self, layers, norm_layer=None, projection=None):
343
+ super(Decoder, self).__init__()
344
+ self.layers = nn.ModuleList(layers)
345
+ self.norm = norm_layer
346
+ self.projection = projection
347
+
348
+ def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None):
349
+ for layer in self.layers:
350
+ x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
351
+ trend = trend + residual_trend
352
+
353
+ if self.norm is not None:
354
+ x = self.norm(x)
355
+
356
+ if self.projection is not None:
357
+ x = self.projection(x)
358
+ return x, trend
359
+
360
+ class FixedEmbedding(nn.Module):
361
+ def __init__(self, c_in, d_model):
362
+ super(FixedEmbedding, self).__init__()
363
+
364
+ w = torch.zeros(c_in, d_model).float()
365
+ w.require_grad = False
366
+
367
+ position = torch.arange(0, c_in).float().unsqueeze(1)
368
+ div_term = (torch.arange(0, d_model, 2).float()
369
+ * -(math.log(10000.0) / d_model)).exp()
370
+
371
+ w[:, 0::2] = torch.sin(position * div_term)
372
+ w[:, 1::2] = torch.cos(position * div_term)
373
+
374
+ self.emb = nn.Embedding(c_in, d_model)
375
+ self.emb.weight = nn.Parameter(w, requires_grad=False)
376
+
377
+ def forward(self, x):
378
+ return self.emb(x).detach()
379
+
380
+ class TemporalEmbedding(nn.Module):
381
+ def __init__(self, d_model, embed_type='fixed', freq='h'):
382
+ super(TemporalEmbedding, self).__init__()
383
+
384
+ hour_size = 96
385
+ weekday_size = 7
386
+
387
+ Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
388
+ self.hour_embed = Embed(hour_size, d_model)
389
+ self.weekday_embed = Embed(weekday_size, d_model)
390
+
391
+ def forward(self, x):
392
+ x = x.long()
393
+ hour_x = self.hour_embed(x[:, :, 0])
394
+ weekday_x = self.weekday_embed(x[:, :, 1])
395
+
396
+ return hour_x + weekday_x
397
+
398
+ class PositionalEmbedding(nn.Module):
399
+ def __init__(self, d_model, max_len=5000):
400
+ super(PositionalEmbedding, self).__init__()
401
+ # Compute the positional encodings once in log space.
402
+ pe = torch.zeros(max_len, d_model).float()
403
+ pe.require_grad = False
404
+
405
+ position = torch.arange(0, max_len).float().unsqueeze(1)
406
+ div_term = (torch.arange(0, d_model, 2).float()
407
+ * -(math.log(10000.0) / d_model)).exp()
408
+
409
+ pe[:, 0::2] = torch.sin(position * div_term)
410
+ pe[:, 1::2] = torch.cos(position * div_term)
411
+
412
+ pe = pe.unsqueeze(0)
413
+ self.register_buffer('pe', pe)
414
+
415
+ def forward(self, x):
416
+ return self.pe[:, :x.size(1)]
417
+
418
+ class TokenEmbedding(nn.Module):
419
+ def __init__(self, c_in, d_model):
420
+ super(TokenEmbedding, self).__init__()
421
+ padding = 1 if torch.__version__ >= '1.5.0' else 2
422
+ self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
423
+ kernel_size=3, padding=padding, padding_mode='circular', bias=False)
424
+ for m in self.modules():
425
+ if isinstance(m, nn.Conv1d):
426
+ nn.init.kaiming_normal_(
427
+ m.weight, mode='fan_in', nonlinearity='leaky_relu')
428
+
429
+ def forward(self, x):
430
+ x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
431
+ return x
432
+
433
+ class DataEmbedding_wo_pos(nn.Module):
434
+ def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
435
+ super(DataEmbedding_wo_pos, self).__init__()
436
+
437
+ self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
438
+ self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
439
+ freq=freq)
440
+ self.dropout = nn.Dropout(p=dropout)
441
+
442
+ def forward(self, x, x_mark):
443
+ if x_mark is None:
444
+ x = self.value_embedding(x)
445
+ else:
446
+ x = self.value_embedding(x) + self.temporal_embedding(x_mark)
447
+ return self.dropout(x)
448
+
449
+ class Autoformer(nn.Module):
450
+ """
451
+ Autoformer is the first method to achieve the series-wise connection,
452
+ with inherent O(LlogL) complexity
453
+ Paper link: https://openreview.net/pdf?id=I55UqU-M11y
454
+ """
455
+
456
+ def __init__(
457
+ self,
458
+ enc_in,
459
+ dec_in,
460
+ c_out,
461
+ pred_len,
462
+ seq_len,
463
+ d_model = 64,
464
+ data_idx = [0,3,4,5,6,7],
465
+ time_idx = [1,2],
466
+ output_attention = False,
467
+ moving_avg_val = 25,
468
+ factor = 3,
469
+ n_heads = 4,
470
+ d_ff = 512,
471
+ d_layers = 3,
472
+ e_layers = 3,
473
+ activation = 'gelu',
474
+ dropout = 0.1
475
+ ):
476
+ super(Autoformer, self).__init__()
477
+ self.seq_len = seq_len
478
+ self.pred_len = pred_len
479
+ self.output_attention = output_attention
480
+ self.data_idx = data_idx
481
+ self.time_idx = time_idx
482
+ dec_in = enc_in # encoder and decoder shapes should be the same
483
+ self.dec_in = dec_in
484
+ self.label_len = self.seq_len//2
485
+
486
+ # Decomp
487
+ kernel_size = moving_avg_val
488
+ self.decomp = series_decomp(kernel_size)
489
+
490
+ # Embedding
491
+ self.enc_embedding = DataEmbedding_wo_pos(enc_in, d_model, 'fixed','h',
492
+ dropout)
493
+ # Encoder
494
+ self.encoder = Encoder(
495
+ [
496
+ EncoderLayer(
497
+ AutoCorrelationLayer(
498
+ AutoCorrelation(False, factor, attention_dropout=dropout,
499
+ output_attention=output_attention),
500
+ d_model, n_heads),
501
+ d_model,
502
+ d_ff,
503
+ moving_avg=moving_avg_val,
504
+ dropout=dropout,
505
+ activation=activation
506
+ ) for l in range(e_layers)
507
+ ],
508
+ norm_layer=my_Layernorm(d_model)
509
+ )
510
+ # Decoder
511
+ self.dec_embedding = DataEmbedding_wo_pos(dec_in, d_model, 'fixed','h',
512
+ dropout)
513
+ self.decoder = Decoder(
514
+ [
515
+ DecoderLayer(
516
+ AutoCorrelationLayer(
517
+ AutoCorrelation(True, factor, attention_dropout=dropout,
518
+ output_attention=False),
519
+ d_model, n_heads),
520
+ AutoCorrelationLayer(
521
+ AutoCorrelation(False, factor, attention_dropout=dropout,
522
+ output_attention=False),
523
+ d_model, n_heads),
524
+ d_model,
525
+ c_out,
526
+ d_ff,
527
+ moving_avg=moving_avg_val,
528
+ dropout=dropout,
529
+ activation=activation,
530
+ )
531
+ for l in range(d_layers)
532
+ ],
533
+ norm_layer=my_Layernorm(d_model),
534
+ projection=nn.Linear(d_model, c_out, bias=True)
535
+ )
536
+
537
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
538
+ # decomp init
539
+ mean = torch.mean(x_enc, dim=1).unsqueeze(1).repeat(1, self.pred_len, 1)
540
+ zeros = torch.zeros([x_mark_dec.shape[0], self.pred_len,self.dec_in], device=x_enc.device)
541
+ seasonal_init, trend_init = self.decomp(x_enc)
542
+ # decoder input
543
+ trend_init = torch.cat([trend_init[:, -self.label_len:, :], mean], dim=1)
544
+ seasonal_init = torch.cat([seasonal_init[:, -self.label_len:, :], zeros], dim=1)
545
+ # enc
546
+ enc_out = self.enc_embedding(x_enc, x_mark_enc)
547
+ enc_out, attns = self.encoder(enc_out, attn_mask=None)
548
+ # dec
549
+ x_mark_dec = torch.cat([x_mark_enc,x_mark_dec],dim=1)[:,-(self.label_len+self.pred_len):,:]
550
+ dec_out = self.dec_embedding(seasonal_init, x_mark_dec)
551
+ seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None,
552
+ trend=trend_init)
553
+ dec_out = trend_part + seasonal_part
554
+
555
+
556
+ return dec_out[:, -self.pred_len:, :]
557
+
558
+ def forward(self, x, fut_time):
559
+
560
+ x_enc = x[:,:,self.data_idx]
561
+ x_mark_enc = x[:,:,self.time_idx]
562
+ # x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
563
+ x_mark_dec = fut_time
564
+
565
+ # not necessary to generate decoder input
566
+ # return self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)[:,-1,[0]] # [B, 1]
567
