runninglsy commited on
Commit
578731e
·
1 Parent(s): ee7e01b

initial commit

Browse files
README.md CHANGED
@@ -1,3 +1,98 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - AIDC-AI/Ovis-dataset
5
+ library_name: transformers
6
+ tags:
7
+ - MLLM
8
+ pipeline_tag: image-text-to-text
9
+ ---
10
+
11
+ ## Introduction
12
+ Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings. For a comprehensive introduction, please refer to [Ovis paper](https://arxiv.org/abs/2405.20797) and [Ovis GitHub](https://github.com/AIDC-AI/Ovis).
13
+
14
+ <div align="center">
15
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png" width="100%" />
16
+ </div>
17
+
18
+ ## Model
19
+ As always, Ovis1.5 remains fully open-source: we release the [training datasets](https://huggingface.co/datasets/AIDC-AI/Ovis-dataset), [training & inference codes](https://github.com/AIDC-AI/Ovis), and [model weights](https://huggingface.co/AIDC-AI/Ovis1.5-Llama3-8B) for **reproducible transparency** and community collaboration.
20
+
21
+ | | MiniCPM-Llama3-V2.5 | Ovis1.5-Llama3-8B |
22
+ |:------------------|-------------------------------------------------------------------:|-------------------------------------------------------------------:|
23
+ | Training scripts | - | [Github](https://github.com/AIDC-AI/Ovis/tree/main/scripts/v1_5) |
24
+ | ViT | Siglip-400M | Siglip-400M |
25
+ | LLM | Llama3-8B-Instruct | Llama3-8B-Instruct |
26
+ | MMTBench-VAL | 57.6 | **60.7** |
27
+ | MMBench-EN-V1.1 | 74 | **78.2** |
28
+ | MMBench-CN-V1.1 | 70.1 | **75.2** |
29
+ | MMStar | 51.8 | **57.2** |
30
+ | MMMU-Val | 45.8 | **48.6** |
31
+ | MathVista-Mini | 54.3 | **62.4** |
32
+ | HallusionBenchAvg | 42.4 | **44.5** |
33
+ | AI2D | 78.4 | **82.5** |
34
+ | OCRBench | 725 | **743** |
35
+ | MMVet | **52.8** | 52.2 |
36
+ | RealWorldQA | 63.5 | **64.6** |
37
+
38
+ ## Usage
39
+ Below is a code snippet to run Ovis with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference).
40
+ ```bash
41
+ pip install torch==2.1.0 transformers==4.42.4 deepspeed==0.14.0 pillow==10.3.0
42
+ ```
43
+ ```python
44
+ import torch
45
+ from PIL import Image
46
+ from transformers import AutoModelForCausalLM
47
+
48
+ # load model
49
+ model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.5-Llama3-8B",
50
+ torch_dtype=torch.bfloat16,
51
+ multimodal_max_length=8192,
52
+ trust_remote_code=True).cuda()
53
+ text_tokenizer = model.get_text_tokenizer()
54
+ visual_tokenizer = model.get_visual_tokenizer()
55
+ conversation_formatter = model.get_conversation_formatter()
56
+
57
+ # enter image path and prompt
58
+ image_path = input("Enter image path: ")
59
+ image = Image.open(image_path)
60
+ text = input("Enter prompt: ")
61
+ query = f'<image>\n{text}'
62
+ prompt, input_ids = conversation_formatter.format_query(query)
63
+ input_ids = torch.unsqueeze(input_ids, dim=0).to(device=model.device)
64
+ attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id).to(device=model.device)
65
+ pixel_values = [visual_tokenizer.preprocess_image(image).to(
66
+ dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
67
+
68
+ # generate output
69
+ with torch.inference_mode():
70
+ gen_kwargs = dict(
71
+ max_new_tokens=1024,
72
+ do_sample=False,
73
+ top_p=None,
74
+ top_k=None,
75
+ temperature=None,
76
+ repetition_penalty=None,
77
+ eos_token_id=model.generation_config.eos_token_id,
78
+ pad_token_id=text_tokenizer.pad_token_id,
79
+ use_cache=True
80
+ )
81
+ output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
82
+ output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
83
+ print(f'Output: {output}')
84
+ ```
85
+
86
+ ## Citation
87
+ If you find Ovis useful, please cite the paper
88
+ ```
89
+ @article{lu2024ovis,
90
+ title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
91
+ author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
92
+ year={2024},
93
+ journal={arXiv:2405.20797}
94
+ }
95
+ ```
96
+
97
+ ## License
98
+ The project is licensed under the Apache 2.0 License and is restricted to uses that comply with the license agreements of Qwen, Llama3, Clip, and Siglip.
config.json ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Ovis"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_ovis.OvisConfig",
7
+ "AutoModelForCausalLM": "modeling_ovis.Ovis"
8
+ },
9
+ "conversation_formatter_class": "Llama3ConversationFormatter",
10
+ "hidden_size": 4096,
11
+ "llm_config": {
12
+ "_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
13
+ "add_cross_attention": false,
14
+ "architectures": [
15
+ "LlamaForCausalLM"
16
+ ],
17
+ "attention_bias": false,
18
+ "attention_dropout": 0.0,
19
+ "bad_words_ids": null,
20
+ "begin_suppress_tokens": null,
21
+ "bos_token_id": 128000,
22
+ "chunk_size_feed_forward": 0,
23
+ "cross_attention_hidden_size": null,
24
+ "decoder_start_token_id": null,
25
+ "diversity_penalty": 0.0,
26
+ "do_sample": false,
27
+ "early_stopping": false,
28
+ "encoder_no_repeat_ngram_size": 0,
29
+ "eos_token_id": 128001,
30
+ "exponential_decay_length_penalty": null,
31
+ "finetuning_task": null,
32
+ "forced_bos_token_id": null,
33
+ "forced_eos_token_id": null,
34
+ "hidden_act": "silu",
35
+ "hidden_size": 4096,
36
+ "id2label": {
37
+ "0": "LABEL_0",
38
+ "1": "LABEL_1"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 14336,
42
+ "is_decoder": false,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1
47
+ },
48
+ "length_penalty": 1.0,
49
+ "max_length": 20,
50
+ "max_position_embeddings": 8192,
51
+ "min_length": 0,
52
+ "mlp_bias": false,
53
+ "model_type": "llama",
54
+ "no_repeat_ngram_size": 0,
55
+ "num_attention_heads": 32,
56
+ "num_beam_groups": 1,
57
+ "num_beams": 1,
58
+ "num_hidden_layers": 32,
59
+ "num_key_value_heads": 8,
60
+ "num_return_sequences": 1,
61
+ "output_attentions": false,
62
+ "output_hidden_states": false,
63
+ "output_scores": false,
64
+ "pad_token_id": null,
65
+ "prefix": null,
66
+ "pretraining_tp": 1,
67
+ "problem_type": null,
68
+ "pruned_heads": {},
69
+ "remove_invalid_values": false,
70
+ "repetition_penalty": 1.0,
71
+ "return_dict": true,
72
+ "return_dict_in_generate": false,
73
+ "rms_norm_eps": 1e-05,
74
+ "rope_scaling": null,
75
+ "rope_theta": 500000.0,
76
+ "sep_token_id": null,
77
+ "suppress_tokens": null,
78
+ "task_specific_params": null,
79
+ "temperature": 1.0,
80
+ "tf_legacy_loss": false,
81
+ "tie_encoder_decoder": false,
82
+ "tie_word_embeddings": false,
83
+ "tokenizer_class": null,
84
+ "top_k": 50,
85
+ "top_p": 1.0,
86
+ "torch_dtype": "bfloat16",
87
+ "torchscript": false,
88
+ "typical_p": 1.0,
89
+ "use_bfloat16": false,
90
+ "use_cache": true,
91
+ "vocab_size": 128256
92
+ },
93
+ "model_type": "ovis",
94
+ "multimodal_max_length": 8192,
95
+ "torch_dtype": "bfloat16",
96
+ "transformers_version": "4.42.4",
97
+ "use_cache": true,
98
+ "visual_tokenizer_config": {
99
+ "_name_or_path": "",
100
+ "add_cross_attention": false,
101
+ "architectures": null,
102
+ "backbone_config": {
103
+ "_name_or_path": "google/siglip-so400m-patch14-384",
104
+ "add_cross_attention": false,
105
+ "architectures": null,
106
+ "attention_dropout": 0.0,
107
+ "bad_words_ids": null,
108
+ "begin_suppress_tokens": null,
109
+ "bos_token_id": null,
110
+ "chunk_size_feed_forward": 0,
111
+ "cross_attention_hidden_size": null,
112
+ "decoder_start_token_id": null,
113
+ "diversity_penalty": 0.0,
114
+ "do_sample": false,
115
+ "early_stopping": false,
116
+ "encoder_no_repeat_ngram_size": 0,
117
+ "eos_token_id": null,
118
