AIguysingstoo
commited on
Commit
•
04bd8ff
1
Parent(s):
20bec1e
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 242.85 +/- 21.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6664cbc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6664cbcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6664cbd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6664cbdd0>", "_build": "<function ActorCriticPolicy._build at 0x7fb6664cbe60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6664cbef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6664cbf80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6664d1050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6664d10e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6664d1170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6664d1200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb66652a0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666310525983865172, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOeT71Iy7i6lZIEtUrxCbCXtAW6UghrNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbcfUXdk9YECUhpRSlIwBbJRNogOMAXSUR0COxik/KQq7dX2UKGgGaAloD0MIMC3qk9zucUCUhpRSlGgVTYEBaBZHQI7NrdSEUTN1fZQoaAZoCWgPQwg0u+6tiL9xQJSGlFKUaBVNdwFoFkdAjtJrVOKwZHV9lChoBmgJaA9DCF9dFaiFS3BAlIaUUpRoFU1sAWgWR0CO2U/vfCQ+dX2UKGgGaAloD0MIKIHNOXiJb0CUhpRSlGgVTTwBaBZHQI7dHJT2nKp1fZQoaAZoCWgPQwiPqFDdXFw+QJSGlFKUaBVNIwFoFkdAjuC7JGOMl3V9lChoBmgJaA9DCJPfopOl3m9AlIaUUpRoFU1EAWgWR0CO5NiWE9McdX2UKGgGaAloD0MI7nppigCpb0CUhpRSlGgVTX8BaBZHQI7sdMqSX+l1fZQoaAZoCWgPQwiZ1xGH7FZwQJSGlFKUaBVNUwFoFkdAjvDJeVs1sXV9lChoBmgJaA9DCEm8PJ0rKXFAlIaUUpRoFU1qAWgWR0CO993g1m8NdX2UKGgGaAloD0MIrJFdaZnxcUCUhpRSlGgVTTIBaBZHQI77fyup0fZ1fZQoaAZoCWgPQwjWARB3tYlwQJSGlFKUaBVNFQFoFkdAjv8Q5FPSD3V9lChoBmgJaA9DCIpamlsh3BLAlIaUUpRoFUvTaBZHQI8BjcRDkU91fZQoaAZoCWgPQwhQUfUrnbduQJSGlFKUaBVL9GgWR0CPBz4QjD8+dX2UKGgGaAloD0MIeA360ttScECUhpRSlGgVTR4BaBZHQI8KjulXRw91fZQoaAZoCWgPQwgt7GmH/+dxQJSGlFKUaBVNPAFoFkdAjw6o9TxXn3V9lChoBmgJaA9DCKCobFjTdm5AlIaUUpRoFU0sAWgWR0CPElS1E3KkdX2UKGgGaAloD0MIDRe5pytEb0CUhpRSlGgVTTMBaBZHQI8Y5q46Oo51fZQoaAZoCWgPQwiztb5IaOFvQJSGlFKUaBVNHwFoFkdAjxxcs+V1OnV9lChoBmgJaA9DCFiqC3gZQmFAlIaUUpRoFU3oA2gWR0CPLMcGTs6adX2UKGgGaAloD0MI+tNGdbqYbkCUhpRSlGgVTSIBaBZHQI8wT8ejmCB1fZQoaAZoCWgPQwi9i/fj9vJuQJSGlFKUaBVNHwFoFkdAjzY+CbtqpXV9lChoBmgJaA9DCLYsX5dham1AlIaUUpRoFU02AWgWR0CPOkXJHRTkdX2UKGgGaAloD0MIaqUQyCVuDUCUhpRSlGgVS6doFkdAjzwaQ3gk1XV9lChoBmgJaA9DCEJClC9o4RPAlIaUUpRoFUvPaBZHQI8+e+M6zVt1fZQoaAZoCWgPQwh1BduI5w9xQJSGlFKUaBVNXQFoFkdAj0UpwCKaX3V9lChoBmgJaA9DCPPJiuEqWHBAlIaUUpRoFU0aAWgWR0CPSMGQCCBgdX2UKGgGaAloD0MI6bga2RVAb0CUhpRSlGgVTTABaBZHQI9Mg/Z/Tb51fZQoaAZoCWgPQwi3CmKg68dtQJSGlFKUaBVNBwFoFkdAj0+9qk/KQ3V9lChoBmgJaA9DCDmdZKtLOHBAlIaUUpRoFU06AWgWR0CPVnClabF1dX2UKGgGaAloD0MIHzF6bqH7b0CUhpRSlGgVTQoBaBZHQI9Zj6i0v5B1fZQoaAZoCWgPQwiLqfQTziRsQJSGlFKUaBVNLwFoFkdAj11nrpqynnV9lChoBmgJaA9DCLEVNC3xPHBAlIaUUpRoFU00AWgWR0CPY/clgMMJdX2UKGgGaAloD0MIs0EmGTlQa0CUhpRSlGgVTUcBaBZHQI9oAEdNnGt1fZQoaAZoCWgPQwjCilOthf9ZQJSGlFKUaBVN6ANoFkdAj3qWDxsl9nV9lChoBmgJaA9DCBvyzwxi8G5AlIaUUpRoFU2DAWgWR0CPf62tMfzSdX2UKGgGaAloD0MI86/llWtncECUhpRSlGgVTbYBaBZHQI+Hw2l2vB91fZQoaAZoCWgPQwhOnUfFf7RtQJSGlFKUaBVNnAFoFkdAj40wFkhA4XV9lChoBmgJaA9DCEjElEhi2XBAlIaUUpRoFU0YAWgWR0CPkJosZpBYdX2UKGgGaAloD0MIK4nsg6zXbECUhpRSlGgVTT8BaBZHQI+XOrXDm8x1fZQoaAZoCWgPQwjfpGlQNHddQJSGlFKUaBVN6ANoFkdAj6iL9l2/z3V9lChoBmgJaA9DCOOlm8QggWVAlIaUUpRoFU3oA2gWR0CPt/hLoOhCdX2UKGgGaAloD0MI16IFaFv+cECUhpRSlGgVTaACaBZHQI/CDBl+Vkd1fZQoaAZoCWgPQwiMg0vHnLFaQJSGlFKUaBVN6ANoFkdAj9Yy3kPtlnV9lChoBmgJaA9DCC3t1Fzu22FAlIaUUpRoFU3oA2gWR0CP7QN2C/XYdX2UKGgGaAloD0MINe84RccnYkCUhpRSlGgVTegDaBZHQJAACXdCVr11fZQoaAZoCWgPQwh0z7pGy/kswJSGlFKUaBVL72gWR0CQAWRs/IKddX2UKGgGaAloD0MI5IOezapYXkCUhpRSlGgVTegDaBZHQJALMWEbo8p1fZQoaAZoCWgPQwij5xa6EipeQJSGlFKUaBVN6ANoFkdAkBQW+TNdJXV9lChoBmgJaA9DCLGLoge+R3FAlIaUUpRoFU3xAWgWR0CQGNQyRB/rdX2UKGgGaAloD0MI+THmriVBYkCUhpRSlGgVTegDaBZHQJAiNwXIlt11fZQoaAZoCWgPQwjc9dIUgTJkQJSGlFKUaBVN6ANoFkdAkCwg/PgNw3V9lChoBmgJaA9DCNdLUwS4iWJAlIaUUpRoFU3oA2gWR0CQNoFJQLuydX2UKGgGaAloD0MIZhTLLa0+LsCUhpRSlGgVS9BoFkdAkDe5soDxLHV9lChoBmgJaA9DCED35cx2Hl5AlIaUUpRoFU3oA2gWR0CQQOrSmZVodX2UKGgGaAloD0MIkZxM3KrRbkCUhpRSlGgVTegBaBZHQJBEjjyWiUR1fZQoaAZoCWgPQwgRcXMqmX5iQJSGlFKUaBVN6ANoFkdAkE0jpcHGCXV9lChoBmgJaA9DCHTqymd5RmFAlIaUUpRoFU3oA2gWR0CQV9UxVQyidX2UKGgGaAloD0MIaccNv5urYECUhpRSlGgVTegDaBZHQJBgV9MK1G91fZQoaAZoCWgPQwjy7zMuHAZgQJSGlFKUaBVN6ANoFkdAkGmb6xgRb3V9lChoBmgJaA9DCBaKdD+nqXBAlIaUUpRoFU2/AWgWR0CQbfrOZ9eAdX2UKGgGaAloD0MI/id/9w4WY0CUhpRSlGgVTegDaBZHQJB11xcVxjt1fZQoaAZoCWgPQwhEwvf+hk5rQJSGlFKUaBVNegFoFkdAkHhEzXSSeXV9lChoBmgJaA9DCIpXWdsUT2NAlIaUUpRoFU3oA2gWR0CQgO925hBrdX2UKGgGaAloD0MIF7mnqztKQECUhpRSlGgVTRwBaBZHQJCCkCdSVGF1fZQoaAZoCWgPQwhiga/o1qv2v5SGlFKUaBVNEAFoFkdAkIViih37lHV9lChoBmgJaA9DCF1Std0E4m9AlIaUUpRoFU31AmgWR0CQitwRoRI0dX2UKGgGaAloD0MIfentz8VsYUCUhpRSlGgVTegDaBZHQJCaMuscQy11fZQoaAZoCWgPQwhI+N7foI1uQJSGlFKUaBVN2gFoFkdAkJ8zurp7kXV9lChoBmgJaA9DCA8LtaZ5w2ZAlIaUUpRoFU3oA2gWR0CQql/FzdULdX2UKGgGaAloD0MIHcu76oEvYUCUhpRSlGgVTegDaBZHQJC033Dej211fZQoaAZoCWgPQwjMJsCw/CE7wJSGlFKUaBVNIAFoFkdAkLawaFVT73V9lChoBmgJaA9DCNZuu9Dcj21AlIaUUpRoFU2vA2gWR0CQvvAfMfRvdX2UKGgGaAloD0MIqfsApLZgbUCUhpRSlGgVTUADaBZHQJDGoTdtVJd1fZQoaAZoCWgPQwhSKuEJvXJpQJSGlFKUaBVNVAFoFkdAkMjF81Gb1HV9lChoBmgJaA9DCPkupS7ZbnBAlIaUUpRoFU1WAmgWR0CQzqi2UjcEdX2UKGgGaAloD0MIlx3iH7anZECUhpRSlGgVTaADaBZHQJDXxhnanJl1fZQoaAZoCWgPQwhG0m70sWpmQJSGlFKUaBVN6ANoFkdAkOCh6Skj5nV9lChoBmgJaA9DCBB6Nqs+U2xAlIaUUpRoFU1jAmgWR0CQ5XerMkhSdX2UKGgGaAloD0MIjliLT4EhakCUhpRSlGgVTTwCaBZHQJDqv9xZMcp1fZQoaAZoCWgPQwhNSdbh6P5uQJSGlFKUaBVNagJoFkdAkO9PB3zMA3V9lChoBmgJaA9DCBn/PuPC+GxAlIaUUpRoFU1LAWgWR0CQ8rIfr8iwdX2UKGgGaAloD0MImNpSB/lBbECUhpRSlGgVTbABaBZHQJD1bbsWweN1fZQoaAZoCWgPQwioqPqVTkdtQJSGlFKUaBVNZgJoFkdAkPt/WUbDM3V9lChoBmgJaA9DCBB6Nqs+tzvAlIaUUpRoFU0EAWgWR0CQ/QuCPIXCdX2UKGgGaAloD0MILV+X4T8xcECUhpRSlGgVTcIBaBZHQJEAFVlwtJ51fZQoaAZoCWgPQwifPZepyTdrQJSGlFKUaBVNRwFoFkdAkQOEhRqGlHV9lChoBmgJaA9DCJpBfGCHdHFAlIaUUpRoFU1FAWgWR0CRBab212JSdX2UKGgGaAloD0MI3795ceJjIUCUhpRSlGgVTSgBaBZHQJEHfyxzJZJ1fZQoaAZoCWgPQwifd2NBoXJxQJSGlFKUaBVNfQFoFkdAkQtN1+y7gHV9lChoBmgJaA9DCIb/dAOFLWpAlIaUUpRoFU1/AWgWR0CRDfoA4n4PdX2UKGgGaAloD0MIc9u+R/0vckCUhpRSlGgVTYIBaBZHQJEQXDP4VRF1fZQoaAZoCWgPQwhybhPulZduQJSGlFKUaBVNYwFoFkdAkRQEOqebu3V9lChoBmgJaA9DCGpN845TU29AlIaUUpRoFU3kAWgWR0CRF4figkC4dX2UKGgGaAloD0MIY5l+ifgUbkCUhpRSlGgVTYIBaBZHQJEbchGH58B1fZQoaAZoCWgPQwiOdtzwO6FxQJSGlFKUaBVNfAFoFkdAkR5Btk4FR3V9lChoBmgJaA9DCK6bUl6rX3BAlIaUUpRoFU1FAWgWR0CRIHOBlMAWdX2UKGgGaAloD0MIrcJmgIv4b0CUhpRSlGgVTd4BaBZHQJElZPIn0Cl1fZQoaAZoCWgPQwg9uhEWFUNuQJSGlFKUaBVNrgJoFkdAkSo5+c6Nl3V9lChoBmgJaA9DCOpae58qc3FAlIaUUpRoFU39AmgWR0CRMbNB4UvgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f8c83471ae372dd26d68716a44fd5c2bdde1890521db5acbf9f111e385818b3
|
3 |
+
size 146487
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6664cbc20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6664cbcb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6664cbd40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6664cbdd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb6664cbe60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb6664cbef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6664cbf80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb6664d1050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6664d10e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6664d1170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6664d1200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb66652a0f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 500736,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1666310525983865172,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOeT71Iy7i6lZIEtUrxCbCXtAW6UghrNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbcfUXdk9YECUhpRSlIwBbJRNogOMAXSUR0COxik/KQq7dX2UKGgGaAloD0MIMC3qk9zucUCUhpRSlGgVTYEBaBZHQI7NrdSEUTN1fZQoaAZoCWgPQwg0u+6tiL9xQJSGlFKUaBVNdwFoFkdAjtJrVOKwZHV9lChoBmgJaA9DCF9dFaiFS3BAlIaUUpRoFU1sAWgWR0CO2U/vfCQ+dX2UKGgGaAloD0MIKIHNOXiJb0CUhpRSlGgVTTwBaBZHQI7dHJT2nKp1fZQoaAZoCWgPQwiPqFDdXFw+QJSGlFKUaBVNIwFoFkdAjuC7JGOMl3V9lChoBmgJaA9DCJPfopOl3m9AlIaUUpRoFU1EAWgWR0CO5NiWE9McdX2UKGgGaAloD0MI7nppigCpb0CUhpRSlGgVTX8BaBZHQI7sdMqSX+l1fZQoaAZoCWgPQwiZ1xGH7FZwQJSGlFKUaBVNUwFoFkdAjvDJeVs1sXV9lChoBmgJaA9DCEm8PJ0rKXFAlIaUUpRoFU1qAWgWR0CO993g1m8NdX2UKGgGaAloD0MIrJFdaZnxcUCUhpRSlGgVTTIBaBZHQI77fyup0fZ1fZQoaAZoCWgPQwjWARB3tYlwQJSGlFKUaBVNFQFoFkdAjv8Q5FPSD3V9lChoBmgJaA9DCIpamlsh3BLAlIaUUpRoFUvTaBZHQI8BjcRDkU91fZQoaAZoCWgPQwhQUfUrnbduQJSGlFKUaBVL9GgWR0CPBz4QjD8+dX2UKGgGaAloD0MIeA360ttScECUhpRSlGgVTR4BaBZHQI8KjulXRw91fZQoaAZoCWgPQwgt7GmH/+dxQJSGlFKUaBVNPAFoFkdAjw6o9TxXn3V9lChoBmgJaA9DCKCobFjTdm5AlIaUUpRoFU0sAWgWR0CPElS1E3KkdX2UKGgGaAloD0MIDRe5pytEb0CUhpRSlGgVTTMBaBZHQI8Y5q46Oo51fZQoaAZoCWgPQwiztb5IaOFvQJSGlFKUaBVNHwFoFkdAjxxcs+V1OnV9lChoBmgJaA9DCFiqC3gZQmFAlIaUUpRoFU3oA2gWR0CPLMcGTs6adX2UKGgGaAloD0MI+tNGdbqYbkCUhpRSlGgVTSIBaBZHQI8wT8ejmCB1fZQoaAZoCWgPQwi9i/fj9vJuQJSGlFKUaBVNHwFoFkdAjzY+CbtqpXV9lChoBmgJaA9DCLYsX5dham1AlIaUUpRoFU02AWgWR0CPOkXJHRTkdX2UKGgGaAloD0MIaqUQyCVuDUCUhpRSlGgVS6doFkdAjzwaQ3gk1XV9lChoBmgJaA9DCEJClC9o4RPAlIaUUpRoFUvPaBZHQI8+e+M6zVt1fZQoaAZoCWgPQwh1BduI5w9xQJSGlFKUaBVNXQFoFkdAj0UpwCKaX3V9lChoBmgJaA9DCPPJiuEqWHBAlIaUUpRoFU0aAWgWR0CPSMGQCCBgdX2UKGgGaAloD0MI6bga2RVAb0CUhpRSlGgVTTABaBZHQI9Mg/Z/Tb51fZQoaAZoCWgPQwi3CmKg68dtQJSGlFKUaBVNBwFoFkdAj0+9qk/KQ3V9lChoBmgJaA9DCDmdZKtLOHBAlIaUUpRoFU06AWgWR0CPVnClabF1dX2UKGgGaAloD0MIHzF6bqH7b0CUhpRSlGgVTQoBaBZHQI9Zj6i0v5B1fZQoaAZoCWgPQwiLqfQTziRsQJSGlFKUaBVNLwFoFkdAj11nrpqynnV9lChoBmgJaA9DCLEVNC3xPHBAlIaUUpRoFU00AWgWR0CPY/clgMMJdX2UKGgGaAloD0MIs0EmGTlQa0CUhpRSlGgVTUcBaBZHQI9oAEdNnGt1fZQoaAZoCWgPQwjCilOthf9ZQJSGlFKUaBVN6ANoFkdAj3qWDxsl9nV9lChoBmgJaA9DCBvyzwxi8G5AlIaUUpRoFU2DAWgWR0CPf62tMfzSdX2UKGgGaAloD0MI86/llWtncECUhpRSlGgVTbYBaBZHQI+Hw2l2vB91fZQoaAZoCWgPQwhOnUfFf7RtQJSGlFKUaBVNnAFoFkdAj40wFkhA4XV9lChoBmgJaA9DCEjElEhi2XBAlIaUUpRoFU0YAWgWR0CPkJosZpBYdX2UKGgGaAloD0MIK4nsg6zXbECUhpRSlGgVTT8BaBZHQI+XOrXDm8x1fZQoaAZoCWgPQwjfpGlQNHddQJSGlFKUaBVN6ANoFkdAj6iL9l2/z3V9lChoBmgJaA9DCOOlm8QggWVAlIaUUpRoFU3oA2gWR0CPt/hLoOhCdX2UKGgGaAloD0MI16IFaFv+cECUhpRSlGgVTaACaBZHQI/CDBl+Vkd1fZQoaAZoCWgPQwiMg0vHnLFaQJSGlFKUaBVN6ANoFkdAj9Yy3kPtlnV9lChoBmgJaA9DCC3t1Fzu22FAlIaUUpRoFU3oA2gWR0CP7QN2C/XYdX2UKGgGaAloD0MINe84RccnYkCUhpRSlGgVTegDaBZHQJAACXdCVr11fZQoaAZoCWgPQwh0z7pGy/kswJSGlFKUaBVL72gWR0CQAWRs/IKddX2UKGgGaAloD0MI5IOezapYXkCUhpRSlGgVTegDaBZHQJALMWEbo8p1fZQoaAZoCWgPQwij5xa6EipeQJSGlFKUaBVN6ANoFkdAkBQW+TNdJXV9lChoBmgJaA9DCLGLoge+R3FAlIaUUpRoFU3xAWgWR0CQGNQyRB/rdX2UKGgGaAloD0MI+THmriVBYkCUhpRSlGgVTegDaBZHQJAiNwXIlt11fZQoaAZoCWgPQwjc9dIUgTJkQJSGlFKUaBVN6ANoFkdAkCwg/PgNw3V9lChoBmgJaA9DCNdLUwS4iWJAlIaUUpRoFU3oA2gWR0CQNoFJQLuydX2UKGgGaAloD0MIZhTLLa0+LsCUhpRSlGgVS9BoFkdAkDe5soDxLHV9lChoBmgJaA9DCED35cx2Hl5AlIaUUpRoFU3oA2gWR0CQQOrSmZVodX2UKGgGaAloD0MIkZxM3KrRbkCUhpRSlGgVTegBaBZHQJBEjjyWiUR1fZQoaAZoCWgPQwgRcXMqmX5iQJSGlFKUaBVN6ANoFkdAkE0jpcHGCXV9lChoBmgJaA9DCHTqymd5RmFAlIaUUpRoFU3oA2gWR0CQV9UxVQyidX2UKGgGaAloD0MIaccNv5urYECUhpRSlGgVTegDaBZHQJBgV9MK1G91fZQoaAZoCWgPQwjy7zMuHAZgQJSGlFKUaBVN6ANoFkdAkGmb6xgRb3V9lChoBmgJaA9DCBaKdD+nqXBAlIaUUpRoFU2/AWgWR0CQbfrOZ9eAdX2UKGgGaAloD0MI/id/9w4WY0CUhpRSlGgVTegDaBZHQJB11xcVxjt1fZQoaAZoCWgPQwhEwvf+hk5rQJSGlFKUaBVNegFoFkdAkHhEzXSSeXV9lChoBmgJaA9DCIpXWdsUT2NAlIaUUpRoFU3oA2gWR0CQgO925hBrdX2UKGgGaAloD0MIF7mnqztKQECUhpRSlGgVTRwBaBZHQJCCkCdSVGF1fZQoaAZoCWgPQwhiga/o1qv2v5SGlFKUaBVNEAFoFkdAkIViih37lHV9lChoBmgJaA9DCF1Std0E4m9AlIaUUpRoFU31AmgWR0CQitwRoRI0dX2UKGgGaAloD0MIfentz8VsYUCUhpRSlGgVTegDaBZHQJCaMuscQy11fZQoaAZoCWgPQwhI+N7foI1uQJSGlFKUaBVN2gFoFkdAkJ8zurp7kXV9lChoBmgJaA9DCA8LtaZ5w2ZAlIaUUpRoFU3oA2gWR0CQql/FzdULdX2UKGgGaAloD0MIHcu76oEvYUCUhpRSlGgVTegDaBZHQJC033Dej211fZQoaAZoCWgPQwjMJsCw/CE7wJSGlFKUaBVNIAFoFkdAkLawaFVT73V9lChoBmgJaA9DCNZuu9Dcj21AlIaUUpRoFU2vA2gWR0CQvvAfMfRvdX2UKGgGaAloD0MIqfsApLZgbUCUhpRSlGgVTUADaBZHQJDGoTdtVJd1fZQoaAZoCWgPQwhSKuEJvXJpQJSGlFKUaBVNVAFoFkdAkMjF81Gb1HV9lChoBmgJaA9DCPkupS7ZbnBAlIaUUpRoFU1WAmgWR0CQzqi2UjcEdX2UKGgGaAloD0MIlx3iH7anZECUhpRSlGgVTaADaBZHQJDXxhnanJl1fZQoaAZoCWgPQwhG0m70sWpmQJSGlFKUaBVN6ANoFkdAkOCh6Skj5nV9lChoBmgJaA9DCBB6Nqs+U2xAlIaUUpRoFU1jAmgWR0CQ5XerMkhSdX2UKGgGaAloD0MIjliLT4EhakCUhpRSlGgVTTwCaBZHQJDqv9xZMcp1fZQoaAZoCWgPQwhNSdbh6P5uQJSGlFKUaBVNagJoFkdAkO9PB3zMA3V9lChoBmgJaA9DCBn/PuPC+GxAlIaUUpRoFU1LAWgWR0CQ8rIfr8iwdX2UKGgGaAloD0MImNpSB/lBbECUhpRSlGgVTbABaBZHQJD1bbsWweN1fZQoaAZoCWgPQwioqPqVTkdtQJSGlFKUaBVNZgJoFkdAkPt/WUbDM3V9lChoBmgJaA9DCBB6Nqs+tzvAlIaUUpRoFU0EAWgWR0CQ/QuCPIXCdX2UKGgGaAloD0MILV+X4T8xcECUhpRSlGgVTcIBaBZHQJEAFVlwtJ51fZQoaAZoCWgPQwifPZepyTdrQJSGlFKUaBVNRwFoFkdAkQOEhRqGlHV9lChoBmgJaA9DCJpBfGCHdHFAlIaUUpRoFU1FAWgWR0CRBab212JSdX2UKGgGaAloD0MI3795ceJjIUCUhpRSlGgVTSgBaBZHQJEHfyxzJZJ1fZQoaAZoCWgPQwifd2NBoXJxQJSGlFKUaBVNfQFoFkdAkQtN1+y7gHV9lChoBmgJaA9DCIb/dAOFLWpAlIaUUpRoFU1/AWgWR0CRDfoA4n4PdX2UKGgGaAloD0MIc9u+R/0vckCUhpRSlGgVTYIBaBZHQJEQXDP4VRF1fZQoaAZoCWgPQwhybhPulZduQJSGlFKUaBVNYwFoFkdAkRQEOqebu3V9lChoBmgJaA9DCGpN845TU29AlIaUUpRoFU3kAWgWR0CRF4figkC4dX2UKGgGaAloD0MIY5l+ifgUbkCUhpRSlGgVTYIBaBZHQJEbchGH58B1fZQoaAZoCWgPQwiOdtzwO6FxQJSGlFKUaBVNfAFoFkdAkR5Btk4FR3V9lChoBmgJaA9DCK6bUl6rX3BAlIaUUpRoFU1FAWgWR0CRIHOBlMAWdX2UKGgGaAloD0MIrcJmgIv4b0CUhpRSlGgVTd4BaBZHQJElZPIn0Cl1fZQoaAZoCWgPQwg9uhEWFUNuQJSGlFKUaBVNrgJoFkdAkSo5+c6Nl3V9lChoBmgJaA9DCOpae58qc3FAlIaUUpRoFU39AmgWR0CRMbNB4UvgdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1956,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22fb98fb30cc0fc7c674de31ba540d86f5f8bbdef257658a81d51883a760943b
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9884301dcec9b98c260290dc18e0f2f2710d63baf72a747a2777a6ec7ffacb4d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (252 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 242.8536730121704, "std_reward": 21.76768741592062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-21T00:29:01.643675"}
|