AIguysingstoo commited on
Commit
04bd8ff
1 Parent(s): 20bec1e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.85 +/- 21.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6664cbc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6664cbcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6664cbd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6664cbdd0>", "_build": "<function ActorCriticPolicy._build at 0x7fb6664cbe60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6664cbef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6664cbf80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6664d1050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6664d10e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6664d1170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6664d1200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb66652a0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666310525983865172, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOeT71Iy7i6lZIEtUrxCbCXtAW6UghrNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbcfUXdk9YECUhpRSlIwBbJRNogOMAXSUR0COxik/KQq7dX2UKGgGaAloD0MIMC3qk9zucUCUhpRSlGgVTYEBaBZHQI7NrdSEUTN1fZQoaAZoCWgPQwg0u+6tiL9xQJSGlFKUaBVNdwFoFkdAjtJrVOKwZHV9lChoBmgJaA9DCF9dFaiFS3BAlIaUUpRoFU1sAWgWR0CO2U/vfCQ+dX2UKGgGaAloD0MIKIHNOXiJb0CUhpRSlGgVTTwBaBZHQI7dHJT2nKp1fZQoaAZoCWgPQwiPqFDdXFw+QJSGlFKUaBVNIwFoFkdAjuC7JGOMl3V9lChoBmgJaA9DCJPfopOl3m9AlIaUUpRoFU1EAWgWR0CO5NiWE9McdX2UKGgGaAloD0MI7nppigCpb0CUhpRSlGgVTX8BaBZHQI7sdMqSX+l1fZQoaAZoCWgPQwiZ1xGH7FZwQJSGlFKUaBVNUwFoFkdAjvDJeVs1sXV9lChoBmgJaA9DCEm8PJ0rKXFAlIaUUpRoFU1qAWgWR0CO993g1m8NdX2UKGgGaAloD0MIrJFdaZnxcUCUhpRSlGgVTTIBaBZHQI77fyup0fZ1fZQoaAZoCWgPQwjWARB3tYlwQJSGlFKUaBVNFQFoFkdAjv8Q5FPSD3V9lChoBmgJaA9DCIpamlsh3BLAlIaUUpRoFUvTaBZHQI8BjcRDkU91fZQoaAZoCWgPQwhQUfUrnbduQJSGlFKUaBVL9GgWR0CPBz4QjD8+dX2UKGgGaAloD0MIeA360ttScECUhpRSlGgVTR4BaBZHQI8KjulXRw91fZQoaAZoCWgPQwgt7GmH/+dxQJSGlFKUaBVNPAFoFkdAjw6o9TxXn3V9lChoBmgJaA9DCKCobFjTdm