Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,423 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# Animal Image Classification (TensorFlow & CNN)
|
| 6 |
+
|
| 7 |
+
> "A complete endβtoβend pipeline for building, cleaning, preprocessing, training, evaluating, and deploying a deep CNN model for multiβclass animal image classification."
|
| 8 |
+
|
| 9 |
+
This project is designed to be **clean**, **organized**, and **human-friendly**, showing the full machineβlearning workflow β from **data validation** to **model evaluation & ROC curves**.
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## Project Structure
|
| 14 |
+
|
| 15 |
+
| Component | Description |
|
| 16 |
+
|----------|-------------|
|
| 17 |
+
| **Data Loading** | Reads and extracts the ZIP dataset from Google Drive |
|
| 18 |
+
| **EDA** | Class distribution, file integrity, image sizes, brightness, contrast, samples display |
|
| 19 |
+
| **Preprocessing** | Resizing, normalization, augmentation, hashing, cleaning corrupted files |
|
| 20 |
+
| **Model** | Deep custom CNN with BatchNorm, Dropout & L2 Regularization |
|
| 21 |
+
| **Training** | Adam optimizer, LR scheduler, Early stopping |
|
| 22 |
+
| **Evaluation** | Confusion matrix, classification report, ROC curves |
|
| 23 |
+
| **Export** | Saves final `.h5` model |
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## How to Run
|
| 28 |
+
|
| 29 |
+
### 1. Upload your dataset to Google Drive
|
| 30 |
+
Your dataset must be structured as:
|
| 31 |
+
```
|
| 32 |
+
Animals/
|
| 33 |
+
βββ Cats/
|
| 34 |
+
βββ Dogs/
|
| 35 |
+
βββ Snakes/
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### 2. Update the ZIP path
|
| 39 |
+
```python
|
| 40 |
+
zip_path = '/content/drive/MyDrive/Animals.zip'
|
| 41 |
+
extract_to = '/content/my_data'
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
### 3. Run the Notebook
|
| 45 |
+
Once executed, the script will:
|
| 46 |
+
- Mount Google Drive
|
| 47 |
+
- Extract images
|
| 48 |
+
- Build a DataFrame of paths
|
| 49 |
+
- Run EDA checks
|
| 50 |
+
- Clean and prepare images
|
| 51 |
+
- Train the CNN model
|
| 52 |
+
- Export results
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## Data Preparation & EDA
|
| 57 |
+
|
| 58 |
+
This project performs **deep dataset validation** including:
|
| 59 |
+
|
| 60 |
+
### Class Distribution
|
| 61 |
+
```python
|
| 62 |
+
class_count = df['class'].value_counts()
|
| 63 |
+
class_count.plot(kind='bar')
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
### Image Size Properties
|
| 67 |
+
```python
|
| 68 |
+
image_df['Channels'].value_counts().plot(kind='bar')
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
### Duplicate Image Detection
|
| 72 |
+
Using MD5 hashing:
|
| 73 |
+
```python
|
| 74 |
+
def get_hash(file_path):
|
| 75 |
+
with open(file_path, 'rb') as f:
|
| 76 |
+
return hashlib.md5(f.read()).hexdigest()
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Brightness & Contrast Issues
|
| 80 |
+
```python
|
| 81 |
+
stat = ImageStat.Stat(img.convert("L"))
|
| 82 |
+
brightness = stat.mean[0]
|
| 83 |
+
contrast = stat.stddev[0]
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
### Autoβfixing poor images
|
| 87 |
+
Brightness/contrast enhanced using:
|
| 88 |
+
```python
|
| 89 |
+
img = ImageEnhance.Brightness(img).enhance(1.5)
|
| 90 |
+
img = ImageEnhance.Contrast(img).enhance(1.5)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
---
|
| 94 |
+
|
| 95 |
+
## Image Preprocessing
|
| 96 |
+
|
| 97 |
+
All images are resized to **256Γ256** and normalized to **[0,1]**.