+ "exponential_decay_length_penalty": null,
119
+ "finetuning_task": null,
120
+ "forced_bos_token_id": null,
121
+ "forced_eos_token_id": null,
122
+ "hidden_act": "gelu_pytorch_tanh",
123
+ "hidden_size": 1152,
124
+ "id2label": {
125
+ "0": "LABEL_0",
126
+ "1": "LABEL_1"
127
+ },
128
+ "image_size": 384,
129
+ "intermediate_size": 4304,
130
+ "is_decoder": false,
131
+ "is_encoder_decoder": false,
132
+ "label2id": {
133
+ "LABEL_0": 0,
134
+ "LABEL_1": 1
135
+ },
136
+ "layer_norm_eps": 1e-06,
137
+ "length_penalty": 1.0,
138
+ "max_length": 20,
139
+ "min_length": 0,
140
+ "model_type": "siglip_vision_model",
141
+ "no_repeat_ngram_size": 0,
142
+ "num_attention_heads": 16,
143
+ "num_beam_groups": 1,
144
+ "num_beams": 1,
145
+ "num_channels": 3,
146
+ "num_hidden_layers": 27,
147
+ "num_return_sequences": 1,
148
+ "output_attentions": false,
149
+ "output_hidden_states": false,
150
+ "output_scores": false,
151
+ "pad_token_id": null,
152
+ "patch_size": 14,
153
+ "prefix": null,
154
+ "problem_type": null,
155
+ "pruned_heads": {},
156
+ "remove_invalid_values": false,
157
+ "repetition_penalty": 1.0,
158
+ "return_dict": true,
159
+ "return_dict_in_generate": false,
160
+ "sep_token_id": null,
161
+ "suppress_tokens": null,
162
+ "task_specific_params": null,
163
+ "temperature": 1.0,
164
+ "tf_legacy_loss": false,
165
+ "tie_encoder_decoder": false,
166
+ "tie_word_embeddings": true,
167
+ "tokenizer_class": null,
168
+ "top_k": 50,
169
+ "top_p": 1.0,
170
+ "torch_dtype": null,
171
+ "torchscript": false,
172
+ "typical_p": 1.0,
173
+ "use_bfloat16": false
174
+ },
175
+ "backbone_kwargs": {},
176
+ "bad_words_ids": null,
177
+ "begin_suppress_tokens": null,
178
+ "bos_token_id": null,
179
+ "chunk_size_feed_forward": 0,
180
+ "cross_attention_hidden_size": null,
181
+ "decoder_start_token_id": null,
182
+ "depths": null,
183
+ "diversity_penalty": 0.0,
184
+ "do_sample": false,
185
+ "drop_cls_token": false,
186
+ "early_stopping": false,
187
+ "encoder_no_repeat_ngram_size": 0,
188
+ "eos_token_id": null,
189
+ "exponential_decay_length_penalty": null,
190
+ "finetuning_task": null,
191
+ "forced_bos_token_id": null,
192
+ "forced_eos_token_id": null,
193
+ "hd_booster": "s2wrapper",
194
+ "hidden_stride": 1,
195
+ "id2label": {
196
+ "0": "LABEL_0",
197
+ "1": "LABEL_1"
198
+ },
199
+ "is_decoder": false,
200
+ "is_encoder_decoder": false,
201
+ "label2id": {
202
+ "LABEL_0": 0,
203
+ "LABEL_1": 1
204
+ },
205
+ "length_penalty": 1.0,
206
+ "max_length": 20,
207
+ "min_length": 0,
208
+ "model_type": "siglip_visual_tokenizer",
209
+ "no_repeat_ngram_size": 0,
210
+ "num_beam_groups": 1,
211
+ "num_beams": 1,
212
+ "num_return_sequences": 1,
213
+ "output_attentions": false,
214
+ "output_hidden_states": false,
215
+ "output_scores": false,
216
+ "pad_token_id": null,
217
+ "prefix": null,
218
+ "problem_type": null,
219
+ "pruned_heads": {},
220
+ "remove_invalid_values": false,
221
+ "repetition_penalty": 1.0,
222
+ "return_dict": true,
223
+ "return_dict_in_generate": false,
224
+ "sep_token_id": null,
225
+ "suppress_tokens": null,
226
+ "task_specific_params": null,
227
+ "tau": 1.0,
228
+ "temperature": 1.0,
229
+ "tf_legacy_loss": false,
230
+ "tie_encoder_decoder": false,
231
+ "tie_word_embeddings": true,
232
+ "tokenize_function": "softmax",
233
+ "tokenizer_class": null,
234
+ "top_k": 50,
235
+ "top_p": 1.0,
236
+ "torch_dtype": null,
237
+ "torchscript": false,
238
+ "typical_p": 1.0,
239
+ "use_bfloat16": false,
240
+ "use_indicators": true,
241
+ "vocab_size": 131072
242
+ }
243
+ }
configuration_ovis.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from abc import ABC, abstractmethod
3
+ from typing import List, Dict, Union, Optional
4
+
5
+ import torch
6
+ from transformers import PretrainedConfig, AutoConfig
7
+
8
+ IGNORE_INDEX = -100
9
+ IMAGE_TOKEN_INDEX = -200
10
+ IMAGE_TOKEN = "<image>"
11
+
12
+
13
+ # ----------------------------------------------------------------------
14
+ # Visual Tokenizer Configuration
15
+ # ----------------------------------------------------------------------
16
+ class BaseVisualTokenizerConfig(PretrainedConfig):
17
+ def __init__(
18
+ self,
19
+ vocab_size=16384,
20
+ tokenize_function="softmax",
21
+ tau=1.0,
22
+ depths=None,
23
+ use_indicators=False,
24
+ drop_cls_token=False,
25
+ backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
26
+ hidden_stride: int = 1,
27
+ hd_booster: Optional[str] = None,
28
+ **kwargs
29
+ ):
30
+ super().__init__(**kwargs)
31
+ self.vocab_size = vocab_size
32
+ self.tokenize_function = tokenize_function
33
+ self.tau = tau
34
+ if isinstance(depths, str):
35
+ depths = [int(x) for x in depths.split('|')]
36
+ self.depths = depths
37
+ self.backbone_kwargs = {}
38
+ self.use_indicators = use_indicators
39
+ self.drop_cls_token = drop_cls_token
40
+ if backbone_config is not None:
41
+ assert isinstance(backbone_config, (PretrainedConfig, dict)), \
42
+ (f"expect `backbone_config` to be instance of PretrainedConfig or dict,"
43
+ f" but got {type(backbone_config)} type")
44
+ if not isinstance(backbone_config, PretrainedConfig):
45
+ model_type = backbone_config['model_type']
46
+ backbone_config.pop('model_type')
47
+ backbone_config = AutoConfig.for_model(model_type, **backbone_config)
48
+ self.backbone_config = backbone_config
49
+ self.hidden_stride = hidden_stride
50
+ self.hd_booster = hd_booster
51
+
52
+
53
+ class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig):
54
+ model_type = "clip_visual_tokenizer"
55
+
56
+ def __init__(self, **kwargs):
57
+ super().__init__(**kwargs)
58
+ if self.depths:
59
+ assert len(self.depths) == 1
60
+ self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
61
+
62
+
63
+ class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig):
64
+ model_type = "siglip_visual_tokenizer"
65
+
66
+ def __init__(self, **kwargs):
67
+ super().__init__(**kwargs)
68
+ if self.drop_cls_token:
69
+ logging.warning(
70
+ f'SiglipVisionModel has no cls token,'
71
+ f' so `drop_cls_token=True` is ignored and reset to `False`')
72
+ self.drop_cls_token = False
73
+ if self.depths:
74
+ assert len(self.depths) == 1
75
+ self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
76
+
77
+
78
+ AutoConfig.register("clip_visual_tokenizer", ClipVisualTokenizerConfig)
79
+ AutoConfig.register("siglip_visual_tokenizer", SiglipVisualTokenizerConfig)
80
+
81
+
82
+ # ----------------------------------------------------------------------
83
+ # Ovis Configuration
84
+ # ----------------------------------------------------------------------
85
+ class OvisConfig(PretrainedConfig):
86
+ model_type = "ovis"
87
+
88
+ def __init__(
89
+ self,
90
+ llm_config: Optional[Union[PretrainedConfig, dict]] = None,
91
+ visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
92
+ multimodal_max_length=2048,
93
+ hidden_size=None,
94
+ conversation_formatter_class=None,
95
+ **kwargs
96
+ ):
97
+ super().__init__(**kwargs)
98
+ if llm_config is not None:
99
+ assert isinstance(llm_config, (PretrainedConfig, dict)), \
100
+ (f"expect `llm_config` to be instance of PretrainedConfig or dict,"
101
+ f" but got {type(llm_config)} type")
102
+ if not isinstance(llm_config, PretrainedConfig):
103
+ model_type = llm_config['model_type']
104
+ llm_config.pop('model_type')
105
+ llm_config = AutoConfig.for_model(model_type, **llm_config)
106
+ self.llm_config = llm_config
107
+ if visual_tokenizer_config is not None:
108
+ assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
109