5AlIaUUpRoFU0sAWgWR0CPElS1E3KkdX2UKGgGaAloD0MIDRe5pytEb0CUhpRSlGgVTTMBaBZHQI8Y5q46Oo51fZQoaAZoCWgPQwiztb5IaOFvQJSGlFKUaBVNHwFoFkdAjxxcs+V1OnV9lChoBmgJaA9DCFiqC3gZQmFAlIaUUpRoFU3oA2gWR0CPLMcGTs6adX2UKGgGaAloD0MI+tNGdbqYbkCUhpRSlGgVTSIBaBZHQI8wT8ejmCB1fZQoaAZoCWgPQwi9i/fj9vJuQJSGlFKUaBVNHwFoFkdAjzY+CbtqpXV9lChoBmgJaA9DCLYsX5dham1AlIaUUpRoFU02AWgWR0CPOkXJHRTkdX2UKGgGaAloD0MIaqUQyCVuDUCUhpRSlGgVS6doFkdAjzwaQ3gk1XV9lChoBmgJaA9DCEJClC9o4RPAlIaUUpRoFUvPaBZHQI8+e+M6zVt1fZQoaAZoCWgPQwh1BduI5w9xQJSGlFKUaBVNXQFoFkdAj0UpwCKaX3V9lChoBmgJaA9DCPPJiuEqWHBAlIaUUpRoFU0aAWgWR0CPSMGQCCBgdX2UKGgGaAloD0MI6bga2RVAb0CUhpRSlGgVTTABaBZHQI9Mg/Z/Tb51fZQoaAZoCWgPQwi3CmKg68dtQJSGlFKUaBVNBwFoFkdAj0+9qk/KQ3V9lChoBmgJaA9DCDmdZKtLOHBAlIaUUpRoFU06AWgWR0CPVnClabF1dX2UKGgGaAloD0MIHzF6bqH7b0CUhpRSlGgVTQoBaBZHQI9Zj6i0v5B1fZQoaAZoCWgPQwiLqfQTziRsQJSGlFKUaBVNLwFoFkdAj11nrpqynnV9lChoBmgJaA9DCLEVNC3xPHBAlIaUUpRoFU00AWgWR0CPY/clgMMJdX2UKGgGaAloD0MIs0EmGTlQa0CUhpRSlGgVTUcBaBZHQI9oAEdNnGt1fZQoaAZoCWgPQwjCilOthf9ZQJSGlFKUaBVN6ANoFkdAj3qWDxsl9nV9lChoBmgJaA9DCBvyzwxi8G5AlIaUUpRoFU2DAWgWR0CPf62tMfzSdX2UKGgGaAloD0MI86/llWtncECUhpRSlGgVTbYBaBZHQI+Hw2l2vB91fZQoaAZoCWgPQwhOnUfFf7RtQJSGlFKUaBVNnAFoFkdAj40wFkhA4XV9lChoBmgJaA9DCEjElEhi2XBAlIaUUpRoFU0YAWgWR0CPkJosZpBYdX2UKGgGaAloD0MIK4nsg6zXbECUhpRSlGgVTT8BaBZHQI+XOrXDm8x1fZQoaAZoCWgPQwjfpGlQNHddQJSGlFKUaBVN6ANoFkdAj6iL9l2/z3V9lChoBmgJaA9DCOOlm8QggWVAlIaUUpRoFU3oA2gWR0CPt/hLoOhCdX2UKGgGaAloD0MI16IFaFv+cECUhpRSlGgVTaACaBZHQI/CDBl+Vkd1fZQoaAZoCWgPQwiMg0vHnLFaQJSGlFKUaBVN6ANoFkdAj9Yy3kPtlnV9lChoBmgJaA9DCC3t1Fzu22FAlIaUUpRoFU3oA2gWR0CP7QN2C/XYdX2UKGgGaAloD0MINe84RccnYkCUhpRSlGgVTegDaBZHQJAACXdCVr11fZQoaAZoCWgPQwh0z7pGy/kswJSGlFKUaBVL72gWR0CQAWRs/IKddX2UKGgGaAloD0MI5IOezapYXkCUhpRSlGgVTegDaBZHQJALMWEbo8p1fZQoaAZoCWgPQwij5xa6EipeQJSGlFKUaBVN6ANoFkdAkBQW+TNdJXV9lChoBmgJaA9DCLGLoge+R3FAlIaUUpRoFU3xAWgWR0CQGNQyRB/rdX2UKGgGaAloD0MI+THmriVBYkCUhpRSlGgVTegDaBZHQJAiNwXIlt11fZQoaAZoCWgPQwjc9dIUgTJkQJSGlFKUaBVN6ANoFkdAkCwg/PgNw3V9lChoBmgJaA9DCNdLUwS4iWJAlIaUUpRoFU3oA2gWR0CQNoFJQLuydX2UKGgGaAloD0MIZhTLLa0+LsCUhpRSlGgVS9BoFkdAkDe5soDxLHV9lChoBmgJaA9DCED35cx2Hl5AlIaUUpRoFU3oA2gWR0CQQOrSmZVodX2UKGgGaAloD0MIkZxM3KrRbkCUhpRSlGgVTegBaBZHQJBEjjyWiUR1fZQoaAZoCWgPQwgRcXMqmX5iQJSGlFKUaBVN6ANoFkdAkE0jpcHGCXV9lChoBmgJaA9DCHTqymd5RmFAlIaUUpRoFU3oA2gWR0CQV9UxVQyidX2UKGgGaAloD0MIaccNv5urYECUhpRSlGgVTegDaBZHQJBgV9MK1G91fZQoaAZoCWgPQwjy7zMuHAZgQJSGlFKUaBVN6ANoFkdAkGmb6xgRb3V9lChoBmgJaA9DCBaKdD+nqXBAlIaUUpRoFU2/AWgWR0CQbfrOZ9eAdX2UKGgGaAloD0MI/id/9w4WY0CUhpRSlGgVTegDaBZHQJB11xcVxjt1fZQoaAZoCWgPQwhEwvf+hk5rQJSGlFKUaBVNegFoFkdAkHhEzXSSeXV9lChoBmgJaA9DCIpXWdsUT2NAlIaUUpRoFU3oA2gWR0CQgO925hBrdX2UKGgGaAloD0MIF7mnqztKQECUhpRSlGgVTRwBaBZHQJCCkCdSVGF1fZQoaAZoCWgPQwhiga/o1qv2v5SGlFKUaBVNEAFoFkdAkIViih37lHV9lChoBmgJaA9DCF1Std0E4m9AlIaUUpRoFU31AmgWR0CQitwRoRI0dX2UKGgGaAloD0MIfentz8VsYUCUhpRSlGgVTegDaBZHQJCaMuscQy11fZQoaAZoCWgPQwhI+N7foI1uQJSGlFKUaBVN2gFoFkdAkJ8zurp7kXV9lChoBmgJaA9DCA8LtaZ5w2ZAlIaUUpRoFU3oA2gWR0CQql/FzdULdX2UKGgGaAloD0MIHcu76oEvYUCUhpRSlGgVTegDaBZHQJC033Dej211fZQoaAZoCWgPQwjMJsCw/CE7wJSGlFKUaBVNIAFoFkdAkLawaFVT73V9lChoBmgJaA9DCNZuu9Dcj21AlIaUUpRoFU2vA2gWR0CQvvAfMfRvdX2UKGgGaAloD0MIqfsApLZgbUCUhpRSlGgVTUADaBZHQJDGoTdtVJd1fZQoaAZoCWgPQwhSKuEJvXJpQJSGlFKUaBVNVAFoFkdAkMjF81Gb1HV9lChoBmgJaA9DCPkupS7ZbnBAlIaUUpRoFU1WAmgWR0CQzqi2UjcEdX2UKGgGaAloD0MIlx3iH7anZECUhpRSlGgVTaADaBZHQJDXxhnanJl1fZQoaAZoCWgPQwhG0m70sWpmQJSGlFKUaBVN6ANoFkdAkOCh6Skj5nV9lChoBmgJaA9DCBB6Nqs+U2xAlIaUUpRoFU1jAmgWR0CQ5XerMkhSdX2UKGgGaAloD0MIjliLT4EhakCUhpRSlGgVTTwCaBZHQJDqv9xZMcp1fZQoaAZoCWgPQwhNSdbh6P5uQJSGlFKUaBVNagJoFkdAkO9PB3zMA3V9lChoBmgJaA9DCBn/PuPC+GxAlIaUUpRoFU1LAWgWR0CQ8rIfr8iwdX2UKGgGaAloD0MImNpSB/lBbECUhpRSlGgVTbABaBZHQJD1bbsWweN1fZQoaAZoCWgPQwioqPqVTkdtQJSGlFKUaBVNZgJoFkdAkPt/WUbDM3V9lChoBmgJaA9DCBB6Nqs+tzvAlIaUUpRoFU0EAWgWR0CQ/QuCPIXCdX2UKGgGaAloD0MILV+X4T8xcECUhpRSlGgVTcIBaBZHQJEAFVlwtJ51fZQoaAZoCWgPQwifPZepyTdrQJSGlFKUaBVNRwFoFkdAkQOEhRqGlHV9lChoBmgJaA9DCJpBfGCHdHFAlIaUUpRoFU1FAWgWR0CRBab212JSdX2UKGgGaAloD