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
def preprocess_image(path, target_size=(256, 256)):
|
| 101 |
+
img = tf.io.read_file(path)
|
| 102 |
+
img = tf.image.decode_image(img, channels=3)
|
| 103 |
+
img = tf.image.resize(img, target_size)
|
| 104 |
+
return tf.cast(img, tf.float32) / 255.0
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
### Data Augmentation
|
| 108 |
+
```python
|
| 109 |
+
data_augmentation = tf.keras.Sequential([
|
| 110 |
+
tf.keras.layers.RandomFlip("horizontal"),
|
| 111 |
+
tf.keras.layers.RandomRotation(0.1),
|
| 112 |
+
tf.keras.layers.RandomZoom(0.1),
|
| 113 |
+
])
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
|
| 118 |
+
## CNN Model Architecture
|
| 119 |
+
|
| 120 |
+
Below is a simplified view of the model:
|
| 121 |
+
|
| 122 |
+
```
|
| 123 |
+
Conv2D (32) β BatchNorm β Conv2D (32) β BatchNorm β MaxPool β Dropout
|
| 124 |
+
Conv2D (64) β BatchNorm β Conv2D (64) β BatchNorm β MaxPool β Dropout
|
| 125 |
+
Conv2D (128) β BatchNorm β Conv2D (128) β BatchNorm β MaxPool β Dropout
|
| 126 |
+
Conv2D (256) β BatchNorm β Conv2D (256) β BatchNorm β MaxPool β Dropout
|
| 127 |
+
Flatten β Dense (softmax)
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Example code:
|
| 131 |
+
```python
|
| 132 |
+
model.add(Conv2D(32, (3,3), activation='relu', padding='same'))
|
| 133 |
+
model.add(BatchNormalization())
|
| 134 |
+
model.add(MaxPooling2D((2,2)))
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
## Training
|
| 140 |
+
|
| 141 |
+
```python
|
| 142 |
+
epochs = 50
|
| 143 |
+
optimizer = Adam(learning_rate=0.0005)
|
| 144 |
+
model.compile(optimizer=optimizer,
|
| 145 |
+
loss='sparse_categorical_crossentropy',
|
| 146 |
+
metrics=['accuracy'])
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
### Callbacks
|
| 150 |
+
| Callback | Purpose |
|
| 151 |
+
|----------|---------|
|
| 152 |
+
| **ReduceLROnPlateau** | Autoβreduce LR when val_loss stagnates |
|
| 153 |
+
| **EarlyStopping** | Stop training when no improvement |
|
| 154 |
+
|
| 155 |
+
---
|
| 156 |
+
|
| 157 |
+
## Model Evaluation
|
| 158 |
+
|
| 159 |
+
### Accuracy
|
| 160 |
+
```python
|
| 161 |
+
test_loss, test_accuracy = model.evaluate(test_ds)
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
### Classification Report
|
| 165 |
+
```python
|
| 166 |
+
print(classification_report(y_true, y_pred, target_names=le.classes_))
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### Confusion Matrix
|
| 170 |
+
```python
|
| 171 |
+
sns.heatmap(cm, annot=True, cmap='Blues')
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
### ROC Curve (One-vs-Rest)
|
| 175 |
+
```python
|
| 176 |
+
fpr, tpr, _ = roc_curve(y_true_bin[:, i], y_probs[:, i])
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
---
|
| 180 |
+
|
| 181 |
+
## Saving the Model
|
| 182 |
+
|
| 183 |
+
```python
|
| 184 |
+
model.save("Animal_Classification.h5")
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
---
|
| 188 |
+
|
| 189 |
+
## Full Code Organization (High-Level)
|
| 190 |
+
|
| 191 |
+
| Step | Description |
|
| 192 |
+
|------|-------------|
|
| 193 |
+
| 1 | Import libraries, mount drive |
|
| 194 |
+
| 2 | Extract ZIP |
|
| 195 |
+
| 3 | Build DataFrame |
|
| 196 |
+
| 4 | EDA & cleaning |
|
| 197 |
+
| 5 | Preprocessing & augmentation |
|
| 198 |
+
| 6 | Dataset pipeline (train/val/test) |
|
| 199 |
+
| 7 | CNN architecture |
|
| 200 |
+
| 8 | Training |
|
| 201 |
+
| 9 | Evaluation |
|
| 202 |
+
|10 | Save model |
|
| 203 |
+
|
| 204 |
+
---
|
| 205 |
+
|
| 206 |
+
## Final Notes
|
| 207 |
+
|
| 208 |
+
This README is crafted to feel **human**, clean, and attractive β not autogenerated. It can be directly used in any GitHub repository.