+ (f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict,"
110
+ f" but got {type(visual_tokenizer_config)} type")
111
+ if not isinstance(visual_tokenizer_config, PretrainedConfig):
112
+ model_type = visual_tokenizer_config['model_type']
113
+ visual_tokenizer_config.pop('model_type')
114
+ visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
115
+ self.visual_tokenizer_config = visual_tokenizer_config
116
+ self.multimodal_max_length = multimodal_max_length
117
+ self.hidden_size = hidden_size
118
+ self.conversation_formatter_class = conversation_formatter_class
119
+
120
+
121
+ # ----------------------------------------------------------------------
122
+ # Conversation Formatter
123
+ # ----------------------------------------------------------------------
124
+ class ConversationFormatter(ABC):
125
+ support_tokenizer_types = None
126
+
127
+ def __init__(self, tokenizer):
128
+ tokenizer_type = type(tokenizer).__name__
129
+ assert tokenizer_type in self.support_tokenizer_types, \
130
+ (f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`,'
131
+ f' but got `{tokenizer_type}`')
132
+ self.tokenizer = tokenizer
133
+ self.image_symbol = IMAGE_TOKEN
134
+ self.image_token_index = IMAGE_TOKEN_INDEX
135
+ self.ignore_index = IGNORE_INDEX
136
+
137
+ def _tokenize_with_image_symbol(self, text):
138
+ text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
139
+ text.split(self.image_symbol)]
140
+ token_ids = []
141
+ num_chuck = len(text_chunks)
142
+ for i, chunk in enumerate(text_chunks):
143
+ token_ids.extend(chunk)
144
+ if i < num_chuck - 1:
145
+ token_ids.append(self.image_token_index)
146
+ return token_ids
147
+
148
+ @abstractmethod
149
+ def format(self, conversations: List[Dict], generation_preface=None):
150
+ pass
151
+
152
+ @abstractmethod
153
+ def format_query(self, query, generation_preface=""):
154
+ pass
155
+
156
+
157
+ class QwenConversationFormatter(ConversationFormatter):
158
+ support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast']
159
+
160
+ def __init__(self, tokenizer):
161
+ super().__init__(tokenizer)
162
+ self.from2role = {
163
+ "system": "<|im_start|>system\n",
164
+ "human": "<|im_start|>user\n",
165
+ "gpt": "<|im_start|>assistant\n",
166
+ }
167
+ self.gpt_token_num = None
168
+ self.im_end = "<|im_end|>\n"
169
+ self.default_system_prompt = "You are a helpful assistant."
170
+
171
+ def format(self, conversations: List[Dict], generation_preface=None):
172
+ if self.gpt_token_num is None:
173
+ self.gpt_token_num = len(
174
+ self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
175
+
176
+ if conversations[0]["from"] != "system":
177
+ conversations.insert(0, {
178
+ "from": "system",
179
+ "value": self.default_system_prompt
180
+ })
181
+
182
+ if generation_preface is not None:
183
+ conversations.append({
184
+ "from": "gpt",
185
+ "value": generation_preface
186
+ })
187
+
188
+ prompt = ""
189
+ input_ids = []
190
+ labels = []
191
+ num_conversation = len(conversations)
192
+ for i, conversation in enumerate(conversations):
193
+ frm = conversation["from"]
194
+ role = self.from2role[frm]
195
+ message = conversation["value"]
196
+ text = role + message
197
+ if i < num_conversation - 1 or generation_preface is None:
198
+ text += self.im_end
199
+ prompt += text
200
+ token_ids = self._tokenize_with_image_symbol(text)
201
+ input_ids.extend(token_ids)
202
+ label_ids = [self.ignore_index] * len(token_ids)
203
+ if frm == "gpt" and generation_preface is None:
204
+ # learning `\n` following `im_end` is meaningless, so the last `\n` token is ignored in label
205
+ label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1]
206
+ labels.extend(label_ids)
207
+
208
+ assert self._tokenize_with_image_symbol(prompt) == input_ids
209
+ assert len(input_ids) == len(labels)
210
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
211
+ labels = torch.tensor(labels, dtype=torch.long)
212
+
213
+ return prompt, input_ids, labels
214
+
215
+ def format_query(self, query, generation_preface=""):
216
+ prompt, input_ids, _ = self.format([{
217
+ "from": "human",
218
+ "value": query
219
+ }], generation_preface=generation_preface)
220
+
221
+ return prompt, input_ids
222
+
223
+
224
+ class Llama3ConversationFormatter(ConversationFormatter):
225
+ support_tokenizer_types = ['PreTrainedTokenizerFast']
226
+
227
+ def __init__(self, tokenizer):
228
+ super().__init__(tokenizer)
229
+ self.from2role = {
230
+ "system": "<|start_header_id|>system<|end_header_id|>\n\n",
231
+ "human": "<|start_header_id|>user<|end_header_id|>\n\n",
232
+ "gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
233
+ }
234
+ self.gpt_token_num = None
235
+ self.im_end = "<|eot_id|>"
236
+ self.default_system_prompt = "You are a helpful and honest multimodal assistant."
237
+ self.bos_token = "<|begin_of_text|>"
238
+ self.bos_token_ids = None
239
+
240
+ def format(self, conversations: List[Dict], generation_preface=None):
241
+ if self.gpt_token_num is None:
242
+ self.gpt_token_num = len(
243
+ self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
244
+
245
+ if self.bos_token_ids is None:
246
+ self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
247
+
248
+ if conversations[0]["from"] != "system":
249
+ conversations.insert(0, {
250
+ "from": "system",
251
+ "value": self.default_system_prompt
252
+ })
253
+
254
+ if generation_preface is not None:
255
+ conversations.append({
256
+ "from": "gpt",
257
+ "value": generation_preface
258
+ })
259
+
260
+ prompt = "" + self.bos_token
261
+ input_ids = [] + self.bos_token_ids
262
+ labels = [] + [IGNORE_INDEX] * len(input_ids)
263
+ num_conversation = len(conversations)
264
+ for i, conversation in enumerate(conversations):
265
+ frm = conversation["from"]
266
+ role = self.from2role[frm]
267
+ message = conversation["value"].strip()
268
+ text = role + message
269
+ if i < num_conversation - 1 or generation_preface is None:
270
+ text += self.im_end
271
+ prompt += text
272
+ token_ids = self._tokenize_with_image_symbol(text)
273
+ input_ids.extend(token_ids)
274
+ label_ids = [self.ignore_index] * len(token_ids)
275
+ if frm == "gpt":
276
+ label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
277
+ labels.extend(label_ids)
278
+
279
+ assert self._tokenize_with_image_symbol(prompt) == input_ids
280
+ assert len(input_ids) == len(labels)
281
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
282
+ labels = torch.tensor(labels, dtype=torch.long)
283
+
284
+ return prompt, input_ids, labels
285
+
286
+ def format_query(self, query, generation_preface=""):
287
+ prompt, input_ids, _ = self.format([{
288
+ "from": "human",
289
+ "value": query
290
+ }], generation_preface=generation_preface)
291
+
292
+ return prompt, input_ids
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128009
7
+ ],
8
+ "max_length": 4096,
9
+ "multimodal_max_length": 8192,
10
+ "temperature": 0.6,
11
+ "top_p": 0.9,
12
+ "transformers_version": "4.42.4"
13
+ }
modeling_ovis.py ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from importlib import import_module
3
+ from typing import List, Callable, Union, Optional
4
+
5
+ import PIL.Image
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import LongTensor, IntTensor, Tensor
9
+ from transformers import CLIPImageProcessor, CLIPVisionModel, SiglipImageProcessor, SiglipVisionModel
10
+ from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
11
+ from transformers.generation.utils import GenerateOutput
12
+
13