+ return self.forecast(x_enc, x_mark_enc, None, x_mark_dec)[:,-1,[0]] # [B, 1]
models/Informer.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import math
4
+ from math import sqrt
5
+ import numpy as np
6
+ import torch.nn.functional as F
7
+
8
+ class ConvLayer(nn.Module):
9
+ def __init__(self, c_in):
10
+ super(ConvLayer, self).__init__()
11
+ self.downConv = nn.Conv1d(in_channels=c_in,
12
+ out_channels=c_in,
13
+ kernel_size=3,
14
+ padding=2,
15
+ padding_mode='circular')
16
+ self.norm = nn.BatchNorm1d(c_in)
17
+ self.activation = nn.ELU()
18
+ self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
19
+
20
+ def forward(self, x):
21
+ x = self.downConv(x.permute(0, 2, 1))
22
+ x = self.norm(x)
23
+ x = self.activation(x)
24
+ x = self.maxPool(x)
25
+ x = x.transpose(1, 2)
26
+ return x
27
+
28
+ class ProbMask():
29
+ def __init__(self, B, H, L, index, scores, device="cpu"):
30
+ _mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1)
31
+ _mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1])
32
+ indicator = _mask_ex[torch.arange(B)[:, None, None],
33
+ torch.arange(H)[None, :, None],
34
+ index, :].to(device)
35
+ self._mask = indicator.view(scores.shape).to(device)
36
+
37
+ @property
38
+ def mask(self):
39
+ return self._mask
40
+
41
+ class ProbAttention(nn.Module):
42
+ def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
43
+ super(ProbAttention, self).__init__()
44
+ self.factor = factor
45
+ self.scale = scale
46
+ self.mask_flag = mask_flag
47
+ self.output_attention = output_attention
48
+ self.dropout = nn.Dropout(attention_dropout)
49
+
50
+ def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q)
51
+ # Q [B, H, L, D]
52
+ B, H, L_K, E = K.shape
53
+ _, _, L_Q, _ = Q.shape
54
+
55
+ # calculate the sampled Q_K
56
+ K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)
57
+ index_sample = torch.randint(L_K, (L_Q, sample_k)) # real U = U_part(factor*ln(L_k))*L_q
58
+ K_sample = K_expand[:, :, torch.arange(L_Q).unsqueeze(1), index_sample, :]
59
+ Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()
60
+
61
+ # find the Top_k query with sparisty measurement
62
+ M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
63
+ M_top = M.topk(n_top, sorted=False)[1]
64
+
65
+ # use the reduced Q to calculate Q_K
66
+ Q_reduce = Q[torch.arange(B)[:, None, None],
67
+ torch.arange(H)[None, :, None],
68
+ M_top, :] # factor*ln(L_q)
69
+ Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # factor*ln(L_q)*L_k
70
+
71
+ return Q_K, M_top
72
+
73
+ def _get_initial_context(self, V, L_Q):
74
+ B, H, L_V, D = V.shape
75
+ if not self.mask_flag:
76
+ # V_sum = V.sum(dim=-2)
77
+ V_sum = V.mean(dim=-2)
78
+ contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
79
+ else: # use mask
80
+ assert (L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
81
+ contex = V.cumsum(dim=-2)
82
+ return contex
83
+
84
+ def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
85
+ B, H, L_V, D = V.shape
86
+
87
+ if self.mask_flag:
88
+ attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
89
+ scores.masked_fill_(attn_mask.mask, -np.inf)
90
+
91
+ attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
92
+
93
+ context_in[torch.arange(B)[:, None, None],
94
+ torch.arange(H)[None, :, None],
95
+ index, :] = torch.matmul(attn, V).type_as(context_in)
96
+ if self.output_attention:
97
+ attns = (torch.ones([B, H, L_V, L_V]) / L_V).type_as(attn).to(attn.device)
98
+ attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
99
+ return (context_in, attns)
100
+ else:
101
+ return (context_in, None)
102
+
103
+ def forward(self, queries, keys, values, attn_mask):
104
+ B, L_Q, H, D = queries.shape
105
+ _, L_K, _, _ = keys.shape
106
+
107
+ queries = queries.transpose(2, 1)
108
+ keys = keys.transpose(2, 1)
109
+ values = values.transpose(2, 1)
110
+
111
+ U_part = self.factor * np.ceil(np.log(L_K)).astype('int').item() # c*ln(L_k)
112
+ u = self.factor * np.ceil(np.log(L_Q)).astype('int').item() # c*ln(L_q)
113
+
114
+ U_part = U_part if U_part < L_K else L_K
115
+ u = u if u < L_Q else L_Q
116
+
117
+ scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u)
118
+
119
+ # add scale factor
120
+ scale = self.scale or 1. / sqrt(D)
121
+ if scale is not None:
122
+ scores_top = scores_top * scale
123
+ # get the context
124
+ context = self._get_initial_context(values, L_Q)
125
+ # update the context with selected top_k queries
126
+ context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask)
127
+
128
+ return context.contiguous(), attn
129
+
130
+
131
+ class AttentionLayer(nn.Module):
132
+ def __init__(self, attention, d_model, n_heads, d_keys=None,
133
+ d_values=None):
134
+ super(AttentionLayer, self).__init__()
135
+
136
+ d_keys = d_keys or (d_model // n_heads)
137
+ d_values = d_values or (d_model // n_heads)
138
+
139
+ self.inner_attention = attention
140
+ self.query_projection = nn.Linear(d_model, d_keys * n_heads)
141
+ self.key_projection = nn.Linear(d_model, d_keys * n_heads)
142
+ self.value_projection = nn.Linear(d_model, d_values * n_heads)
143
+ self.out_projection = nn.Linear(d_values * n_heads, d_model)
144
+ self.n_heads = n_heads
145
+
146
+ def forward(self, queries, keys, values, attn_mask):
147
+ B, L, _ = queries.shape
148
+ _, S, _ = keys.shape
149
+ H = self.n_heads
150
+
151
+ queries = self.query_projection(queries).view(B, L, H, -1)
152
+ keys = self.key_projection(keys).view(B, S, H, -1)
153
+ values = self.value_projection(values).view(B, S, H, -1)
154
+
155
+ out, attn = self.inner_attention(
156
+ queries,
157
+ keys,
158
+ values,
159
+ attn_mask
160
+ )
161
+ out = out.view(B, L, -1)
162
+
163
+ return self.out_projection(out), attn
164
+
165
+ class EncoderLayer(nn.Module):
166
+ def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
167
+ super(EncoderLayer, self).__init__()
168
+ d_ff = d_ff or 4 * d_model
169
+ self.attention = attention
170
+ self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
171
+ self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
172
+ self.norm1 = nn.LayerNorm(d_model)
173
+ self.norm2 = nn.LayerNorm(d_model)
174
+ self.dropout = nn.Dropout(dropout)
175
+ self.activation = F.relu if activation == "relu" else F.gelu
176
+
177
+ def forward(self, x, attn_mask=None):
178
+ new_x, attn = self.attention(
179
+ x, x, x,
180
+ attn_mask=attn_mask
181
+ )
182
+ x = x + self.dropout(new_x)
183
+
184
+ y = x = self.norm1(x)
185
+ y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
186
+ y = self.dropout(self.conv2(y).transpose(-1, 1))
187
+
188
+ return self.norm2(x + y), attn
189
+
190
+
191
+ class Encoder(nn.Module):
192
+ def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
193
+ super(Encoder, self).__init__()
194
+ self.attn_layers = nn.ModuleList(attn_layers)
195
+ self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
196
+ self.norm = norm_layer
197
+
198
+ def forward(self, x, attn_mask=None):
199
+ # x [B, L, D]
200
+ attns = []
201
+ if self.conv_layers is not None:
202
+ for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
203
+ x, attn = attn_layer(x, attn_mask=attn_mask)
204
+ x = conv_layer(x)
205
+ attns.append(attn)
206
+ x, attn = self.attn_layers[-1](x)
207
+ attns.append(attn)
208
+ else:
209
+ for attn_layer in self.attn_layers:
210
+ x, attn = attn_layer(x, attn_mask=attn_mask)
211
+ attns.append(attn)
212
+
213
+ if self.norm is not None:
214
+ x = self.norm(x)
215
+
216
+ return x, attns
217
+
218
+
219
+ class DecoderLayer(nn.Module):
220
+ def __init__(self, self_attention, cross_attention, d_model, d_ff=None,
221
+ dropout=0.1, activation="relu"):
222
+ super(DecoderLayer, self).__init__()
223
+ d_ff = d_ff or 4 * d_model
224
+ self.self_attention = self_attention
225
+ self.cross_attention = cross_attention
226
+ self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
227
+ self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
228
+ self.norm1 = nn.LayerNorm(d_model)
229
+ self.norm2 = nn.LayerNorm(d_model)
230
+ self.norm3 = nn.LayerNorm(d_model)
231
+ self.dropout = nn.Dropout(dropout)
232
+ self.activation = F.relu if activation == "relu" else F.gelu
233
+
234
+ def forward(self, x, cross, x_mask=None, cross_mask=None):
235
+ x = x + self.dropout(self.self_attention(
236
+ x, x, x,
237
+ attn_mask=x_mask
238
+ )[0])
239
+ x = self.norm1(x)
240
+
241
+ x = x + self.dropout(self.cross_attention(
242
+ x, cross, cross,
243
+ attn_mask=cross_mask
244
+ )[0])
245
+
246
+ y = x = self.norm2(x)
247
+ y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
248
+ y = self.dropout(self.conv2(y).transpose(-1, 1))
249
+
250
+ return self.norm3(x + y)
251
+
252
+
253
+ class Decoder(nn.Module):
254
+ def __init__(self, layers, norm_layer=None, projection=None):
255
+ super(Decoder, self).__init__()
256
+ self.layers = nn.ModuleList(layers)
257
+ self.norm = norm_layer
258
+ self.projection = projection
259
+
260
+ def forward(self, x, cross, x_mask=None, cross_mask=None):
261
+ for layer in self.layers:
262
+ x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
263
+
264
+ if self.norm is not None:
265
+ x = self.norm(x)
266
+
267
+ if self.projection is not None:
268
+ x = self.projection(x)
269
+ return x
270
+
271
+ class PositionalEmbedding(nn.Module):
272
+ def __init__(self, d_model, max_len=5000):
273
+ super(PositionalEmbedding, self).__init__()
274
+ # Compute the positional encodings once in log space.
275
+ pe = torch.zeros(max_len, d_model).float()
276
+ pe.require_grad = False
277
+
278
+ position = torch.arange(0, max_len).float().unsqueeze(1)
279
+ div_term = (torch.arange(0, d_model, 2).float()
280
+ * -(math.log(10000.0) / d_model)).exp()
281
+
282
+ pe[:, 0::2] = torch.sin(position * div_term)
283
+ pe[:, 1::2] = torch.cos(position * div_term)
284
+
285
+ pe = pe.unsqueeze(0)
286
+ self.register_buffer('pe', pe)
287
+
288
+ def forward(self, x):
289
+ return self.pe[:, :x.size(1)]
290
+
291
+ class FixedEmbedding(nn.Module):
292
+ def __init__(self, c_in, d_model):
293
+ super(FixedEmbedding, self).__init__()
294
+
295
+ w = torch.zeros(c_in, d_model).float()
296
+ w.require_grad = False
297
+
298
+ position = torch.arange(0, c_in).float().unsqueeze(1)
299
+ div_term = (torch.arange(0, d_model, 2).float()
300
+ * -(math.log(10000.0) / d_model)).exp()
301
+
302
+ w[:, 0::2] = torch.sin(position * div_term)
303
+ w[:, 1::2] = torch.cos(position * div_term)
304
+
305
+ self.emb = nn.Embedding(c_in, d_model)
306
+ self.emb.weight = nn.Parameter(w, requires_grad=False)
307
+
308
+ def forward(self, x):
309
+ return self.emb(x).detach()
310
+
311
+ class TemporalEmbedding(nn.Module):
312
+ def __init__(self, d_model, embed_type='fixed', freq='h'):
313
+ super(TemporalEmbedding, self).__init__()
314
+
315
+ hour_size = 96
316
+ weekday_size = 7
317
+
318
+ Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
319
+ self.hour_embed = Embed(hour_size, d_model)
320
+ self.weekday_embed = Embed(weekday_size, d_model)
321
+
322
+ def forward(self, x):
323
+ x = x.long()
324
+ hour_x = self.hour_embed(x[:, :, 0])
325
+ weekday_x = self.weekday_embed(x[:, :, 1])
326
+
327
+ return hour_x + weekday_x
328
+
329
+ class TokenEmbedding(nn.Module):
330
+ def __init__(self, c_in, d_model):
331
+ super(TokenEmbedding, self).__init__()
332
+ padding = 1 if torch.__version__ >= '1.5.0' else 2
333
+ self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
334
+ kernel_size=3, padding=padding, padding_mode='circular', bias=False)
335
+ for m in self.modules():
336
+ if isinstance(m, nn.Conv1d):
337
+ nn.init.kaiming_normal_(
338
+ m.weight, mode='fan_in', nonlinearity='leaky_relu')
339
+
340
+ def forward(self, x):
341
+ x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
342
+ return x
343
+
344
+ class DataEmbedding(nn.Module):
345
+ def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
346
+ super(DataEmbedding, self).__init__()
347
+
348
+ self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
349
+ self.position_embedding = PositionalEmbedding(d_model=d_model)
350
+ self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
351
+ freq=freq)
352
+ self.dropout = nn.Dropout(p=dropout)
353
+
354
+ def forward(self, x, x_mark):
355
+ if x_mark is None:
356
+ x = self.value_embedding(x) + self.position_embedding(x)
357
+ else:
358
+ x = self.value_embedding(x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
359
+ return self.dropout(x)
360
+
361
+ class Informer(nn.Module):
362
+ """
363
+ Informer with Propspare attention in O(LlogL) complexity
364
+ """
365
+ def __init__(
366
+ self,
367
+ enc_in,
368
+ dec_in,
369
+ c_out,
370
+ pred_len,
371
+ output_attention = False,
372
+ data_idx = [0,3,4,5,6,7],
373
+ time_idx = [1,2],
374
+ d_model = 16,
375
+ factor = 3,
376
+ n_heads = 4,
377
+ d_ff = 512,
378
+ d_layers = 3,
379
+ e_layers = 3,
380
+ activation = 'gelu',
381
+ dropout = 0.1
382
+ ):
383
+ super(Informer, self).__init__()
384
+ self.pred_len = pred_len
385
+ self.output_attention = output_attention
386
+ self.data_idx = data_idx
387
+ self.time_idx = time_idx
388
+ self.dec_in = dec_in
389
+
390
+ # Embedding
391
+ self.enc_embedding = DataEmbedding(enc_in, d_model, 'fixed', 'h',
392
+ dropout)
393
+ self.dec_embedding = DataEmbedding(dec_in, d_model,'fixed', 'h',
394
+ dropout)
395
+
396
+ # Encoder
397
+ self.encoder = Encoder(
398
+ [
399
+ EncoderLayer(
400
+ AttentionLayer(
401
+ ProbAttention(False, factor, attention_dropout=dropout,
402
+ output_attention=output_attention),
403
+ d_model, n_heads),
404
+ d_model,
405
+ d_ff,
406
+ dropout=dropout,
407
+ activation=activation
408
+ ) for l in range(e_layers)
409
+ ],
410
+ [
411
+ ConvLayer(
412
+ d_model
413
+ ) for l in range(e_layers - 1)
414
+ ],
415
+ norm_layer=torch.nn.LayerNorm(d_model)
416
+ )
417
+ # Decoder
418
+ self.decoder = Decoder(
419
+ [
420
+ DecoderLayer(
421
+ AttentionLayer(
422
+ ProbAttention(True, factor, attention_dropout=dropout, output_attention=False),
423
+ d_model, n_heads),
424
+ AttentionLayer(
425
+ ProbAttention(False, factor, attention_dropout=dropout, output_attention=False),
426
+ d_model, n_heads),
427
+ d_model,
428
+ d_ff,
429
+ dropout=dropout,
430
+ activation=activation,
431
+ )
432
+ for l in range(d_layers)
433
+ ],
434
+ norm_layer=torch.nn.LayerNorm(d_model),
435
+ projection=nn.Linear(d_model, c_out, bias=True)
436
+ )
437
+
438
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec,
439
+ enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
440
+
441
+ enc_out = self.enc_embedding(x_enc, x_mark_enc)
442
+ enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask)
443
+
444
+ dec_out = self.dec_embedding(x_dec, x_mark_dec)
445
+ dec_out = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask)
446
+
447
+ if self.output_attention:
448
