Ar4l commited on
Commit
690e05b
1 Parent(s): 638e3b7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +56 -181
README.md CHANGED
@@ -1,201 +1,76 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
 
 
201
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
  library_name: transformers
4
+ tags:
5
+ - code
6
  ---
7
 
8
+ ## JonBERTa-attn-ft-coco-5L
9
 
10
+ Model for the paper [**"A Transformer-Based Approach for Smart Invocation of Automatic Code Completion"**](https://arxiv.org/abs/2405.14753).
11
 
12
+ #### Description
13
+ This model is fine-tuned on a code-completion dataset collected from the open-source [Code4Me](https://github.com/code4me-me/code4me) plugin. The training objective is to have a small, lightweight transformer model to filter out unnecessary and unhelpful code completions. To this end, we leverage the in-IDE telemetry data, and integrate it with the textual code data in the transformer's attention module.
14
 
15
+ - **Developed by:** [AISE Lab](https://www.linkedin.com/company/aise-tudelft/) @ [SERG](https://se.ewi.tudelft.nl/), Delft University of Technology
16
+ - **Model type:** [JonBERTa](https://github.com/Ar4l/curating-code-completions/blob/main/modeling_jonberta.py)
17
+ - **Language:** Code
18
+ - **Finetuned from model:** [`CodeBERTa-small-v1`](https://huggingface.co/huggingface/CodeBERTa-small-v1).
19
 
20
+ Models are named as follows:
21
 
22
+ - `CodeBERTa` &rarr; `CodeBERTa-ft-coco-[1,2,5]e-05lr`
23
+ - e.g. `CodeBERTa-ft-coco-2e-05lr`, which was trained with learning rate of `2e-05`.
24
+ - `JonBERTa-head` &rarr; `JonBERTa-head-ft-[dense,proj,reinit]`
25
+ - e.g. `JonBERTa-head-ft-dense-proj`, where all have `2e-05` learning rate, but may differ in the head layer in which the telemetry features are introduced (either `head` or `proj`, with optional `reinit`ialisation of all its weights).
26
+ - `JonBERTa-attn` &rarr; `JonBERTa-attn-ft-[0,1,2,3,4,5]L`
27
+ - e.g. `JonBERTa-attn-ft-012L` , where all have `2e-05` learning rate, but may differ in the attention layer(s) in which the telemetry features are introduced (either `0`, `1`, `2`, `3`, `4`, or `5L`).
28
 
29
+ Other hyperparameters may be found in the paper or the replication package (see below).
30
 
31
+ #### Sources
32
 
33
+ - **Replication Repository:** [`Ar4l/curating-code-completions`](https://github.com/Ar4l/curating-code-completions/tree/main)
34
+ - **Paper:** [**"A Transformer-Based Approach for Smart Invocation of Automatic Code Completion"**](https://arxiv.org/abs/2405.14753)
35
+ - **Contact:** https://huggingface.co/Ar4l
 
 
 
 
36
 
37
+ To cite, please use
38
 
39
+ ```bibtex
40
+ @misc{de_moor_smart_invocation_2024,
41
+ title = {A {Transformer}-{Based} {Approach} for {Smart} {Invocation} of {Automatic} {Code} {Completion}},
42
+ url = {http://arxiv.org/abs/2405.14753},
43
+ doi = {10.1145/3664646.3664760},
44
+ author = {de Moor, Aral and van Deursen, Arie and Izadi, Maliheh},
45
+ month = may,
46
+ year = {2024},
47
+ }
48
+ ```
49
 
50
+ #### Training Details
51
+ This model was trained with the following hyperparameters, everything else being `TrainingArguments`' default. The dataset was prepared identically across all models as detailed in the paper.
 
52
 
53
+ ```python
54
+ num_train_epochs : int = 3
55
+ learning_rate : float = 2e-5
56
+ batch_size : int = 16
57
+ ```
58
 
59
+ #### Model Configuration
60
 
61
+ ```python
62
+ num_telemetry_features :int = 26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ add_feature_embeddings :bool = True
65
+ feature_hidden_size :int = num_telemetry_features * 4
66
+ feature_dropout_prob :float = 0.1
67
+ add_feature_bias :bool = True
68
 
69
+ add_self_attn :bool = True
70
+ self_attn_layers :list[int] = search(sum(
71
+ [[i,j,k] for i in range(6) for j in range(6) for k in range(6) if i < j < k],
72
+ [[i,j] for j in range(6) for i in range(6) if i < j],
73
+ [[i] for i in range(6)],
74
+ []
75
+ ))
76
+ ```