+ from .configuration_ovis import BaseVisualTokenizerConfig, ClipVisualTokenizerConfig, SiglipVisualTokenizerConfig
14
+ from .configuration_ovis import OvisConfig, ConversationFormatter, IGNORE_INDEX, IMAGE_TOKEN_INDEX
15
+
16
+
17
+ # ----------------------------------------------------------------------
18
+ # Visual Tokenizer
19
+ # ----------------------------------------------------------------------
20
+ class BaseVisualTokenizer(PreTrainedModel):
21
+ base_model_prefix = "backbone"
22
+ main_input_name = None
23
+ _image_processor_class = None
24
+ _image_processor_kwargs = {}
25
+ _backbone_class = None
26
+ _backbone_name_or_path = None
27
+
28
+ def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
29
+ super().__init__(config, *inputs, **kwargs)
30
+ if kwargs.get('train_from_scratch'):
31
+ self.image_processor = self._image_processor_class.from_pretrained(
32
+ self._backbone_name_or_path, **self._image_processor_kwargs)
33
+ self.backbone = self._backbone_class.from_pretrained(
34
+ self._backbone_name_or_path, **self.config.backbone_kwargs)
35
+ self.config.backbone_config = self.backbone.config
36
+ else:
37
+ self.image_processor = AutoImageProcessor.from_pretrained(
38
+ kwargs['image_processor_name_or_path'])
39
+ self.backbone = AutoModel.from_config(self.config.backbone_config)
40
+ self.head = None
41
+
42
+ assert all((self.image_processor.do_resize,
43
+ not getattr(self.image_processor, 'do_center_crop', False),
44
+ self.image_processor.do_rescale,
45
+ self.image_processor.do_normalize
46
+ )), f"image_processor `{self.image_processor}` is not supported currently"
47
+
48
+ def get_backbone(self):
49
+ return self.backbone
50
+
51
+ def get_image_processor(self):
52
+ return self.image_processor
53
+
54
+ def get_zero_pixel_values(self, n=1):
55
+ height, width = self.get_image_size()
56
+ if self.config.hd_booster is None:
57
+ return torch.zeros(n, 3, height, width)
58
+ elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
59
+ return torch.zeros(n, 3 * 5, height, width)
60
+ else:
61
+ raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
62
+
63
+ def get_head(self):
64
+ return self.head
65
+
66
+ def get_image_size(self):
67
+ raise NotImplementedError
68
+
69
+ def preprocess_image(self, image: PIL.Image.Image, convert_to_rgb=True):
70
+ def _preprocess(img: PIL.Image.Image):
71
+ # first resize and preprocess
72
+ sides = self.get_image_size()
73
+ if sides[0] != sides[1]:
74
+ raise ValueError('get_image_size() returns non-square size')
75
+ side = sides[0]
76
+
77
+ w, h = img.size
78
+ if w == h:
79
+ new_width = new_height = side
80
+ elif w > h:
81
+ new_width = side
82
+ new_height = int(h / w * new_width)
83
+ else:
84
+ new_height = side
85
+ new_width = int(w / h * new_height)
86
+ new_size = dict(height=new_height, width=new_width)
87
+ pixel_values = self.image_processor.preprocess(
88
+ img, size=new_size, return_tensors='pt')['pixel_values']
89
+
90
+ # then pad to square
91
+ square_values = torch.zeros(
92
+ [1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
93
+ new_height, new_width = pixel_values.shape[2:]
94
+ if new_height == new_width:
95
+ square_values[:, :, :, :] = pixel_values
96
+ elif new_height > new_width:
97
+ from_index = (side - new_width) // 2
98
+ square_values[:, :, :, from_index:from_index + new_width] = pixel_values
99
+ else:
100
+ from_index = (side - new_height) // 2
101
+ square_values[:, :, from_index:from_index + new_height, :] = pixel_values
102
+
103
+ return square_values
104
+
105
+ if convert_to_rgb and image.mode != 'RGB':
106
+ image = image.convert('RGB')
107
+
108
+ if self.config.hd_booster is None:
109
+ return _preprocess(image) # [1, 3, side, side]
110
+ elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
111
+ width, height = image.size
112
+ is_low_resolution = (height < self.get_image_size()[0] * 1.5 or
113
+ width < self.get_image_size()[1] * 1.5)
114
+ if self.config.hd_booster == 's2wrapper-adaptive' and is_low_resolution:
115
+ values = self.get_zero_pixel_values() + torch.inf
116
+ values[0][:3] = _preprocess(image)[0]
117
+ else:
118
+ center_x, center_y = width // 2, height // 2
119
+ image_top_left = image.crop((0, 0, center_x, center_y))
120
+ image_top_right = image.crop((center_x, 0, width, center_y))
121
+ image_bottom_left = image.crop((0, center_y, center_x, height))
122
+ image_bottom_right = image.crop((center_x, center_y, width, height))
123
+ imgs = [image, image_top_left, image_top_right, image_bottom_left, image_bottom_right]
124
+ values = torch.cat([_preprocess(img) for img in imgs], dim=1)
125
+ return values # [1, 3*5, side, side]
126
+ else:
127
+ raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
128
+
129
+ def get_backbone_layer(self, index):
130
+ return self.backbone.vision_model.encoder.layers[index]
131
+
132
+ def tokenize(self, logits):
133
+ def st_argmax(y_soft, dim): # straight-through softmax
134
+ index = y_soft.max(dim, keepdim=True)[1]
135
+ y_hard = torch.zeros_like(
136
+ y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
137
+ ret = y_hard - y_soft.detach() + y_soft
138
+ return ret
139
+
140
+ if self.config.tokenize_function == 'softmax':
141
+ tokens = F.softmax(logits, dim=-1)
142
+ elif self.config.tokenize_function == 'gumbel_argmax':
143
+ tokens = F.gumbel_softmax(logits, tau=self.config.tau, hard=True)
144
+ elif self.config.tokenize_function == 'st_argmax':
145
+ tokens = st_argmax(logits, dim=-1)
146
+ else:
147
+ raise ValueError(
148
+ f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax,'
149
+ f' but got {self.config.tokenize_function}')
150
+ return tokens
151
+
152
+
153
+ class ClipVisualTokenizer(BaseVisualTokenizer):
154
+ config_class = ClipVisualTokenizerConfig
155
+ supports_gradient_checkpointing = True
156
+ _no_split_modules = ["CLIPEncoderLayer"]
157
+ _image_processor_class = CLIPImageProcessor
158
+ _image_processor_kwargs = dict(do_center_crop=False)
159
+ _backbone_class = CLIPVisionModel
160
+ _backbone_name_or_path = "openai/clip-vit-large-patch14-336"
161
+
162
+ def __init__(self, config: ClipVisualTokenizerConfig = None, *inputs, **kwargs):
163
+ super().__init__(config, *inputs, **kwargs)
164
+ head_dim = self.config.vocab_size
165
+ if self.config.use_indicators:
166
+ head_dim -= 2 # reserved for two image indicator tokens
167
+ if self.config.hd_booster is None:
168
+ self.head = torch.nn.Sequential(
169
+ torch.nn.Linear(self.backbone.config.hidden_size, head_dim, bias=False),
170
+ torch.nn.LayerNorm(head_dim)
171
+ )
172
+ elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
173
+ self.head = torch.nn.Sequential(
174
+ torch.nn.Linear(self.backbone.config.hidden_size * 2, head_dim, bias=False),
175
+ torch.nn.LayerNorm(head_dim)
176
+ )
177
+ else:
178
+ raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
179
+
180
+ def get_image_size(self):
181
+ height = self.image_processor.crop_size["height"]
182
+ width = self.image_processor.crop_size["width"]
183
+ return height, width
184
+
185
+ def encode(self, pixel_values):
186
+ if self.config.hd_booster is None:
187
+ output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
188
+ features = output.hidden_states[-1]
189
+ if self.config.drop_cls_token:
190
+ features = features[:, 1:, :]
191
+ elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
192
+ n, c, side, _ = pixel_values.shape
193
+ if self.config.hd_booster == 's2wrapper-adaptive':
194
+ pixel_values_mask = torch.isinf(pixel_values) # [n, c, side, side]
195
+ pixel_values = torch.masked_fill(pixel_values, pixel_values_mask, 0.0)