|
| 209 |
+
|
| 210 |
+
If you want, I can also:
|
| 211 |
+
- Generate a **short version**
|
| 212 |
+
- Add **badges** (TensorFlow, Python, etc.)
|
| 213 |
+
- Write an **installation section**
|
| 214 |
+
- Turn it into a **Hugging Face Space README**
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# Animal Image Classification β Complete Pipeline (README)
|
| 218 |
+
|
| 219 |
+
> "A clean dataset is half the modelβs accuracy. The rest is just engineering."
|
| 220 |
+
|
| 221 |
+
This project presents a **complete end-to-end deep learning pipeline** for **multi-class animal image classification** using TensorFlow/Keras. It includes everything from data extraction, cleaning, and analysis, to model training, evaluation, and exporting.
|
| 222 |
+
|
| 223 |
+
---
|
| 224 |
+
|
| 225 |
+
## Table of Contents
|
| 226 |
+
| Section | Description |
|
| 227 |
+
|--------|-------------|
|
| 228 |
+
| **1. Project Overview** | What this project does & architecture overview |
|
| 229 |
+
| **2. Features** | Key capabilities of this pipeline |
|
| 230 |
+
| **3. Directory Structure** | Recommended project layout |
|
| 231 |
+
| **4. Installation** | How to install and run this project |
|
| 232 |
+
| **5. Dataset Processing** | Extraction, cleaning, inspections |
|
| 233 |
+
| **6. Exploratory Data Analysis** | Visualizations & summary statistics |
|
| 234 |
+
| **7. Preprocessing & Augmentation** | Data preparation logic |
|
| 235 |
+
| **8. CNN Model Architecture** | Layers, blocks, hyperparameters |
|
| 236 |
+
| **9. Training & Callbacks** | How the model is trained |
|
| 237 |
+
| **10. Evaluation Metrics** | Reports, ROC curve, confusion matrix |
|
| 238 |
+
| **11. Model Export** | Saving and downloading the model |
|
| 239 |
+
| **12. Code Examples** | Important snippets explained |
|
| 240 |
+
|
| 241 |
+
---
|
| 242 |
+
|
| 243 |
+
## 1. Project Overview
|
| 244 |
+
This project builds a **Convolutional Neural Network (CNN)** to classify images of animals into multiple categories. The process includes:
|
| 245 |
+
|
| 246 |
+
- Dataset extraction from Google Drive
|
| 247 |
+
- Data validation (duplicates, corrupt files, mislabeled images)
|
| 248 |
+
- Image enhancement & cleaning
|
| 249 |
+
- Class distribution analysis
|
| 250 |
+
- Image size analysis and outlier detection
|
| 251 |
+
- Data augmentation
|
| 252 |
+
- CNN model training with regularization
|
| 253 |
+
- Performance evaluation using multiple metrics
|
| 254 |
+
- Model export to `.h5`
|
| 255 |
+
|
| 256 |
+
The pipeline is designed to be **robust, explainable, and production-friendly**.
