Vietnamese_Embedding / evaluation_model.py
AITeamVN's picture
Upload evaluation_model.py
c2e7c2a verified
import numpy as np
import torch
import json
import pandas as pd
from tqdm import tqdm
from typing import List, Dict, Tuple, Set, Union, Optional
from langchain.docstore.document import Document
from langchain_community.vectorstores import FAISS
from langchain_community.vectorstores.faiss import DistanceStrategy
from langchain_core.embeddings.embeddings import Embeddings
from FlagEmbedding import BGEM3FlagModel
def setup_gpu_info() -> None:
print(f"Số lượng GPU khả dụng: {torch.cuda.device_count()}")
print(f"GPU hiện tại: {torch.cuda.current_device()}")
print(f"Tên GPU: {torch.cuda.get_device_name(0)}")
def load_model(model_name: str, use_fp16: bool = False) -> BGEM3FlagModel:
return BGEM3FlagModel(model_name, use_fp16=use_fp16)
def load_json_file(file_path: str) -> dict:
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
def load_jsonl_file(file_path: str) -> List[Dict]:
corpus = []
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
data = json.loads(line.strip())
corpus.append(data)
return corpus
def extract_corpus_from_legal_documents(legal_data: dict) -> List[Dict]:
corpus = []
for document in legal_data:
for article in document['articles']:
chunk = {
"law_id": document['law_id'],
"article_id": article['article_id'],
"title": article['title'],
"text": article['title'] + '\n' + article['text']
}
corpus.append(chunk)
return corpus
def convert_corpus_to_documents(corpus: List[Dict[str, str]]) -> List[Document]:
documents = []
for i in tqdm(range(len(corpus)), desc="Converting corpus to documents"):
context = corpus[i]['text']
metadata = {
'law_id': corpus[i]['law_id'],
'article_id': corpus[i]['article_id'],
'title': corpus[i]['title']
}
documents.append(Document(page_content=context, metadata=metadata))
return documents
class CustomEmbedding(Embeddings):
"""Custom embedding class that uses the BGEM3FlagModel."""
def __init__(self, model: BGEM3FlagModel, batch_size: int = 1):
self.model = model
self.batch_size = batch_size
def embed_documents(self, texts: List[str]) -> List[List[float]]:
embeddings = []
for i in tqdm(range(0, len(texts), self.batch_size), desc="Embedding documents"):
batch_texts = texts[i:i+self.batch_size]
batch_embeddings = self._get_batch_embeddings(batch_texts)
embeddings.extend(batch_embeddings)
torch.cuda.empty_cache()
return np.vstack(embeddings)
def embed_query(self, text: str) -> List[float]:
embedding = self.model.encode(text, max_length=256)['dense_vecs']
return embedding
def _get_batch_embeddings(self, texts: List[str]) -> List[List[float]]:
with torch.no_grad():
outputs = self.model.encode(texts, batch_size=self.batch_size, max_length=2048)['dense_vecs']
batch_embeddings = outputs
del outputs
return batch_embeddings
class VectorDB:
"""Vector database for document retrieval."""
def __init__(
self,
documents: List[Document],
embedding: Embeddings,
vector_db=FAISS,
index_path: Optional[str] = None
) -> None:
self.vector_db = vector_db
self.embedding = embedding
self.index_path = index_path
self.db = self._build_db(documents)
def _build_db(self, documents: List[Document]):
if self.index_path:
db = self.vector_db.load_local(
self.index_path,
self.embedding,
allow_dangerous_deserialization=True
)
else:
db = self.vector_db.from_documents(
documents=documents,
embedding=self.embedding,
distance_strategy=DistanceStrategy.DOT_PRODUCT
)
return db
def get_retriever(self, search_type: str = "similarity", search_kwargs: dict = {"k": 10}):
retriever = self.db.as_retriever(search_type=search_type, search_kwargs=search_kwargs)
return retriever
def save_local(self, folder_path: str) -> None:
self.db.save_local(folder_path)
def process_sample(sample: dict, retriever) -> List[int]:
question = sample['question']
docs = retriever.invoke(question)
retrieved_article_full_ids = [
docs[i].metadata['law_id'] + "#" + docs[i].metadata['article_id']
for i in range(len(docs))
]
indexes = []
for article in sample['relevant_articles']:
article_full_id = article['law_id'] + "#" + article['article_id']
if article_full_id in retrieved_article_full_ids:
idx = retrieved_article_full_ids.index(article_full_id) + 1
indexes.append(idx)
else:
indexes.append(0)
return indexes
def calculate_metrics(all_indexes: List[List[int]], num_samples: int, selected_keys: Set[str]) -> Dict[str, float]:
count = [len(indexes) for indexes in all_indexes]
result = {}
for thres in [1, 3, 5, 10, 100]:
found = [[y for y in x if 0 < y <= thres] for x in all_indexes]
found_count = [len(x) for x in found]
acc = sum(1 for i in range(num_samples) if found_count[i] > 0) / num_samples
rec = sum(found_count[i] / count[i] for i in range(num_samples)) / num_samples
pre = sum(found_count[i] / thres for i in range(num_samples)) / num_samples
mrr = sum(1 / min(x) if x else 0 for x in found) / num_samples
if f"Accuracy@{thres}" in selected_keys:
result[f"Accuracy@{thres}"] = acc
if f"MRR@{thres}" in selected_keys:
result[f"MRR@{thres}"] = mrr
return result
def save_results(result: Dict[str, float], output_path: str) -> None:
with open(output_path, "w", encoding="utf-8") as f:
json.dump(result, f, indent=4, ensure_ascii=False)
print(f"Results saved to {output_path}")
def main():
setup_gpu_info()
model = load_model('AITeamVN/Vietnamese_Embedding', use_fp16=False)
samples = load_json_file('zalo_kaggle/train_question_answer.json')['items']
legal_data = load_json_file('zalo_kaggle/legal_corpus.json')
corpus = extract_corpus_from_legal_documents(legal_data)
documents = convert_corpus_to_documents(corpus)
embedding = CustomEmbedding(model, batch_size=1) # Increased batch size for efficiency time
vectordb = VectorDB(
documents=documents,
embedding=embedding,
vector_db=FAISS,
index_path=None
)
retriever = vectordb.get_retriever(search_type="similarity", search_kwargs={"k": 100})
all_indexes = []
for sample in tqdm(samples, desc="Processing samples"):
all_indexes.append(process_sample(sample, retriever))
selected_keys = {"Accuracy@1", "Accuracy@3", "Accuracy@5", "Accuracy@10", "MRR@10", "Accuracy@100"}
result = calculate_metrics(all_indexes, len(samples), selected_keys)
print(result)
save_results(result, "zalo_kaggle/Vietnamese_Embedding.json")
if __name__ == "__main__":
main()