+ return dec_out[:, -self.pred_len:, :], attns
449
+ else:
450
+ return dec_out[:, -self.pred_len:, :] # [B, L, D]
451
+
452
+ def forward(self, x, fut_time):
453
+
454
+ x_enc = x[:,:,self.data_idx]
455
+ x_mark_enc = x[:,:,self.time_idx]
456
+ x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
457
+ x_mark_dec = fut_time
458
+
459
+ return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]]
models/LSTM.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from typing import Union, List, Tuple
4
+
5
+ class LSTM(nn.Module):
6
+
7
+ def __init__(
8
+ self,
9
+ input_size: int = 8,
10
+ hidden_size: int = 40,
11
+ num_layers: int = 2,
12
+ dropout: float = 0.1,
13
+ lookback: int = 8, # this will not be used, but keeping it here for consistency
14
+ ):
15
+
16
+ super(LSTM,self).__init__()
17
+
18
+ # save values for use outside init
19
+ self.hidden_size, self.num_layers = hidden_size, num_layers
20
+
21
+ # lstm
22
+ self.lstm = nn.LSTM(
23
+ input_size = input_size,
24
+ hidden_size = hidden_size,
25
+ num_layers = num_layers,
26
+ bias = True,
27
+ batch_first = True,
28
+ dropout = dropout,
29
+ bidirectional = False,
30
+ proj_size = 0,
31
+ device = None
32
+ )
33
+
34
+ # projector
35
+ self.proj = nn.Linear(in_features=hidden_size, out_features=1, bias=False)
36
+
37
+ # dropout
38
+ self.dropout = nn.Dropout(p=dropout)
39
+
40
+
41
+ def init_h_c_(self, B, device, dtype):
42
+
43
+ h = torch.zeros((self.num_layers,B,self.hidden_size),dtype=dtype,device=device)
44
+ c = torch.zeros((self.num_layers,B,self.hidden_size),dtype=dtype,device=device)
45
+
46
+ return h,c
47
+
48
+ def forward(self, x, fut_time):
49
+
50
+ B, dev, dt = x.shape[0], x.device, x.dtype
51
+
52
+ # generate states
53
+ h,c = self.init_h_c_(B, dev, dt)
54
+
55
+ # iterate
56
+ out,(_,_) = self.lstm(x,(h,c))
57
+ return self.proj(self.dropout(out[:,-1,:]))
models/LSTNet.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+
6
+ # https://github.com/gokulkarthik/LSTNet.pytorch/blob/master/LSTNet.py
7
+
8
+ class LSTNet(nn.Module):
9
+
10
+ def __init__(
11
+ self,
12
+ num_features: int = 8,
13
+ conv1_out_channels: int = 32,
14
+ conv1_kernel_height: int = 7,
15
+ recc1_out_channels: int = 64,
16
+ skip_steps: list[int] = [4,24],
17
+ skip_reccs_out_channels: list[int] = [4,4],
18
+ output_out_features: int = 1,
19
+ ar_window_size: int = 7,
20
+ dropout: float = 0.1
21
+ ):
22
+ super(LSTNet, self).__init__()
23
+ self.num_features = num_features
24
+ self.conv1_out_channels = conv1_out_channels
25
+ self.conv1_kernel_height = conv1_kernel_height
26
+ self.recc1_out_channels = recc1_out_channels
27
+ self.skip_steps = skip_steps
28
+ self.skip_reccs_out_channels = skip_reccs_out_channels
29
+ self.output_out_features = output_out_features
30
+ self.ar_window_size = ar_window_size
31
+ self.dropout = nn.Dropout(p = dropout)
32
+
33
+
34
+ self.conv1 = nn.Conv2d(1, self.conv1_out_channels,
35
+ kernel_size=(self.conv1_kernel_height, self.num_features))
36
+ self.recc1 = nn.GRU(self.conv1_out_channels, self.recc1_out_channels, batch_first=True)
37
+ self.skip_reccs = nn.ModuleList()
38
+ for i in range(len(self.skip_steps)):
39
+ self.skip_reccs.append(nn.GRU(self.conv1_out_channels, self.skip_reccs_out_channels[i], batch_first=True))
40
+ self.output_in_features = self.recc1_out_channels + np.dot(self.skip_steps, self.skip_reccs_out_channels)
41
+ self.output = nn.Linear(self.output_in_features, self.output_out_features)
42
+ if self.ar_window_size > 0:
43
+ self.ar = nn.Linear(self.ar_window_size, 1)
44
+
45
+ def forward(self, X, fut_time):
46
+ """
47
+ Parameters:
48
+ X (tensor) [batch_size, time_steps, num_features]
49
+ """
50
+ batch_size = X.size(0)
51
+
52
+ # Convolutional Layer
53
+ C = X.unsqueeze(1) # [batch_size, num_channels=1, time_steps, num_features]
54
+ C = F.relu(self.conv1(C)) # [batch_size, conv1_out_channels, shrinked_time_steps, 1]
55
+ C = self.dropout(C)
56
+ C = torch.squeeze(C, 3) # [batch_size, conv1_out_channels, shrinked_time_steps]
57
+
58
+ # Recurrent Layer
59
+ R = C.permute(0, 2, 1) # [batch_size, shrinked_time_steps, conv1_out_channels]
60
+ out, hidden = self.recc1(R) # [batch_size, shrinked_time_steps, recc_out_channels]
61
+ R = out[:, -1, :] # [batch_size, recc_out_channels]
62
+ R = self.dropout(R)
63
+ #print(R.shape)
64
+
65
+ # Skip Recurrent Layers
66
+ shrinked_time_steps = C.size(2)
67
+ for i in range(len(self.skip_steps)):
68
+ skip_step = self.skip_steps[i]
69
+ skip_sequence_len = shrinked_time_steps // skip_step
70
+ # shrinked_time_steps shrinked further
71
+ S = C[:, :, -skip_sequence_len*skip_step:] # [batch_size, conv1_out_channels, shrinked_time_steps]
72
+ S = S.view(S.size(0), S.size(1), skip_sequence_len, skip_step) # [batch_size, conv1_out_channels, skip_sequence_len, skip_step=num_skip_components]
73
+ # note that num_skip_components = skip_step
74
+ S = S.permute(0, 3, 2, 1).contiguous() # [batch_size, skip_step=num_skip_components, skip_sequence_len, conv1_out_channels]
75
+ S = S.view(S.size(0)*S.size(1), S.size(2), S.size(3)) # [batch_size*num_skip_components, skip_sequence_len, conv1_out_channels]
76
+ out, hidden = self.skip_reccs[i](S) # [batch_size*num_skip_components, skip_sequence_len, skip_reccs_out_channels[i]]
77
+ S = out[:, -1, :] # [batch_size*num_skip_components, skip_reccs_out_channels[i]]
78
+ S = S.view(batch_size, skip_step*S.size(1)) # [batch_size, num_skip_components*skip_reccs_out_channels[i]]
79
+ S = self.dropout(S)
80
+ R = torch.cat((R, S), 1) # [batch_size, recc_out_channels + skip_reccs_out_channels * num_skip_components]
81
+ #print(S.shape)
82
+ #print(R.shape)
83
+
84
+ # Output Layer
85
+ O = F.relu(self.output(R)) # [batch_size, output_out_features=1]
86
+
87
+ if self.ar_window_size > 0:
88
+ # set dim3 based on output_out_features
89
+ AR = X[:, -self.ar_window_size:, 3:4] # [batch_size, ar_window_size, output_out_features=1]
90
+ AR = AR.permute(0, 2, 1).contiguous() # [batch_size, output_out_features, ar_window_size]
91
+ AR = self.ar(AR) # [batch_size, output_out_features, 1]
92
+ AR = AR.squeeze(2) # [batch_size, output_out_features]
93
+ O = O + AR
94
+
95
+ return O
models/TimesNet.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.fft
5
+ import math
6
+
7
+ class Inception_Block_V1(nn.Module):
8
+ def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True):
9
+ super(Inception_Block_V1, self).__init__()
10
+ self.in_channels = in_channels
11
+ self.out_channels = out_channels
12
+ self.num_kernels = num_kernels
13
+ kernels = []
14
+ for i in range(self.num_kernels):
15
+ kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=2 * i + 1, padding=i))
16
+ self.kernels = nn.ModuleList(kernels)
17
+ if init_weight:
18
+ self._initialize_weights()
19
+
20
+ def _initialize_weights(self):
21
+ for m in self.modules():
22
+ if isinstance(m, nn.Conv2d):
23
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
24
+ if m.bias is not None:
25
+ nn.init.constant_(m.bias, 0)
26
+
27
+ def forward(self, x):
28
+ res_list = []
29
+ for i in range(self.num_kernels):
30
+ res_list.append(self.kernels[i](x))
31
+ res = torch.stack(res_list, dim=-1).mean(-1)
32
+ return res
33
+
34
+ class PositionalEmbedding(nn.Module):
35
+ def __init__(self, d_model, max_len=5000):
36
+ super(PositionalEmbedding, self).__init__()
37
+ # Compute the positional encodings once in log space.