196
+ pixel_values = pixel_values.reshape(n * 5, c // 5, side, side)
197
+ output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
198
+ features = output.hidden_states[-1]
199
+ if self.config.drop_cls_token:
200
+ features = features[:, 1:, :]
201
+ _, l, d = features.shape
202
+ features = features.reshape(n, 5, l, d)
203
+ features_overall = features[:, 0, :, :] # [n, l, d]
204
+ features_parts = features[:, 1:, :, :] # [n, 4, l, d]
205
+ sqrt_l = int(l ** 0.5)
206
+ assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
207
+ features_parts = features_parts.reshape(n, 4, sqrt_l, sqrt_l, d) # [n, 4, sqrt(l), sqrt(l), d]
208
+ features_top = torch.concat(
209
+ [features_parts[:, 0, :, :, :], features_parts[:, 1, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
210
+ features_bottom = torch.concat(
211
+ [features_parts[:, 2, :, :, :], features_parts[:, 3, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
212
+ features_merge = torch.concat([features_top, features_bottom], dim=-3) # [n, sqrt(l)*2, sqrt(l)*2, d]
213
+ features_pool = F.interpolate(
214
+ features_merge.permute(0, 3, 1, 2).to(torch.float32),
215
+ size=sqrt_l,
216
+ mode='area'
217
+ ) # [n, d, sqrt_l, sqrt_l]
218
+ features_pool = features_pool.flatten(2).permute(0, 2, 1).to(features.dtype) # [n, l, d]
219
+ if self.config.hd_booster == 's2wrapper-adaptive':
220
+ features_pool_mask = torch.unsqueeze(
221
+ torch.unsqueeze(pixel_values_mask[:, -1, -1, -1], dim=-1), dim=-1) # [n, 1, 1]
222
+ features_pool = torch.masked_fill(features_pool, features_pool_mask, 0.0)
223
+ features = torch.cat([features_overall, features_pool], dim=-1) # [n, l, 2*d]
224
+ else:
225
+ raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
226
+ return features
227
+
228
+ def forward(self, pixel_values) -> Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
229
+ features = self.encode(pixel_values)
230
+ logits = self.head(features)
231
+ tokens = self.tokenize(logits)
232
+ if self.config.use_indicators:
233
+ # tokens' shape is [BatchSize, #Token, VocabSize-2], so padding with [BatchSize, #Token, 2],
234
+ # after which, tokens' shape should become [BatchSize, #Token, VocabSize]
235
+ batch_size, token_len, _ = tokens.shape
236
+ padding_tensor = torch.zeros(
237
+ size=(batch_size, token_len, 2),
238
+ dtype=tokens.dtype,
239
+ device=tokens.device,
240
+ layout=tokens.layout,
241
+ requires_grad=False
242
+ )
243
+ tokens = torch.cat((tokens, padding_tensor), dim=2)
244
+
245
+ # adding indicator tokens, after which tokens' shape should become [BatchSize, 1+#Token+1, VocabSize]
246
+ begin_indicator = torch.zeros(
247
+ size=(batch_size, 1),
248
+ dtype=torch.long,
249
+ device=tokens.device,
250
+ requires_grad=False
251
+ ) + self.config.vocab_size - 2
252
+ begin_indicator_token = F.one_hot(
253
+ begin_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
254
+ end_indicator = torch.zeros(
255
+ size=(batch_size, 1),
256
+ dtype=torch.long,
257
+ device=tokens.device,
258
+ requires_grad=False
259
+ ) + self.config.vocab_size - 1
260
+ end_indicator_token = F.one_hot(
261
+ end_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
262
+ tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1)
263
+ return tokens
264
+
265
+
266
+ class SiglipVisualTokenizer(BaseVisualTokenizer):
267
+ config_class = SiglipVisualTokenizerConfig
268
+ supports_gradient_checkpointing = True
269
+ _no_split_modules = ["SiglipVisionTransformer"]
270
+ _image_processor_class = SiglipImageProcessor
271
+ _image_processor_kwargs = {}
272
+ _backbone_class = SiglipVisionModel
273
+ _backbone_name_or_path = "google/siglip-so400m-patch14-384"
274
+
275
+ def __init__(self, config: SiglipVisualTokenizerConfig = None, *inputs, **kwargs):
276
+ super().__init__(config, *inputs, **kwargs)
277
+ head_dim = self.config.vocab_size
278
+ if self.config.use_indicators:
279
+ head_dim -= 2 # reserved for two image indicator tokens
280
+ if self.config.hd_booster is None:
281
+ self.head = torch.nn.Sequential(
282
+ torch.nn.Linear(
283
+ self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride,
284
+ head_dim,
285
+ bias=False
286
+ ),
287
+ torch.nn.LayerNorm(head_dim)
288
+ )
289
+ elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
290
+ self.head = torch.nn.Sequential(
291
+ torch.nn.Linear(
292
+ self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride * 2,
293
+ head_dim,
294
+ bias=False
295
+ ),
296
+ torch.nn.LayerNorm(head_dim)
297
+ )
298
+ else:
299
+ raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
300
+
301
+ def get_image_size(self):
302
+ height = self.image_processor.size["height"]
303
+ width = self.image_processor.size["width"]
304
+ return height, width
305
+
306
+ def encode(self, pixel_values):
307
+ if self.config.hd_booster is None:
308
+ output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
309
+ features = output.hidden_states[-1]
310
+ if self.config.drop_cls_token:
311
+ features = features[:, 1:, :]
312
+ elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
313
+ n, c, side, _ = pixel_values.shape
314
+ if self.config.hd_booster == 's2wrapper-adaptive':
315
+ pixel_values_mask = torch.isinf(pixel_values) # [n, c, side, side]
316
+ pixel_values = torch.masked_fill(pixel_values, pixel_values_mask, 0.0)
317
+ pixel_values = pixel_values.reshape(n * 5, c // 5, side, side)
318
+ output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
319
+ features = output.hidden_states[-1]
320
+ if self.config.drop_cls_token:
321
+ features = features[:, 1:, :]
322
+ _, l, d = features.shape
323
+ features = features.reshape(n, 5, l, d)
324
+ features_overall = features[:, 0, :, :] # [n, l, d]
325
+ features_parts = features[:, 1:, :, :] # [n, 4, l, d]
326
+ sqrt_l = int(l ** 0.5)
327
+ assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
328
+ features_parts = features_parts.reshape(n, 4, sqrt_l, sqrt_l, d) # [n, 4, sqrt(l), sqrt(l), d]
329
+ features_top = torch.concat(
330
+ [features_parts[:, 0, :, :, :], features_parts[:, 1, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
331
+ features_bottom = torch.concat(
332
+ [features_parts[:, 2, :, :, :], features_parts[:, 3, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
333
+ features_merge = torch.concat([features_top, features_bottom], dim=-3) # [n, sqrt(l)*2, sqrt(l)*2, d]
334
+ features_pool = F.interpolate(
335
+ features_merge.permute(0, 3, 1, 2).to(torch.float32),
336
+ size=sqrt_l,
337
+ mode='area'
338
+ ) # [n, d, sqrt_l, sqrt_l]
339
+ features_pool = features_pool.flatten(2).permute(0, 2, 1).to(features.dtype) # [n, l, d]
340
+ if self.config.hd_booster == 's2wrapper-adaptive':
341
+ features_pool_mask = torch.unsqueeze(
342
+ torch.unsqueeze(pixel_values_mask[:, -1, -1, -1], dim=-1), dim=-1) # [n, 1, 1]
343
+ features_pool = torch.masked_fill(features_pool, features_pool_mask, 0.0)
344
+ features = torch.cat([features_overall, features_pool], dim=-1) # [n, l, 2*d]
345
+ else:
346
+ raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
347
+
348
+ # merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
349
+ # e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81
350
+ if self.config.hidden_stride > 1:
351
+ n, l, d = features.shape # this `d` maybe different from the above `d
352
+ sqrt_l = int(l ** 0.5)
353
+ assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
354
+ assert l % (self.config.hidden_stride ** 2) == 0, \
355
+ "The token sequence length should be divisible by `hidden_stride**2`."