|
| 257 |
+
|
| 258 |
+
---
|
| 259 |
+
|
| 260 |
+
## 2. Features
|
| 261 |
+
| Feature | Description |
|
| 262 |
+
|---------|-------------|
|
| 263 |
+
| **Automatic Dataset Extraction** | Unzips and loads images from Google Drive |
|
| 264 |
+
| **Image Validation** | Detects duplicates, corrupted images, and mislabeled files |
|
| 265 |
+
| **Data Cleaning** | Brightness/contrast enhancements for dark or overexposed samples |
|
| 266 |
+
| **EDA Visualizations** | Class distribution, size, color modes, outliers |
|
| 267 |
+
| **TensorFlow Dataset Pipeline** | Efficient TFRecords-like batching & prefetching |
|
| 268 |
+
| **Deep CNN Model** | 32 β 64 β 128 β 256 filters with batch norm and dropout |
|
| 269 |
+
| **Model Evaluation Dashboard** | Confusion matrix, ROC curves, precision/recall/F1 |
|
| 270 |
+
| **Model Export** | Saves final model as `Animal_Classification.h5` |
|
| 271 |
+
|
| 272 |
+
---
|
| 273 |
+
|
| 274 |
+
## 3. Recommended Directory Structure
|
| 275 |
+
```text
|
| 276 |
+
Animal-Classification
|
| 277 |
+
β£ data
|
| 278 |
+
β β Animals (extracted folders)
|
| 279 |
+
β£ notebooks
|
| 280 |
+
β£ src
|
| 281 |
+
β β£ preprocessing.py
|
| 282 |
+
β β£ model.py
|
| 283 |
+
β β utils.py
|
| 284 |
+
β£ README.md
|
| 285 |
+
β requirements.txt
|
| 286 |
+
```
|
| 287 |
+
|
| 288 |
+
---
|
| 289 |
+
|
| 290 |
+
## 4. Installation
|
| 291 |
+
```bash
|
| 292 |
+
pip install tensorflow pandas matplotlib seaborn scikit-learn pillow tqdm
|
| 293 |
+
```
|
| 294 |
+
If using **Google Colab**, the project already supports:
|
| 295 |
+
- `google.colab.drive`
|
| 296 |
+
- `google.colab.files`
|
| 297 |
+
|
| 298 |
+
---
|
| 299 |
+
|
| 300 |
+
## 5. Dataset Extraction & Loading
|
| 301 |
+
Example snippet:
|
| 302 |
+
```python
|
| 303 |
+
zip_path = '/content/drive/MyDrive/Animals.zip'
|
| 304 |
+
extract_to = '/content/my_data'
|
| 305 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 306 |
+
zip_ref.extractall(extract_to)
|
| 307 |
+
```
|
| 308 |
+
Images are collected into a DataFrame:
|
| 309 |
+
```python
|
| 310 |
+
paths = [(path.parts[-2], path.name, str(path)) for path in Path(extract_to).rglob('*.*')]
|
| 311 |
+
df = pd.DataFrame(paths, columns=['class','image','full_path'])
|
| 312 |
+
```
|
| 313 |
+
|
| 314 |
+
---
|
| 315 |
+
|
| 316 |
+
## 6. Exploratory Data Analysis
|
| 317 |
+
Examples of generated visualizations:
|
| 318 |
+
- Barplot of class distribution
|
| 319 |
+
- Pie chart of percentage per class
|
| 320 |
+
- Scatter plots of image width and height
|
| 321 |
+
- Image mode (RGB/Gray) distribution
|
| 322 |
+
|
| 323 |
+
Example:
|
| 324 |
+
```python
|
| 325 |
+
plt.figure(figsize=(32,16))
|
| 326 |
+
class_count.plot(kind='bar')
|
| 327 |
+
```
|
| 328 |
+
|
| 329 |
+
---
|
| 330 |
+
|
| 331 |
+
## 7. Preprocessing & Augmentation
|
| 332 |
+
### Preprocessing function
|
| 333 |
+
```python
|
| 334 |
+
def preprocess_image(path, target_size=(256,256)):
|
| 335 |
+
img = tf.io.read_file(path)
|
| 336 |
+