38
+ pe = torch.zeros(max_len, d_model).float()
39
+ pe.require_grad = False
40
+
41
+ position = torch.arange(0, max_len).float().unsqueeze(1)
42
+ div_term = (torch.arange(0, d_model, 2).float()
43
+ * -(math.log(10000.0) / d_model)).exp()
44
+
45
+ pe[:, 0::2] = torch.sin(position * div_term)
46
+ pe[:, 1::2] = torch.cos(position * div_term)
47
+
48
+ pe = pe.unsqueeze(0)
49
+ self.register_buffer('pe', pe)
50
+
51
+ def forward(self, x):
52
+ return self.pe[:, :x.size(1)]
53
+
54
+ class FixedEmbedding(nn.Module):
55
+ def __init__(self, c_in, d_model):
56
+ super(FixedEmbedding, self).__init__()
57
+
58
+ w = torch.zeros(c_in, d_model).float()
59
+ w.require_grad = False
60
+
61
+ position = torch.arange(0, c_in).float().unsqueeze(1)
62
+ div_term = (torch.arange(0, d_model, 2).float()
63
+ * -(math.log(10000.0) / d_model)).exp()
64
+
65
+ w[:, 0::2] = torch.sin(position * div_term)
66
+ w[:, 1::2] = torch.cos(position * div_term)
67
+
68
+ self.emb = nn.Embedding(c_in, d_model)
69
+ self.emb.weight = nn.Parameter(w, requires_grad=False)
70
+
71
+ def forward(self, x):
72
+ return self.emb(x).detach()
73
+
74
+ class TemporalEmbedding(nn.Module):
75
+ def __init__(self, d_model, embed_type='fixed', freq='h'):
76
+ super(TemporalEmbedding, self).__init__()
77
+
78
+ hour_size = 96
79
+ weekday_size = 7
80
+
81
+ Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
82
+ self.hour_embed = Embed(hour_size, d_model)
83
+ self.weekday_embed = Embed(weekday_size, d_model)
84
+
85
+ def forward(self, x):
86
+ x = x.long()
87
+ hour_x = self.hour_embed(x[:, :, 0])
88
+ weekday_x = self.weekday_embed(x[:, :, 1])
89
+
90
+ return hour_x + weekday_x
91
+
92
+ class TokenEmbedding(nn.Module):
93
+ def __init__(self, c_in, d_model):
94
+ super(TokenEmbedding, self).__init__()
95
+ padding = 1 if torch.__version__ >= '1.5.0' else 2
96
+ self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
97
+ kernel_size=3, padding=padding, padding_mode='circular', bias=False)
98
+ for m in self.modules():
99
+ if isinstance(m, nn.Conv1d):
100
+ nn.init.kaiming_normal_(
101
+ m.weight, mode='fan_in', nonlinearity='leaky_relu')
102
+
103
+ def forward(self, x):
104
+ x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
105
+ return x
106
+
107
+ class DataEmbedding(nn.Module):
108
+ def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
109
+ super(DataEmbedding, self).__init__()
110
+
111
+ self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
112
+ self.position_embedding = PositionalEmbedding(d_model=d_model)
113
+ self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
114
+ freq=freq)
115
+ self.dropout = nn.Dropout(p=dropout)
116
+
117
+ def forward(self, x, x_mark):
118
+ if x_mark is None:
119
+ x = self.value_embedding(x) + self.position_embedding(x)
120
+ else:
121
+ x = self.value_embedding(
122
+ x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
123
+ return self.dropout(x)
124
+
125
+ def FFT_for_Period(x, k=2):
126
+ # [B, T, C]
127
+ xf = torch.fft.rfft(x, dim=1)
128
+ # find period by amplitudes
129
+ frequency_list = abs(xf).mean(0).mean(-1)
130
+ frequency_list[0] = 0
131
+ _, top_list = torch.topk(frequency_list, k)
132
+ top_list = top_list.detach().cpu().numpy()
133
+ period = x.shape[1] // top_list
134
+ return period, abs(xf).mean(-1)[:, top_list]
135
+
136
+
137
+ class TimesBlock(nn.Module):
138
+ def __init__(self, seq_len, pred_len, top_k, d_model, d_ff, num_kernels):
139
+ super(TimesBlock, self).__init__()
140
+ self.seq_len = seq_len
141
+ self.pred_len = pred_len
142
+ self.k = top_k
143
+ # parameter-efficient design
144
+ self.conv = nn.Sequential(
145
+ Inception_Block_V1(d_model, d_ff,
146
+ num_kernels=num_kernels),
147
+ nn.GELU(),
148
+ Inception_Block_V1(d_ff, d_model,
149
+ num_kernels=num_kernels)
150
+ )
151
+
152
+ def forward(self, x):
153
+ B, T, N = x.size()
154
+ period_list, period_weight = FFT_for_Period(x, self.k)
155
+
156
+ res = []
157
+ for i in range(self.k):
158
+ period = period_list[i]
159
+ # padding
160
+ if (self.seq_len + self.pred_len) % period != 0:
161
+ length = (
162
+ ((self.seq_len + self.pred_len) // period) + 1) * period
163
+ padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device)
164
+ out = torch.cat([x, padding], dim=1)
165
+ else:
166
+ length = (self.seq_len + self.pred_len)
167
+ out = x
168
+ # reshape
169
+ out = out.reshape(B, length // period, period,
170
+ N).permute(0, 3, 1, 2).contiguous()
171
+ # 2D conv: from 1d Variation to 2d Variation
172
+ out = self.conv(out)
173
+ # reshape back
174
+ out = out.permute(0, 2, 3, 1).reshape(B, -1, N)
175
+ res.append(out[:, :(self.seq_len + self.pred_len), :])
176
+ res = torch.stack(res, dim=-1)
177
+ # adaptive aggregation
178
+ period_weight = F.softmax(period_weight, dim=1)
179
+ period_weight = period_weight.unsqueeze(
180
+ 1).unsqueeze(1).repeat(1, T, N, 1)
181
+ res = torch.sum(res * period_weight, -1)
182
+ # residual connection
183
+ res = res + x
184
+ return res
185
+
186
+
187
+ class TimesNet(nn.Module):
188
+ """
189
+ Paper link: https://openreview.net/pdf?id=ju_Uqw384Oq
190
+ """
191
+
192
+ def __init__(
193
+ self,
194
+ enc_in,
195
+ dec_in,
196
+ c_out,
197
+ pred_len,
198
+ seq_len,
199
+ output_attention = False,
200
+ data_idx = [0,3,4,5,6,7],
201
+ time_idx = [1,2],
202
+ d_model = 16,
203
+ d_ff = 64,
204
+ e_layers = 2,
205
+ top_k = 5,
206
+ num_kernels = 2,
207
+ dropout = 0.1
208
+ ):
209
+ super(TimesNet, self).__init__()
210
+
211
+ self.data_idx = data_idx
212
+ self.time_idx = time_idx
213
+ self.dec_in = dec_in
214
+
215
+ self.seq_len = seq_len
216
+ self.pred_len = pred_len
217
+ self.model = nn.ModuleList([TimesBlock(seq_len, pred_len, top_k, d_model, d_ff, num_kernels)
218
+ for _ in range(e_layers)])
219
+ self.enc_embedding = DataEmbedding(enc_in, d_model, 'fixed', 'h',
220
+ dropout)
221
+ self.layer = e_layers
222
+ self.layer_norm = nn.LayerNorm(d_model)
223
+ self.predict_linear = nn.Linear(
224
+ self.seq_len, self.pred_len + self.seq_len)
225
+ self.projection = nn.Linear(
226
+ d_model, c_out, bias=True)
227
+
228
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
229
+ # Normalization from Non-stationary Transformer
230
+ means = x_enc.mean(1, keepdim=True).detach()
231
+ x_enc = x_enc - means
232
+ stdev = torch.sqrt(
233
+ torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
234
+ x_enc /= stdev
235
+
236
+ # embedding
237
+ enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
238
+ enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute(
239
+ 0, 2, 1) # align temporal dimension
240
+ # TimesNet
241
+ for i in range(self.layer):
242
+ enc_out = self.layer_norm(self.model[i](enc_out))
243
+ # porject back
244
+ dec_out = self.projection(enc_out)
245
+
246
+ # De-Normalization from Non-stationary Transformer
247
+ dec_out = dec_out * \
248
+ (stdev[:, 0, :].unsqueeze(1).repeat(
249
+ 1, self.pred_len + self.seq_len, 1))
250
+ dec_out = dec_out + \
251
+ (means[:, 0, :].unsqueeze(1).repeat(
252
+ 1, self.pred_len + self.seq_len, 1))
253
+ return dec_out
254
+
255
+ def forward(self, x, fut_time):
256
+
257
+ x_enc = x[:,:,self.data_idx]
258
+ x_mark_enc = x[:,:,self.time_idx]
259
+ x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
260
+ x_mark_dec = fut_time
261
+
262
+ return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]]
models/Transformer.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+ import math
6
+ from math import sqrt
7
+
8
+ class TriangularCausalMask():
9
+ def __init__(self, B, L, device="cpu"):
10
+ mask_shape = [B, 1, L, L]
11
+ with torch.no_grad():
12
+ self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
13
+
14
+ @property
15
+ def mask(self):
16
+ return self._mask
17
+
18
+ class PositionalEmbedding(nn.Module):
19
+ def __init__(self, d_model, max_len=5000):
20
+ super(PositionalEmbedding, self).__init__()
21
+ # Compute the positional encodings once in log space.
22
+ pe = torch.zeros(max_len, d_model).float()
23
+ pe.require_grad = False
24
+
25
+ position = torch.arange(0, max_len).float().unsqueeze(1)
26
+ div_term = (torch.arange(0, d_model, 2).float()
27
+ * -(math.log(10000.0) / d_model)).exp()
28
+
29
+ pe[:, 0::2] = torch.sin(position * div_term)
30
+ pe[:, 1::2] = torch.cos(position * div_term)
31
+
32
+ pe = pe.unsqueeze(0)
33
+ self.register_buffer('pe', pe)
34
+
35
+ def forward(self, x):
36
+ return self.pe[:, :x.size(1)]
37
+
38
+ class FixedEmbedding(nn.Module):
39
+ def __init__(self, c_in, d_model):
40
+ super(FixedEmbedding, self).__init__()
41
+
42
+ w = torch.zeros(c_in, d_model).float()
43
+ w.require_grad = False
44
+
45
+ position = torch.arange(0, c_in).float().unsqueeze(1)
46
+ div_term = (torch.arange(0, d_model, 2).float()
47
+ * -(math.log(10000.0) / d_model)).exp()
48
+
49
+ w[:, 0::2] = torch.sin(position * div_term)
50
+ w[:, 1::2] = torch.cos(position * div_term)
51
+
52
+ self.emb = nn.Embedding(c_in, d_model)
53
+ self.emb.weight = nn.Parameter(w, requires_grad=False)
54
+
55
+ def forward(self, x):
56
+ return self.emb(x).detach()
57
+
58
+ class TemporalEmbedding(nn.Module):
59
+ def __init__(self, d_model, embed_type='fixed', freq='h'):
60
+ super(TemporalEmbedding, self).__init__()
61
+
62
+ hour_size = 96
63
+ weekday_size = 7
64
+
65
+ Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding
66
+ self.hour_embed = Embed(hour_size, d_model)
67
+ self.weekday_embed = Embed(weekday_size, d_model)
68
+
69
+ def forward(self, x):
70
+ x = x.long()
71
+ hour_x = self.hour_embed(x[:, :, 0])
72
+ weekday_x = self.weekday_embed(x[:, :, 1])
73
+
74
+ return hour_x + weekday_x
75
+
76
+ class TokenEmbedding(nn.Module):
77
+ def __init__(self, c_in, d_model):
78
+ super(TokenEmbedding, self).__init__()
79
+ padding = 1 if torch.__version__ >= '1.5.0' else 2
80
+ self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
81
+ kernel_size=3, padding=padding, padding_mode='circular', bias=False)
82
+ for m in self.modules():
83
+ if isinstance(m, nn.Conv1d):
84
+ nn.init.kaiming_normal_(
85
+ m.weight, mode='fan_in', nonlinearity='leaky_relu')
86
+
87
+ def forward(self, x):
88
+ x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
89
+ return x
90
+
91
+ class DataEmbedding(nn.Module):
92
+ def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
93
+ super(DataEmbedding, self).__init__()
94
+
95
+ self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
96
+ self.position_embedding = PositionalEmbedding(d_model=d_model)
97
+ self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type,
98
+ freq=freq)
99
+ self.dropout = nn.Dropout(p=dropout)
100
+
101
+ def forward(self, x, x_mark):
102
+ if x_mark is None:
103
+ x = self.value_embedding(x) + self.position_embedding(x)
104
+ else:
105
+ x = self.value_embedding(
106
+ x) + self.temporal_embedding(x_mark) + self.position_embedding(x)
107
+ return self.dropout(x)
108
+
109
+ class AttentionLayer(nn.Module):
110
+ def __init__(self, attention, d_model, n_heads, d_keys=None,
111
+ d_values=None):
112
+ super(AttentionLayer, self).__init__()
113
+
114
+ d_keys = d_keys or (d_model // n_heads)
115
+ d_values = d_values or (d_model // n_heads)
116
+
117
+ self.inner_attention = attention
118
+ self.query_projection = nn.Linear(d_model, d_keys * n_heads)
119
+ self.key_projection = nn.Linear(d_model, d_keys * n_heads)
120
+ self.value_projection = nn.Linear(d_model, d_values * n_heads)
121
+ self.out_projection = nn.Linear(d_values * n_heads, d_model)
122
+ self.n_heads = n_heads
123
+
124
+ def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
125
+ B, L, _ = queries.shape
126
+ _, S, _ = keys.shape
127
+ H = self.n_heads
128
+
129
+ queries = self.query_projection(queries).view(B, L, H, -1)
130
+ keys = self.key_projection(keys).view(B, S, H, -1)
131
+ values = self.value_projection(values).view(B, S, H, -1)
132
+
133
+ out, attn = self.inner_attention(
134
+ queries,
135
+ keys,
136
+ values,
137
+ attn_mask,
138
+ tau=tau,
139
+ delta=delta
140
+ )
141
+ out = out.view(B, L, -1)
142
+
143
+ return self.out_projection(out), attn
144
+
145
+ class FullAttention(nn.Module):
146
+ def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
147
+ super(FullAttention, self).__init__()
148
+ self.scale = scale
149
+ self.mask_flag = mask_flag
150
+ self.output_attention = output_attention
151
+ self.dropout = nn.Dropout(attention_dropout)
152
+
153
+ def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
154
+ B, L, H, E = queries.shape
155
+ _, S, _, D = values.shape
156
+ scale = self.scale or 1. / sqrt(E)
157
+
158
+ scores = torch.einsum("blhe,bshe->bhls", queries, keys)
159
+
160
+ if self.mask_flag:
161
+ if attn_mask is None:
162
+ attn_mask = TriangularCausalMask(B, L, device=queries.device)
163
+
164
+ scores.masked_fill_(attn_mask.mask, -np.inf)
165
+
166
+ A = self.dropout(torch.softmax(scale * scores, dim=-1))
167
+ V = torch.einsum("bhls,bshd->blhd", A, values)
168
+
169
+ if self.output_attention:
170
+ return V.contiguous(), A
171
+ else:
172
+ return V.contiguous(), None
173
+
174
+ class ConvLayer(nn.Module):
175
+ def __init__(self, c_in):
176
+ super(ConvLayer, self).__init__()
177
+ self.downConv = nn.Conv1d(in_channels=c_in,
178
+ out_channels=c_in,
179
+ kernel_size=3,
180
+ padding=2,
181
+ padding_mode='circular')
182
+ self.norm = nn.BatchNorm1d(c_in)
183
+ self.activation = nn.ELU()
184
+ self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
185
+
186
+ def forward(self, x):
187
+ x = self.downConv(x.permute(0, 2, 1))
188
+ x = self.norm(x)
189
+ x = self.activation(x)
190
+ x = self.maxPool(x)
191
+ x = x.transpose(1, 2)
192
+ return x
193
+
194
+ class EncoderLayer(nn.Module):
195
+ def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
196
+ super(EncoderLayer, self).__init__()
197
+ d_ff = d_ff or 4 * d_model
198
+ self.attention = attention
199
+ self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
200
+ self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
201
+ self.norm1 = nn.LayerNorm(d_model)
202
+ self.norm2 = nn.LayerNorm(d_model)
203
+ self.dropout = nn.Dropout(dropout)
204
+ self.activation = F.relu if activation == "relu" else F.gelu
205
+
206
+ def forward(self, x, attn_mask=None, tau=None, delta=None):
207
+ new_x, attn = self.attention(
208
+ x, x, x,
209
+ attn_mask=attn_mask,
210
+ tau=tau, delta=delta
211
+ )
212
+ x = x + self.dropout(new_x)
213
+
214
+ y = x = self.norm1(x)
215
+ y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
216
+ y = self.dropout(self.conv2(y).transpose(-1, 1))
217
+
218
+ return self.norm2(x + y), attn
219
+
220
+
221
+ class Encoder(nn.Module):
222
+ def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
223
+ super(Encoder, self).__init__()
224
+ self.attn_layers = nn.ModuleList(attn_layers)
225
+ self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
226
+ self.norm = norm_layer
227
+
228
+ def forward(self, x, attn_mask=None, tau=None, delta=None):
229
+ # x [B, L, D]
230
+ attns = []
231
+ if self.conv_layers is not None:
232
+ for i, (attn_layer, conv_layer) in enumerate(zip(self.attn_layers, self.conv_layers)):
233
+ delta = delta if i == 0 else None
234
+ x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta)
235
+ x = conv_layer(x)
236
+ attns.append(attn)
237
+ x, attn = self.attn_layers[-1](x, tau=tau, delta=None)
238
+ attns.append(attn)
239
+ else:
240
+ for attn_layer in self.attn_layers:
241
+ x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta)
242
+ attns.append(attn)
243
+
244
+ if self.norm is not None:
245
+ x = self.norm(x)
246
+
247
+ return x, attns
248
+
249
+
250
+ class DecoderLayer(nn.Module):
251
+ def __init__(self, self_attention, cross_attention, d_model, d_ff=None,
252
+ dropout=0.1, activation="relu"):
253
+ super(DecoderLayer, self).__init__()
254
+ d_ff = d_ff or 4 * d_model
255
+ self.self_attention = self_attention
256
+ self.cross_attention = cross_attention
257
+ self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
258
+ self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
259
+ self.norm1 = nn.LayerNorm(d_model)
260
+ self.norm2 = nn.LayerNorm(d_model)
261
+ self.norm3 = nn.LayerNorm(d_model)
262
+ self.dropout = nn.Dropout(dropout)
263
+ self.activation = F.relu if activation == "relu" else F.gelu
264
+
265
+ def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None):
266
+ x = x + self.dropout(self.self_attention(
267
+ x, x, x,
268
+ attn_mask=x_mask,
269
+ tau=tau, delta=None
270
+ )[0])
271
+ x = self.norm1(x)
272
+
273
+ x = x + self.dropout(self.cross_attention(
274
+ x, cross, cross,
275
+ attn_mask=cross_mask,
276
+ tau=tau, delta=delta
277
+ )[0])
278
+
279
+ y = x = self.norm2(x)
280
+ y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
281
+ y = self.dropout(self.conv2(y).transpose(-1, 1))
282
+
283
+ return self.norm3(x + y)
284
+
285
+
286
+ class Decoder(nn.Module):
287
+ def __init__(self, layers, norm_layer=None, projection=None):
288
+ super(Decoder, self).__init__()
289
+ self.layers = nn.ModuleList(layers)
290
+ self.norm = norm_layer
291
+ self.projection = projection
292
+
293
+ def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None):
294
+ for layer in self.layers:
295
+ x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask, tau=tau, delta=delta)
296
+
297
+ if self.norm is not None:
298
+ x = self.norm(x)
299
+
300
+ if self.projection is not None:
301
+ x = self.projection(x)
302
+ return x
303
+
304
+ class Transformer(nn.Module):
305
+ """
306
+ Vanilla Transformer
307
+ with O(L^2) complexity
308
+ Paper link: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
309
+ """
310
+
311
+ def __init__(
312
+ self,
313
+ enc_in,
314
+ dec_in,
315
+ c_out,
316
+ pred_len,
317
+ output_attention = False,
318
+ data_idx = [0,3,4,5,6,7],
319
+ time_idx = [1,2],
320
+ d_model = 16,
321
+ factor = 3,
322
+ n_heads = 4,
323
+ d_ff = 512,
324
+ d_layers = 3,
325
+ e_layers = 3,
326
+ activation = 'gelu',
327
+ dropout = 0.1
328
+ ):
329
+ super(Transformer, self).__init__()
330
+ self.pred_len = pred_len
331
+ self.output_attention = output_attention
332
+ # save indices
333
+ self.data_idx = data_idx
334
+ self.time_idx = time_idx
335
+ self.dec_in = dec_in
336
+ # Embedding
337
+ self.enc_embedding = DataEmbedding(enc_in, d_model,'fixed', 'h',
338
+ dropout)
339
+ # Encoder
340
+ self.encoder = Encoder(
341
+ [
342
+ EncoderLayer(
343
+ AttentionLayer(
344
+ FullAttention(False, factor, attention_dropout=dropout,
345
+ output_attention=output_attention), d_model, n_heads),
346
+ d_model,
347
+ d_ff,
348
+ dropout=dropout,
349
+ activation=activation
350
+ ) for l in range(e_layers)
351
+ ],
352
+ norm_layer=torch.nn.LayerNorm(d_model)
353
+ )
354
+ # Decoder
355
+ self.dec_embedding = DataEmbedding(dec_in, d_model,'fixed', 'h',
356
+ dropout)
357
+ self.decoder = Decoder(
358
+ [
359
+ DecoderLayer(
360
+ AttentionLayer(
361
+ FullAttention(True, factor, attention_dropout=dropout,
362
+ output_attention=False),
363
+ d_model, n_heads),
364
+ AttentionLayer(
365
+ FullAttention(False, factor, attention_dropout=dropout,
366
+ output_attention=False),
367
+ d_model, n_heads),
368
+ d_model,
369
+ d_ff,
370
+ dropout=dropout,
371
+ activation=activation,
372
+ )
373
+ for l in range(d_layers)
374
+ ],
375
+ norm_layer=torch.nn.LayerNorm(d_model),
376
+ projection=nn.Linear(d_model, c_out, bias=True)
377
+ )
378
+
379
+ def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
380
+ # Embedding
381
+ enc_out = self.enc_embedding(x_enc, x_mark_enc)
382
+ enc_out, attns = self.encoder(enc_out, attn_mask=None)
383
+
384
+ dec_out = self.dec_embedding(x_dec, x_mark_dec)
385
+ dec_out = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None)
386
+ return dec_out
387
+
388
+ def forward(self, x, fut_time):
389
+
390
+ x_enc = x[:,:,self.data_idx]
391
+ x_mark_enc = x[:,:,self.time_idx]
392
+ x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device)
393
+ x_mark_dec = fut_time
394
+
395
+ return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]]
396
+
models/__pycache__/Autoformer.cpython-310.pyc ADDED
Binary file (18.4 kB). View file
 
models/__pycache__/LSTM.cpython-310.pyc ADDED
Binary file (1.63 kB). View file
 
models/__pycache__/LSTNet.cpython-310.pyc ADDED
Binary file (2.54 kB). View file
 
weights/autoformer_L_96_T_48_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18a3294861900282c8d001143dd6e61052e294465ddc1b77968cff9464eff7b2
3
+ size 5688452
weights/autoformer_L_96_T_48_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ba4d9cc688f64e8456f27286eb2412b844162211a07dd5d93aa9baf13acd69
3
+ size 5688452
weights/autoformer_L_96_T_4_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6ef2bb0c2108017028fc57c70e3f9414f4abb07822ecfaf6d0387ad295a0d32
3
+ size 5688349
weights/autoformer_L_96_T_4_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1233196407b1b89c5f1c1aa69a330b9a11059d14502756c70158f020a29f43d1
3
+ size 5688349
weights/autoformer_L_96_T_96_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9efc3128fa75c1c9512e9429ec8fc930f9a4b97d9e573cf52bad5d1f4343f915
3
+ size 5688452
weights/autoformer_L_96_T_96_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a7b3da7d3ab3dfd4e3d91e9b24c3ddd8a1aa1414ec01b5a31dea02123305a5
3
+ size 5688452
weights/informer_L_96_T_48_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab980f35a30ed0252b268184614bce5981a38d58de69270e8b71d546cf037e66
3
+ size 11244096
weights/informer_L_96_T_48_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5de041c5b3e5476c5e21b2549ed9ef2e42f36ef87f03eb3ea7c8a65ad41f397e
3
+ size 11244096
weights/informer_L_96_T_4_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46f23ad6a7ad0c5a52b64f629b708d3c21fed9d8eddba0be9be136f17c4cfcbf
3
+ size 11243810
weights/informer_L_96_T_4_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:193a87c1eafeae1d193e298ef45d90b0e1c0a9e02674ba1e43d6914a769f4bf8
3
+ size 11243810
weights/informer_L_96_T_96_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3289d7e42598e872c47c717e74534e2670d2b835149d80f134cf7bc4cef0900
3
+ size 11244096
weights/informer_L_96_T_96_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c51930737bfa82e805c4d21e5995bff2957bf2a83d74af6a9c5497915a8dafb
3
+ size 11244096
weights/lstm_L_96_T_48_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94291c5486572cee3c7cd2c8c1b7a7415ec97484ca06173cd3a86d500b006df0
3
+ size 57534
weights/lstm_L_96_T_48_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff835cd72503995f91b3bf7cf2032a102f80472122304258da385d56e2d4e708
3
+ size 57534
weights/lstm_L_96_T_4_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c054d857c774996eef3b0a01225d346bcae05e1cd1de18e88e5b1ea8ec7bca7
3
+ size 57528
weights/lstm_L_96_T_4_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ee4c4e822c76f72ffda5df510cc938a3808af9e500bcf42746fbcbe53744ec9
3
+ size 57528
weights/lstm_L_96_T_96_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcb5ceb916e486b1a6f93745b181b5b77950f746e0fcadb67b406e6e410b7c63
3
+ size 57534
weights/lstm_L_96_T_96_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:289eb2d01a3334be482f9726b87501507e405bbb6a6155b391c3f1ba3a01e7c2
3
+ size 57534
weights/lstnet_L_96_T_48_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78c3e19fa8b924a15f3782086cff3af56955bea42e367570032f169a9688c0c6
3
+ size 270131
weights/lstnet_L_96_T_48_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:224386846b28ece3491a23994d91c7be2378e72146292c2a83375cf6f3a9bfbc
3
+ size 270131
weights/lstnet_L_96_T_4_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e39e8de2cefbff72f0afd46cdee468c0834373eaa6181f48ddc9b5c773342f2f
3
+ size 270118
weights/lstnet_L_96_T_4_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de225ee33f9400f059fabf14d2be13ce0824ae65fdb687b6cd2b24bfc776345
3
+ size 270118
weights/lstnet_L_96_T_96_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7268ae84cc4c1ff8362ad17967d11cafc77693d4d3ba1b1236b2f9119ed07fdf
3
+ size 270131
weights/lstnet_L_96_T_96_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23483f05784451adc89b8c02de3856ab327c33939f46f860097cf406bb60029f
3
+ size 270131
weights/timesnet_L_96_T_48_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dfddb89e0d9d99381cbf34a0e281aa459fe3efd0867377d20a996dac7e7e5da
3
+ size 4001930
weights/timesnet_L_96_T_48_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60566ce96344f60447743e22308020f5357ef10385ea7d32551f2ac9dd39fef
3
+ size 4001930
weights/timesnet_L_96_T_4_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31f897bb5d72985f6edf5243b2cb36f79ebbef149f15f783e73499f13ac6d2e6
3
+ size 3984748
weights/timesnet_L_96_T_4_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8da9b302e17cadaae0d579e056cd5056bb698a6e723e4526485719cb2835f012
3
+ size 3984748
weights/timesnet_L_96_T_96_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae0b469bdf5e4e59bcbb1352c4c4915bf5d54329d3092e9dd7ad7fe598b3a05
3
+ size 4020554
weights/timesnet_L_96_T_96_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5caf3ecd2e1a98de5a657e691388eadfcd38c867de2d8777e66815d16fd52376
3
+ size 4020554
weights/transformer_L_96_T_48_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9880c6615410fe0beecb62b5744d94f18ea5d54aeaa360fc09bf1b854a383454
3
+ size 10841594
weights/transformer_L_96_T_48_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fde291ab8a817e94efc6b285f3025fb90ee16279c2b148e68743b1edd91e57
3
+ size 10841594
weights/transformer_L_96_T_4_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad641d745bd4c12791767d1795f437fc5f337f060796c897e76b24e543a421e
3
+ size 10841450
weights/transformer_L_96_T_4_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d839f3ab1dd0fbee2ba3b1335d2033624373098949057c0dad8788199df80615
3
+ size 10841450
weights/transformer_L_96_T_96_HET.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d8cf4a6217b75bdb594a8976dad0844285b8780f818552211b0db170fad3da4
3
+ size 10841594
weights/transformer_L_96_T_96_HOM.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fecf4fed617509c693c275f20241a859a2087376cd4a5408afb34e1daf0454ff
3
+ size 10841594