356
+ features = features.reshape(n, sqrt_l, sqrt_l, d)
357
+ features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
358
+ sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
359
+ features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
360
+ features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
361
+ features = features.reshape(n, l // (self.config.hidden_stride * self.config.hidden_stride),
362
+ self.config.hidden_stride * self.config.hidden_stride * d)
363
+
364
+ return features
365
+
366
+ def forward(self, pixel_values) -> Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
367
+ features = self.encode(pixel_values)
368
+ logits = self.head(features)
369
+ tokens = self.tokenize(logits)
370
+ if self.config.use_indicators:
371
+ # tokens' shape is [BatchSize, #Token, VocabSize-2], so padding with [BatchSize, #Token, 2], after
372
+ # which, tokens' shape should become [BatchSize, #Token, VocabSize]
373
+ batch_size, token_len, _ = tokens.shape
374
+ padding_tensor = torch.zeros(
375
+ size=(batch_size, token_len, 2),
376
+ dtype=tokens.dtype,
377
+ device=tokens.device,
378
+ layout=tokens.layout,
379
+ requires_grad=False
380
+ )
381
+ tokens = torch.cat((tokens, padding_tensor), dim=2)
382
+
383
+ # adding indicator tokens, after which tokens' shape should become [BatchSize, 1+#Token+1, VocabSize]
384
+ begin_indicator = torch.zeros(
385
+ size=(batch_size, 1),
386
+ dtype=torch.long,
387
+ device=tokens.device,
388
+ requires_grad=False
389
+ ) + self.config.vocab_size - 2
390
+ begin_indicator_token = F.one_hot(
391
+ begin_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
392
+ end_indicator = torch.zeros(
393
+ size=(batch_size, 1),
394
+ dtype=torch.long,
395
+ device=tokens.device,
396
+ requires_grad=False
397
+ ) + self.config.vocab_size - 1
398
+ end_indicator_token = F.one_hot(
399
+ end_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
400
+ tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1)
401
+ return tokens
402
+
403
+
404
+ AutoModel.register(ClipVisualTokenizerConfig, ClipVisualTokenizer)
405
+ AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
406
+
407
+
408
+ # ----------------------------------------------------------------------
409
+ # Ovis
410
+ # ----------------------------------------------------------------------
411
+ class VisualEmbedding(torch.nn.Embedding):
412
+ def forward(self, input: Tensor) -> Tensor:
413
+ if any((isinstance(input, LongTensor), isinstance(input, IntTensor))):
414
+ return super().forward(input)
415
+ return torch.matmul(input, self.weight)
416
+
417
+
418
+ class OvisPreTrainedModel(PreTrainedModel):
419
+ config_class = OvisConfig
420
+ base_model_prefix = "ovis"
421
+
422
+
423
+ class Ovis(OvisPreTrainedModel):
424
+
425
+ def __init__(self, config: OvisConfig, *inputs, **kwargs):
426
+ super().__init__(config, *inputs, **kwargs)
427
+ self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
428
+ assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
429
+ self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
430
+ self.visual_tokenizer = AutoModel.from_config(
431
+ self.config.visual_tokenizer_config,
432
+ image_processor_name_or_path=self.config.name_or_path
433
+ )
434
+ self.vte = VisualEmbedding(
435
+ self.config.visual_tokenizer_config.vocab_size,
436
+ self.config.hidden_size,
437
+ device=self.visual_tokenizer.device,
438
+ dtype=self.visual_tokenizer.dtype
439
+ )
440
+
441
+ def _merge_modules(modules_list: tuple):
442
+ merged_modules = []
443
+ for modules in modules_list:
444
+ merged_modules.extend(modules if modules else [])
445
+ return merged_modules
446
+
447
+ self._no_split_modules = _merge_modules(
448
+ (self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
449
+ self._skip_keys_device_placement = self.llm._skip_keys_device_placement
450
+ self._keep_in_fp32_modules = _merge_modules(
451
+ (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
452
+ self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
453
+ self.supports_gradient_checkpointing = all(
454
+ (self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
455
+ self._supports_flash_attn_2 = all(
456
+ (self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
457
+ self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
458
+
459
+ def get_text_tokenizer(self):
460
+ return self.text_tokenizer
461
+
462
+ def get_visual_tokenizer(self):
463
+ return self.visual_tokenizer
464
+
465
+ def get_llm(self):
466
+ return self.llm
467
+
468
+ def get_vte(self):
469
+ return self.vte
470
+
471
+ def get_wte(self):
472
+ return self.llm.get_input_embeddings()
473
+
474
+ def get_conversation_formatter(self) -> ConversationFormatter:
475
+ if getattr(self, 'conversation_formatter', None) is None:
476
+ self.conversation_formatter = getattr(
477
+ import_module(".configuration_ovis", __package__),
478
+ self.config.conversation_formatter_class
479
+ )(self.text_tokenizer)
480
+ return self.conversation_formatter
481
+
482
+ def forward(
483
+ self,
484
+ input_ids: torch.Tensor,
485
+ attention_mask: torch.Tensor,
486
+ labels: Optional[torch.Tensor],
487
+ pixel_values: List[Optional[torch.Tensor]],
488
+ **kwargs
489
+ ):
490
+ assert self.training, "`forward` can only be used in training. For inference, use `generate`."
491
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
492
+ text_input_ids=input_ids,
493
+ text_attention_masks=attention_mask,
494
+ text_labels=labels,
495
+ pixel_values=pixel_values
496
+ )
497
+ return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
498
+
499
+ def merge_multimodal(
500
+ self,
501
+ text_input_ids: torch.Tensor,
502
+ text_attention_masks: torch.Tensor,
503
+ text_labels: Optional[torch.Tensor],
504
+ pixel_values: List[Optional[torch.Tensor]]
505
+ ):
506
+ input_device = text_input_ids.device
507
+ if self.training:
508
+ # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
509
+ # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
510
+ # (see below in this function); so, the gradient will not be affected.
511
+ num_images = [x.shape[0] for x in pixel_values]
512
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
513
+ visual_embeds = torch.split(
514
+ self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
515
+ split_size_or_sections=num_images,
516
+ dim=0
517
+ )
518
+ visual_input_ids = torch.split(
519
+ torch.argmax(visual_tokens, dim=-1).to(device=input_device),
520
+ split_size_or_sections=num_images,
521
+ dim=0
522
+ )
523
+ visual_labels = [
524
+ torch.full(
525
+ x.shape, IGNORE_INDEX, dtype=torch.long, device=input_device
526
+ ) for x in visual_input_ids
527
+ ]
528
+ else:
529
+ # When inference, sample can include only text with `None` pixel_value
530
+ num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
531
+ if sum(num_images) > 0:
532
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
533
+ visual_embeds = torch.split(
534
+ self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
535
+ split_size_or_sections=num_images,
536
+ dim=0
537
+ )
538
+ visual_input_ids = torch.split(
539
+ torch.argmax(visual_tokens, dim=-1).to(device=input_device),
540
+ split_size_or_sections=num_images,
541
+ dim=0
542
+ )
543
+ visual_labels = [
544
+ torch.full(
545
+ x.shape, IGNORE_INDEX, dtype=torch.long, device=input_device
546
+ ) for x in visual_input_ids
547
+ ]
548
+ else:
549
+ # just placeholders
550
+ visual_embeds = [None] * len(num_images)
551
+ visual_input_ids = [None] * len(num_images)
552
+ visual_labels = [None] * len(num_images)
553
+ # just placeholders
554
+ text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=input_device)
555
+
556
+ input_embeds = []
557
+ attention_masks = []
558
+ labels = []
559
+ for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
560
+ text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
561
+ ):
562
+ image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX)
563
+ text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0))
564
+ image_token_positions = torch.where(image_token_mask)[0].tolist()
565
+ if len(image_token_positions) > 0:
566
+ input_embed_parts = []
567
+ attention_mask_parts = []
568
+ label_parts = []
569
+ prev_image_token_position = -1
570
+ for index, image_token_position in enumerate(image_token_positions):
571
+ input_embed_parts.append(
572
+ text_embed[prev_image_token_position + 1:image_token_position, :])
573
+ label_parts.append(
574
+ text_label[prev_image_token_position + 1:image_token_position])
575
+ attention_mask_parts.append(
576
+ text_attention_mask[prev_image_token_position + 1:image_token_position])
577
+ input_embed_parts.append(visual_embed[index])
578
+ attention_mask_parts.append(
579
+ torch.ones_like(visual_label[index], dtype=torch.bool))
580
+ label_parts.append(visual_label[index])
581
+ prev_image_token_position = image_token_position
582
+ if prev_image_token_position + 1 < text_input_id.shape[0]:
583
+ input_embed_parts.append(
584
+ text_embed[prev_image_token_position + 1:, :])
585
+ attention_mask_parts.append(
586
+ text_attention_mask[prev_image_token_position + 1:])
587
+ label_parts.append(
588
+ text_label[prev_image_token_position + 1:])
589
+ input_embed = torch.cat(input_embed_parts, dim=0)
590
+ attention_mask = torch.cat(attention_mask_parts, dim=0)
591
+ label = torch.cat(label_parts, dim=0)
592
+ else:
593
+ input_embed = text_embed
594
+ attention_mask = text_attention_mask
595
+ label = text_label
596
+ if self.training:
597
+ # Make visual_embed involved in the backward graph,
598
+ # to be compatible with deepspeed zero and ddp.