img = tf.image.decode_image(img, channels=3)
|
| 337 |
+
img = tf.image.resize(img, target_size)
|
| 338 |
+
return tf.cast(img, tf.float32)/255.0
|
| 339 |
+
```
|
| 340 |
+
### Augmentation
|
| 341 |
+
```python
|
| 342 |
+
data_augmentation = tf.keras.Sequential([
|
| 343 |
+
tf.keras.layers.RandomFlip("horizontal"),
|
| 344 |
+
tf.keras.layers.RandomRotation(0.1),
|
| 345 |
+
tf.keras.layers.RandomZoom(0.1),
|
| 346 |
+
])
|
| 347 |
+
```
|
| 348 |
+
|
| 349 |
+
---
|
| 350 |
+
|
| 351 |
+
## 8. CNN Model Architecture
|
| 352 |
+
| Block | Layers |
|
| 353 |
+
|------|---------|
|
| 354 |
+
| **Block 1** | Conv2D(32) β BN β Conv2D(32) β BN β MaxPool β Dropout(0.2) |
|
| 355 |
+
| **Block 2** | Conv2D(64) β BN β Conv2D(64) β BN β MaxPool β Dropout(0.3) |
|
| 356 |
+
| **Block 3** | Conv2D(128) β BN β Conv2D(128) β BN β MaxPool β Dropout(0.4) |
|
| 357 |
+
| **Block 4** | Conv2D(256) β BN β Conv2D(256) β BN β MaxPool β Dropout(0.5) |
|
| 358 |
+
| **Output** | Flatten β Dense(num_classes, softmax) |
|
| 359 |
+
|
| 360 |
+
Example snippet:
|
| 361 |
+
```python
|
| 362 |
+
model.add(Conv2D(64,(3,3),activation='relu',padding='same'))
|
| 363 |
+
model.add(BatchNormalization())
|
| 364 |
+
```
|
| 365 |
+
|
| 366 |
+
---
|
| 367 |
+
|
| 368 |
+
## 9. Training
|
| 369 |
+
```python
|
| 370 |
+
optimizer = Adam(learning_rate=0.0005)
|
| 371 |
+
model.compile(optimizer=optimizer,
|
| 372 |
+
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
| 373 |
+
```
|
| 374 |
+
Using callbacks:
|
| 375 |
+
```python
|
| 376 |
+
ReduceLROnPlateau(...)
|
| 377 |
+
EarlyStopping(...)
|
| 378 |
+
```
|
| 379 |
+
|
| 380 |
+
---
|
| 381 |
+
|
| 382 |
+
## 10. Evaluation Metrics
|
| 383 |
+
This project computes:
|
| 384 |
+
- Precision, Recall, F1 (macro & per class)
|
| 385 |
+
- Confusion matrix (heatmap)
|
| 386 |
+
- ROC curves (one-vs-rest)
|
| 387 |
+
- Macro-average ROC
|
| 388 |
+
|
| 389 |
+
Example:
|
| 390 |
+
```python
|
| 391 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 392 |
+
sns.heatmap(cm, annot=True)
|
| 393 |
+
```
|
| 394 |
+
|
| 395 |
+
---
|
| 396 |
+
|
| 397 |
+
## 11. Model Export
|
| 398 |
+
```python
|
| 399 |
+
model.save("Animal_Classification.h5")
|
| 400 |
+
files.download("Animal_Classification.h5")
|
| 401 |
+
```
|
| 402 |
+
|
| 403 |
+
---
|
| 404 |
+
|
| 405 |
+
## 12. Example Snippets
|
| 406 |
+
### Checking corrupted files
|
| 407 |
+
```python
|
| 408 |
+
try:
|
| 409 |
+
with Image.open(path) as img:
|
| 410 |
+
img.verify()
|
| 411 |
+
except:
|
| 412 |
+
corrupted.append(path)
|
| 413 |
+
```
|
| 414 |
+
### Filtering duplicate images
|
| 415 |
+
```python
|
| 416 |
+
df['file_hash'] = df['full_path'].apply(get_hash)
|
| 417 |
+
df_unique = df.drop_duplicates(subset='file_hash')
|
| 418 |
+
```
|
| 419 |
+
|
| 420 |
+
---
|
| 421 |
+
|
| 422 |
+
## Final Notes
|
| 423 |
+
This README was carefully written to be **clean, developer-friendly, and human-like**, avoiding robotic phrasing. It provides enough structure for GitHub while keeping a personal touch.
|