0MI3795ceJjIUCUhpRSlGgVTSgBaBZHQJEHfyxzJZJ1fZQoaAZoCWgPQwifd2NBoXJxQJSGlFKUaBVNfQFoFkdAkQtN1+y7gHV9lChoBmgJaA9DCIb/dAOFLWpAlIaUUpRoFU1/AWgWR0CRDfoA4n4PdX2UKGgGaAloD0MIc9u+R/0vckCUhpRSlGgVTYIBaBZHQJEQXDP4VRF1fZQoaAZoCWgPQwhybhPulZduQJSGlFKUaBVNYwFoFkdAkRQEOqebu3V9lChoBmgJaA9DCGpN845TU29AlIaUUpRoFU3kAWgWR0CRF4figkC4dX2UKGgGaAloD0MIY5l+ifgUbkCUhpRSlGgVTYIBaBZHQJEbchGH58B1fZQoaAZoCWgPQwiOdtzwO6FxQJSGlFKUaBVNfAFoFkdAkR5Btk4FR3V9lChoBmgJaA9DCK6bUl6rX3BAlIaUUpRoFU1FAWgWR0CRIHOBlMAWdX2UKGgGaAloD0MIrcJmgIv4b0CUhpRSlGgVTd4BaBZHQJElZPIn0Cl1fZQoaAZoCWgPQwg9uhEWFUNuQJSGlFKUaBVNrgJoFkdAkSo5+c6Nl3V9lChoBmgJaA9DCOpae58qc3FAlIaUUpRoFU39AmgWR0CRMbNB4UvgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f8c83471ae372dd26d68716a44fd5c2bdde1890521db5acbf9f111e385818b3
3
+ size 146487
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6664cbc20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6664cbcb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6664cbd40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6664cbdd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb6664cbe60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb6664cbef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6664cbf80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb6664d1050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6664d10e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6664d1170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6664d1200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb66652a0f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 500736,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1666310525983865172,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOeT71Iy7i6lZIEtUrxCbCXtAW6UghrNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0014719999999999178,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbcfUXdk9YECUhpRSlIwBbJRNogOMAXSUR0COxik/KQq7dX2UKGgGaAloD0MIMC3qk9zucUCUhpRSlGgVTYEBaBZHQI7NrdSEUTN1fZQoaAZoCWgPQwg0u+6tiL9xQJSGlFKUaBVNdwFoFkdAjtJrVOKwZHV9lChoBmgJaA9DCF9dFaiFS3BAlIaUUpRoFU1sAWgWR0CO2U/vfCQ+dX2UKGgGaAloD0MIKIHNOXiJb0CUhpRSlGgVTTwBaBZHQI7dHJT2nKp1fZQoaAZoCWgPQwiPqFDdXFw+QJSGlFKUaBVNIwFoFkdAjuC7JGOMl3V9lChoBmgJaA9DCJPfopOl3m9AlIaUUpRoFU1EAWgWR0CO5NiWE9McdX2UKGgGaAloD0MI7nppigCpb0CUhpRSlGgVTX8BaBZHQI7sdMqSX+l1fZQoaAZoCWgPQwiZ1xGH7FZwQJSGlFKUaBVNUwFoFkdAjvDJeVs1sXV9lChoBmgJaA9DCEm8PJ0rKXFAlIaUUpRoFU1qAWgWR0CO993g1m8NdX2UKGgGaAloD0MIrJFdaZnxcUCUhpRSlGgVTTIBaBZHQI77fyup0fZ1fZQoaAZoCWgPQwjWARB3tYlwQJSGlFKUaBVNFQFoFkdAjv8Q5FPSD3V9lChoBmgJaA9DCIpamlsh3BLAlIaUUpRoFUvTaBZHQI8BjcRDkU91fZQoaAZoCWgPQwhQUfUrnbduQJSGlFKUaBVL9GgWR0CPBz4QjD8+dX2UKGgGaAloD0MIeA360ttScECUhpRSlGgVTR4BaBZHQI8KjulXRw91fZQoaAZoCWgPQwgt7GmH/+dxQJSGlFKUaBVNPAFoFkdAjw6o9TxXn3V9lChoBmgJaA9DCKCobFjTdm5AlIaUUpRoFU0sAWgWR0CPElS1E3KkdX2UKGgGaAloD0MIDRe5pytEb0CUhpRSlGgVTTMBaBZHQI8Y5q46Oo51fZQoaAZoCWgPQwiztb5IaOFvQJSGlFKUaBVNHwFoFkdAjxxcs+V1OnV9lChoBmgJaA9DCFiqC3gZQmFAlIaUUpRoFU3oA2gWR0CPLMcGTs6adX2UKGgGaAloD0MI+tNGdbqYbkCUhpRSlGgVTSIBaBZHQI8wT8ejmCB1fZQoaAZoCWgPQwi9i/fj9vJuQJSGlFKUaBVNHwFoFkdAjzY+CbtqpXV9lChoBmgJaA9DCLYsX5dham1AlIaUUpRoFU02AWgWR0CPOkXJHRTkdX2UKGgGaAloD0MIaqUQyCVuDUCUhpRSlGgVS6doFkdAjzwaQ3gk1XV9lChoBmgJaA9DCEJClC9o4RPAlIaUUpRoFUvPaBZHQI8+e+M6zVt1fZQoaAZoCWgPQwh1BduI5w9xQJSGlFKUaBVNXQFoFkdAj0UpwCKaX3V9lChoBmgJaA9DCPPJiuEqWHBAlIaUUpRoFU0aAWgWR0CPSMGQCCBgdX2UKGgGaAloD0MI6bga2RVAb0CUhpRSlGgVTTABaBZHQI9Mg/Z/Tb51fZQoaAZoCWgPQwi3CmKg68dtQJSGlFKUaBVNBwFoFkdAj0+9qk/KQ3V9lChoBmgJaA9DCDmdZKtLOHBAlIaUUpRoFU06AWgWR0CPVnClabF1dX2UKGgGaAloD0MIHzF6bqH7b0CUhpRSlGgVTQoBaBZHQI9Zj6i0v5B1fZQoaAZoCWgPQwiLqfQTziRsQJSGlFKUaBVNLwFoFkdAj11nrpqynnV9lChoBmgJaA9DCLEVNC3xPHBAlIaUUpRoFU00AWgWR0CPY/clgMMJdX2UKGgGaAloD0MIs0EmGTlQa0CUhpRSlGgVTUcBaBZHQI9oAEdNnGt1fZQoaAZoCWgPQwjCilOthf9ZQJSGlFKUaBVN6ANoFkdAj3qWDxsl9nV9lChoBmgJaA9DCBvyzwxi8G5AlIaUUpRoFU2DAWgWR0CPf62tMfzSdX2UKGgGaAloD0MI86/llWtncECUhpRSlGgVTbYBaBZHQI+Hw2l2vB91fZQoaAZoCWgPQwhOnUfFf7RtQJSGlFKUaBVNnAFoFkdAj40wFkhA4XV9lChoBmgJaA9DCEjElEhi2XBAlIaUUpRoFU0YAWgWR0CPkJosZpBYdX2UKGgGaAloD0MIK4nsg6zXbECUhpRSlGgVTT8BaBZHQI+XOrXDm8x1fZQoaAZoCWgPQwjfpGlQNHddQJSGlFKUaBVN6ANoFkdAj6iL9l2/z3V9lChoBmgJaA9DCOOlm8QggWVAlIaUUpRoFU3oA2gWR0CPt/hLoOhCdX2UKGgGaAloD0MI16IFaFv+cECUhpRSlGgVTaACaBZHQI/CDBl+Vkd1fZQoaAZoCWgPQwiMg0vHnLFaQJSGlFKUaBVN6ANoFkdAj9Yy3kPtlnV9lChoBmgJaA9DCC3t1Fzu22FAlIaUUpRoFU3oA2gWR0CP7QN2C/XYdX2UKGgGaAloD0MINe84RccnYkCUhpRSlGgVTegDaBZHQJAACXdCVr11fZQoaAZoCWgPQwh0z7pGy/kswJSGlFKUaBVL72gWR0CQAWRs/IKddX2UKGgGaAloD0MI5IOezapYXkCUhpRSlGgVTegDaBZHQJALMWEbo8p1fZQoaAZoCWgPQwij5xa6EipeQJSGlFKUaBVN6ANoFkdAkBQW+TNdJXV9lChoBmgJaA9DCLGLoge+R3FAlIaUUpRoFU3xAWgWR0CQGNQyRB/rdX2UKGgGaAloD0MI+THmriVBYkCUhpRSlGgVTegDaBZHQJAiNwXIlt11fZQoaAZoCWgPQwjc9dIUgTJkQJSGlFKUaBVN6ANoFkdAkCwg/PgNw3V9lChoBmgJaA9DCNdLUwS4iWJAlIaUUpRoFU3oA2gWR0CQNoFJQLuydX2UKGgGaAloD0MIZhTLLa0+LsCUhpRSlGgVS9BoFkdAkDe5soDxLHV9lChoBmgJaA9DCED35cx2Hl5AlIaUUpRoFU3oA2gWR0CQQOrSmZVodX2UKGgGaAloD0MIkZxM3KrRbkCUhpRSlGgVTegBaBZHQJBEjjyWiUR1fZQoaAZoCWgPQwgRcXMqmX5iQJSGlFKUaBVN6ANoFkdAkE0jpcHGCXV9lChoBmgJaA9DCHTqymd5RmFAlIaUUpRoFU3oA2gWR0CQV9UxVQyidX2UKGgGaAloD0MIaccNv5urYECUhpRSlGgVTegDaBZHQJBgV9MK1G91fZQoaAZoCWgPQwjy7zMuHAZgQJSGlFKUaBVN6ANoFkdAkGmb6xgRb3V9lChoBmgJaA9DCBaKdD+nqXBAlIaUUpRoFU2/AWgWR0CQbfrOZ9eAdX2UKGgGaAloD0MI/id/9w4WY0CUhpRSlGgVTegDaBZHQJB11xcVxjt1fZQoaAZoCWgPQwhEwvf+hk5rQJSGlFKUaBVNegFoFkdAkHhEzXSSeXV9lChoBmgJaA9DCIpXWdsUT2NAlIaUUpRoFU3oA2gWR0CQgO925hBrdX2UKGgGaAloD0MIF7mnqztKQECUhpRSlGgVTRwBaBZHQJCCkCdSVGF1fZQoaAZoCWgPQwhiga/o1qv2v5SGlFKUaBVNEAFoFkdAkIViih37lHV9lChoBmgJaA9DCF1Std0E4m9AlIaUUpRoFU31AmgWR0CQitwRoRI0dX2UKGgGaAloD0MIfentz8VsYUCUhpRSlGgVTegDaBZHQJCaMuscQy11fZQoaAZoCWgPQwhI+N7foI1uQJSGlFKUaBVN2gFoFkdAkJ8zurp7kXV9lChoBmgJaA9DCA8LtaZ5w2ZAlIaUUpRoFU3oA2gWR0CQql/FzdULdX2UKGgGaAloD0MIHcu76oEvYUCUhpRSlGgVTegDaBZHQJC033Dej211fZQoaAZoCWgPQwjMJsCw/CE7wJSGlFKUaBVNIAFoFkdAkLawaFVT73V9lChoBmgJaA9DCNZuu9Dcj21AlIaUUpRoFU2vA2gWR0CQvvAfMfRvdX2UKGgGaAloD0MIqfsApLZgbUCUhpRSlGgVTUADaBZHQJDGoTdtVJd1fZQoaAZoCWgPQwhSKuEJvXJpQJSGlFKUaBVNVAFoFkdAkMjF81Gb1HV9lChoBmgJaA9DCPkupS7ZbnBAlIaUUpRoFU1WAmgWR0CQzqi2UjcEdX2UKGgGaAloD0MIlx3iH7anZECUhpRSlGgVTaADaBZHQJDXxhnanJl1fZQoaAZoCWgPQwhG0m70sWpmQJSGlFKUaBVN6ANoFkdAkOCh6Skj5nV9lChoBmgJaA9DCBB6Nqs+U2xAlIaUUpRoFU1jAmgWR0CQ5XerMkhSdX2UKGgGaAloD0MIjliLT4EhakCUhpRSlGgVTTwCaBZHQJDqv9xZMcp1fZQoaAZoCWgPQwhNSdbh6P5uQJSGlFKUaBVNagJoFkdAkO9PB3zMA3V9lChoBmgJaA9DCBn/PuPC+GxAlIaUUpRoFU1LAWgWR0CQ8rIfr8iwdX2UKGgGaAloD0MImNpSB/lBbECUhpRSlGgVTbABaBZHQJD1bbsWweN1fZQoaAZoCWgPQwioqPqVTkdtQJSGlFKUaBVNZgJoFkdAkPt/WUbDM3V9lChoBmgJaA9DCBB6Nqs+tzvAlIaUUpRoFU0EAWgWR0CQ/QuCPIXCdX2UKGgGaAloD0MILV+X4T8xcECUhpRSlGgVTcIBaBZHQJEAFVlwtJ51fZQoaAZoCWgPQwifPZepyTdrQJSGlFKUaBVNRwFoFkdAkQOEhRqGlHV9lChoBmgJaA9DCJpBfGCHdHFAlIaUUpRoFU1FAWgWR0CRBab212JSdX2UKGgGaAloD0MI3795ceJjIUCUhpRSlGgVTSgBaBZHQJEHfyxzJZJ1fZQoaAZoCWgPQwifd2NBoXJxQJSGlFKUaBVNfQFoFkdAkQtN1+y7gHV9lChoBmgJaA9DCIb/dAOFLWpAlIaUUpRoFU1/AWgWR0CRDfoA4n4PdX2UKGgGaAloD0MIc9u+R/0vckCUhpRSlGgVTYIBaBZHQJEQXDP4VRF1fZQoaAZoCWgPQwhybhPulZduQJSGlFKUaBVNYwFoFkdAkRQEOqebu3V9lChoBmgJaA9DCGpN845TU29AlIaUUpRoFU3kAWgWR0CRF4figkC4dX2UKGgGaAloD0MIY5l+ifgUbkCUhpRSlGgVTYIBaBZHQJEbchGH58B1fZQoaAZoCWgPQwiOdtzwO6FxQJSGlFKUaBVNfAFoFkdAkR5Btk4FR3V9lChoBmgJaA9DCK6bUl6rX3BAlIaUUpRoFU1FAWgWR0CRIHOBlMAWdX2UKGgGaAloD0MIrcJmgIv4b0CUhpRSlGgVTd4BaBZHQJElZPIn0Cl1fZQoaAZoCWgPQwg9uhEWFUNuQJSGlFKUaBVNrgJoFkdAkSo5+c6Nl3V9lChoBmgJaA9DCOpae58qc3FAlIaUUpRoFU39AmgWR0CRMbNB4UvgdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1956,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22fb98fb30cc0fc7c674de31ba540d86f5f8bbdef257658a81d51883a760943b
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9884301dcec9b98c260290dc18e0f2f2710d63baf72a747a2777a6ec7ffacb4d
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (252 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.8536730121704, "std_reward": 21.76768741592062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-21T00:29:01.643675"}