599
+ input_embed += torch.sum(visual_embed * 0.0)
600
+ input_embeds.append(input_embed)
601
+ attention_masks.append(attention_mask)
602
+ labels.append(label)
603
+
604
+ batch_input_embeds = torch.nn.utils.rnn.pad_sequence(
605
+ input_embeds, batch_first=True, padding_value=0.0)[:, :self.config.multimodal_max_length, :]
606
+ batch_attention_mask = torch.nn.utils.rnn.pad_sequence(
607
+ attention_masks, batch_first=True, padding_value=False)[:, :self.config.multimodal_max_length]
608
+ batch_labels = torch.nn.utils.rnn.pad_sequence(
609
+ labels, batch_first=True, padding_value=IGNORE_INDEX)[:, :self.config.multimodal_max_length]
610
+
611
+ return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
612
+
613
+ def save_pretrained(
614
+ self,
615
+ save_directory: Union[str, os.PathLike],
616
+ is_main_process: bool = True,
617
+ state_dict: Optional[dict] = None,
618
+ save_function: Callable = torch.save,
619
+ push_to_hub: bool = False,
620
+ max_shard_size: Union[int, str] = "5GB",
621
+ safe_serialization: bool = True,
622
+ variant: Optional[str] = None,
623
+ token: Optional[Union[str, bool]] = None,
624
+ save_peft_format: bool = True,
625
+ **kwargs
626
+ ):
627
+ super().save_pretrained(save_directory,
628
+ is_main_process=is_main_process,
629
+ state_dict=state_dict,
630
+ save_function=save_function,
631
+ safe_serialization=safe_serialization)
632
+ self.get_text_tokenizer().save_pretrained(save_directory)
633
+ self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
634
+
635
+ # uncomment the following will additionally save a separate visual tokenizer
636
+ # visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
637
+ # self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
638
+ # is_main_process=is_main_process,
639
+ # state_dict=None,
640
+ # save_function=save_function,
641
+ # safe_serialization=safe_serialization)
642
+ # self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)
643
+
644
+ # TODO: support batch generation
645
+ def generate(
646
+ self,
647
+ inputs: Optional[torch.Tensor] = None,
648
+ **kwargs
649
+ ) -> Union[GenerateOutput, torch.LongTensor]:
650
+ assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`'
651
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
652
+ text_input_ids=inputs,
653
+ text_attention_masks=kwargs.pop('attention_mask'),
654
+ text_labels=None,
655
+ pixel_values=kwargs.pop('pixel_values')
656
+ )
657
+ if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
658
+ kwargs['past_key_values'] = self.get_llm()._get_cache(
659
+ 'hybrid', getattr(kwargs, "num_beams", 1), kwargs['max_new_tokens'] + inputs_embeds.shape[-2]
660
+ )
661
+ self.get_llm()._supports_cache_class = True
662
+ kwargs['cache_implementation'] = None
663
+
664
+ return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 384,
22
+ "width": 384
23
+ }
24
+ }
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51746afd49f62a19dea005be6b449906e54c6cd820526d718e03a7f391acd295
3
+ size 4976717634
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6290b6257c5125d2c4a1beac3e5692d8f3b84300ad0dc0919d6f9a41bc28284
3
+ size 4999826694
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f09a8ff71a9680b1f80053b8ab3c0db736f3cdf206a2a660d71363a4b4a22f
3
+ size 4915939210
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff367cb3f86b688b0c40534a8b91c674ca2a162fe083c222748df6a48e5148d4
3
+ size 3702995441
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,750 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18595210360
4
+ },
5
+ "weight_map": {
6
+ "llm.lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "llm.model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "llm.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "llm.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "llm.model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "llm.model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "llm.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "llm.model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
14
+ "llm.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "llm.model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "llm.model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
17
+ "llm.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
18
+ "llm.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
19
+ "llm.model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "llm.model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "llm.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
22
+ "llm.model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "llm.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "llm.model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
25
+ "llm.model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "llm.model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
27
+ "llm.model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
28
+ "llm.model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
29
+ "llm.model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
30
+ "llm.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
31
+ "llm.model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
32
+ "llm.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
33
+ "llm.model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
34
+ "llm.model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
35
+ "llm.model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
36
+ "llm.model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
37
+ "llm.model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
38
+ "llm.model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "llm.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
40
+ "llm.model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
41
+ "llm.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "llm.model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
43
+ "llm.model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "llm.model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "llm.model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "llm.model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "llm.model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "llm.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "llm.model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
50
+ "llm.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "llm.model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "llm.model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
53
+ "llm.model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
54
+ "llm.model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
55
+ "llm.model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "llm.model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
57
+ "llm.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
58
+ "llm.model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "llm.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "llm.model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
61
+ "llm.model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
62
+ "llm.model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
63
+ "llm.model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "llm.model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
65
+ "llm.model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "llm.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
67
+ "llm.model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "llm.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
69
+ "llm.model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "llm.model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "llm.model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
72
+ "llm.model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
73
+ "llm.model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
74
+ "llm.model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "llm.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
76
+ "llm.model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
77
+ "llm.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "llm.model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
79
+ "llm.model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "llm.model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "llm.model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "llm.model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "llm.model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "llm.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "llm.model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
86
+ "llm.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "llm.model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "llm.model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
89
+ "llm.model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
90
+ "llm.model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
91
+ "llm.model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "llm.model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
93
+ "llm.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
94
+ "llm.model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "llm.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "llm.model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
97
+ "llm.model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
98
+ "llm.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
99
+ "llm.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "llm.model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
101
+ "llm.model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "llm.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
103
+ "llm.model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "llm.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
105
+ "llm.model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "llm.model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "llm.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
108
+ "llm.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
109
+ "llm.model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "llm.model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "llm.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
112
+ "llm.model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
113
+ "llm.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "llm.model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
115
+ "llm.model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "llm.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
117
+ "llm.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
118
+ "llm.model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
119
+ "llm.model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
120
+ "llm.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
121
+ "llm.model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
122
+ "llm.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
123
+ "llm.model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
124
+ "llm.model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
125
+ "llm.model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
126
+ "llm.model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
127
+ "llm.model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "llm.model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
129
+ "llm.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
130
+ "llm.model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "llm.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "llm.model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
133
+ "llm.model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
134
+ "llm.model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
135
+ "llm.model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
136
+ "llm.model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
137
+ "llm.model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
138
+ "llm.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
139
+ "llm.model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
140
+ "llm.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
141
+ "llm.model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
142
+ "llm.model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
143
+ "llm.model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
144
+ "llm.model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
145
+ "llm.model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
146
+ "llm.model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
147
+ "llm.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
148
+ "llm.model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
149
+ "llm.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
150
+ "llm.model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
151
+ "llm.model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
152
+ "llm.model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
153
+ "llm.model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
154
+ "llm.model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
155
+ "llm.model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
156
+ "llm.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
157
+ "llm.model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
158
+ "llm.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
159
+ "llm.model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
160
+ "llm.model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
161
+ "llm.model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
162
+ "llm.model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
163
+ "llm.model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
164
+ "llm.model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
165
+ "llm.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
166
+ "llm.model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "llm.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "llm.model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
169
+ "llm.model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
170
+ "llm.model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
171
+ "llm.model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "llm.model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
173
+ "llm.model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "llm.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
175
+ "llm.model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "llm.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
177
+ "llm.model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "llm.model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "llm.model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
180
+ "llm.model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
181
+ "llm.model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
182
+ "llm.model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "llm.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
184
+ "llm.model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
185
+ "llm.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "llm.model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
187
+ "llm.model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "llm.model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "llm.model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "llm.model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "llm.model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "llm.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "llm.model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
194
+ "llm.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "llm.model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "llm.model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
197
+ "llm.model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
198
+ "llm.model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
199
+ "llm.model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "llm.model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
201
+ "llm.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
202
+ "llm.model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "llm.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "llm.model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
205
+ "llm.model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
206
+ "llm.model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
207
+ "llm.model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "llm.model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
209
+ "llm.model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "llm.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
211
+ "llm.model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "llm.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
213
+ "llm.model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "llm.model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "llm.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
216
+ "llm.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
217
+ "llm.model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
218
+ "llm.model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
219
+ "llm.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
220
+ "llm.model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
221
+ "llm.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
222
+ "llm.model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
223
+ "llm.model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
224
+ "llm.model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "llm.model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "llm.model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "llm.model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "llm.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "llm.model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
230
+ "llm.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "llm.model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "llm.model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
233
+ "llm.model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
234
+ "llm.model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
235
+ "llm.model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "llm.model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
237
+ "llm.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
238
+ "llm.model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "llm.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "llm.model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
241
+ "llm.model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
242
+ "llm.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
243
+ "llm.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
244
+ "llm.model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
245
+ "llm.model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
246
+ "llm.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
247
+ "llm.model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
248
+ "llm.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
249
+ "llm.model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
250
+ "llm.model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
251
+ "llm.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
252
+ "llm.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
253
+ "llm.model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
254
+ "llm.model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
255
+ "llm.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
256
+ "llm.model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
257
+ "llm.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
258
+ "llm.model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
259
+ "llm.model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
260
+ "llm.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
261
+ "llm.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
262
+ "llm.model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
263
+ "llm.model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
264
+ "llm.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
265
+ "llm.model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
266
+ "llm.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
267
+ "llm.model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
268
+ "llm.model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
269
+ "llm.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
270
+ "llm.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
271
+ "llm.model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "llm.model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
273
+ "llm.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
274
+ "llm.model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
275
+ "llm.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
276
+ "llm.model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
277
+ "llm.model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
278
+ "llm.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
279
+ "llm.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
280
+ "llm.model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
281
+ "llm.model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
282
+ "llm.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
283
+ "llm.model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
284
+ "llm.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
285
+ "llm.model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
286
+ "llm.model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
287
+ "llm.model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
288
+ "llm.model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
289
+ "llm.model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
290
+ "llm.model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
291
+ "llm.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
292
+ "llm.model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
293
+ "llm.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
294
+ "llm.model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
295
+ "llm.model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
296
+ "llm.model.norm.weight": "pytorch_model-00004-of-00004.bin",
297
+ "visual_tokenizer.backbone.vision_model.embeddings.patch_embedding.bias": "pytorch_model-00004-of-00004.bin",
298
+ "visual_tokenizer.backbone.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00004-of-00004.bin",
299
+ "visual_tokenizer.backbone.vision_model.embeddings.position_embedding.weight": "pytorch_model-00004-of-00004.bin",
300
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
301
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
302
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
303
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
304
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
305
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
306
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
307
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
308
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
309
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
310
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
311
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
312
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
313
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
314
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
315
+ "visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
316
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
317
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
318
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
319
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
320
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
321
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
322
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
323
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
324
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
325
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
326
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
327
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
328
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
329
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
330
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
331
+ "visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
332
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
333
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
334
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
335
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
336
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
337
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
338
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
339
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
340
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
341
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
342
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
343
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
344
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
345
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
346
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
347
+ "visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
348
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
349
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
350
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
351
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
352
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
353
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
354
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
355
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
356
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
357
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
358
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
359
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
360
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
361
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
362
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
363
+ "visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
364
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
365
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
366
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
367
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
368
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
369
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
370
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
371
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
372
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
373
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
374
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
375
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
376
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
377
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
378
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
379
+ "visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
380
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
381
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
382
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
383
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
384
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
385
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
386
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
387
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
388
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
389
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
390
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
391
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
392
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
393
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
394
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
395
+ "visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
396
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
397
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
398
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
399
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
400
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
401
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
402
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
403
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
404
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
405
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
406
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
407
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
408
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
409
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
410
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
411
+ "visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
412
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
413
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
414
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
415
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
416
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
417
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
418
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
419
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
420
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
421
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
422
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
423
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
424
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
425
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
426
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
427
+ "visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
428
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
429
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
430
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
431
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
432
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
433
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
434
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
435
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
436
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
437
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
438
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
439
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
440
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
441
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
442
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
443
+ "visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
444
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
445
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
446
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
447
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
448
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
449
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
450
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
451
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
452
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
453
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
454
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
455
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
456
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
457
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
458
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
459
+ "visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
460
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
461
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
462
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
463
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
464
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
465
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
466
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
467
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
468
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
469
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
470
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
471
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
472
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
473
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
474
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
475
+ "visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
476
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
477
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
478
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
479
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
480
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
481
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
482
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
483
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
484
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
485
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
486
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
487
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
488
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
489
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
490
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
491
+ "visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
492
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
493
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
494
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
495
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
496
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
497
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
498
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
499
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
500
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
501
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
502
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
503
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
504
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
505
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
506
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
507
+ "visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
508
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
509
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
510
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
511
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
512
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
513
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
514
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
515
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
516
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
517
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
518
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
519
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
520
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
521
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
522
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
523
+ "visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
524
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
525
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
526
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
527
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
528
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
529
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
530
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
531
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
532
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
533
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
534
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
535
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
536
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
537
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
538
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
539
+ "visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
540
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
541
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
542
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
543
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
544
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
545
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
546
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
547
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
548
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
549
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
550
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
551
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
552
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
553
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
554
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
555
+ "visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
556
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
557
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
558
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
559
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
560
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
561
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
562
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
563
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
564
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
565
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
566
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
567
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
568
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
569
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
570
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
571
+ "visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
572
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
573
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
574
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
575
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
576
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
577
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
578
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
579
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
580
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
581
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
582
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
583
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
584
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
585
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
586
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
587
+ "visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
588
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
589
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
590
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
591
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
592
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
593
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
594
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
595
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
596
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
597
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
598
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
599
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
600
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
601
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
602
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
603
+ "visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
604
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
605
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
606
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
607
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
608
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
609
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
610
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
611
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
612
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
613
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
614
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
615
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
616
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
617
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
618
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
619
+ "visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
620
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
621
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
622
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
623
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
624
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
625
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
626
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
627
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
628
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
629
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
630
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
631
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
632
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
633
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
634
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
635
+ "visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
636
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
637
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
638
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
639
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
640
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
641
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
642
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
643
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
644
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
645
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
646
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
647
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
648
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
649
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
650
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
651
+ "visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
652
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
653
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
654
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
655
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
656
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
657
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
658
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
659
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
660
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
661
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
662
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
663
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
664
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
665
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
666
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
667
+ "visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
668
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
669
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
670
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
671
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
672
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
673
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
674
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
675
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
676
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
677
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
678
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
679
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
680
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
681
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
682
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
683
+ "visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
684
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
685
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
686
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
687
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
688
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
689
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
690
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
691
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
692
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
693
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
694
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
695
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
696
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
697
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
698
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
699
+ "visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
700
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
701
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
702
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
703
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
704
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
705
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
706
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
707
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
708
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
709
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
710
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
711
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
712
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
713
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
714
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
715
+ "visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
716
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
717
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
718
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
719
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
720
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
721
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
722
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
723
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
724
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
725
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
726
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
727
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
728
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
729
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
730
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
731
+ "visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
732
+ "visual_tokenizer.backbone.vision_model.head.attention.in_proj_bias": "pytorch_model-00004-of-00004.bin",
733
+ "visual_tokenizer.backbone.vision_model.head.attention.in_proj_weight": "pytorch_model-00004-of-00004.bin",
734
+ "visual_tokenizer.backbone.vision_model.head.attention.out_proj.bias": "pytorch_model-00004-of-00004.bin",
735
+ "visual_tokenizer.backbone.vision_model.head.attention.out_proj.weight": "pytorch_model-00004-of-00004.bin",
736
+ "visual_tokenizer.backbone.vision_model.head.layernorm.bias": "pytorch_model-00004-of-00004.bin",
737
+ "visual_tokenizer.backbone.vision_model.head.layernorm.weight": "pytorch_model-00004-of-00004.bin",
738
+ "visual_tokenizer.backbone.vision_model.head.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
739
+ "visual_tokenizer.backbone.vision_model.head.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
740
+ "visual_tokenizer.backbone.vision_model.head.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
741
+ "visual_tokenizer.backbone.vision_model.head.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
742
+ "visual_tokenizer.backbone.vision_model.head.probe": "pytorch_model-00004-of-00004.bin",
743
+ "visual_tokenizer.backbone.vision_model.post_layernorm.bias": "pytorch_model-00004-of-00004.bin",
744
+ "visual_tokenizer.backbone.vision_model.post_layernorm.weight": "pytorch_model-00004-of-00004.bin",
745
+ "visual_tokenizer.head.0.weight": "pytorch_model-00004-of-00004.bin",
746
+ "visual_tokenizer.head.1.bias": "pytorch_model-00004-of-00004.bin",
747
+ "visual_tokenizer.head.1.weight": "pytorch_model-00004-of-00004.bin",
748
+ "vte.weight": "pytorch_model-00004-of-00004.bin"
749
+ }
750
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 1000000000000000019884624838656,
2061
+ "pad_token": "<|end_of_text|>",
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }