runninglsy
commited on
Commit
·
578731e
1
Parent(s):
ee7e01b
initial commit
Browse files- README.md +98 -3
- config.json +243 -0
- configuration_ovis.py +292 -0
- generation_config.json +13 -0
- modeling_ovis.py +664 -0
- preprocessor_config.json +24 -0
- pytorch_model-00001-of-00004.bin +3 -0
- pytorch_model-00002-of-00004.bin +3 -0
- pytorch_model-00003-of-00004.bin +3 -0
- pytorch_model-00004-of-00004.bin +3 -0
- pytorch_model.bin.index.json +750 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2063 -0
README.md
CHANGED
@@ -1,3 +1,98 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- AIDC-AI/Ovis-dataset
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- MLLM
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
+
---
|
10 |
+
|
11 |
+
## Introduction
|
12 |
+
Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings. For a comprehensive introduction, please refer to [Ovis paper](https://arxiv.org/abs/2405.20797) and [Ovis GitHub](https://github.com/AIDC-AI/Ovis).
|
13 |
+
|
14 |
+
<div align="center">
|
15 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png" width="100%" />
|
16 |
+
</div>
|
17 |
+
|
18 |
+
## Model
|
19 |
+
As always, Ovis1.5 remains fully open-source: we release the [training datasets](https://huggingface.co/datasets/AIDC-AI/Ovis-dataset), [training & inference codes](https://github.com/AIDC-AI/Ovis), and [model weights](https://huggingface.co/AIDC-AI/Ovis1.5-Llama3-8B) for **reproducible transparency** and community collaboration.
|
20 |
+
|
21 |
+
| | MiniCPM-Llama3-V2.5 | Ovis1.5-Llama3-8B |
|
22 |
+
|:------------------|-------------------------------------------------------------------:|-------------------------------------------------------------------:|
|
23 |
+
| Training scripts | - | [Github](https://github.com/AIDC-AI/Ovis/tree/main/scripts/v1_5) |
|
24 |
+
| ViT | Siglip-400M | Siglip-400M |
|
25 |
+
| LLM | Llama3-8B-Instruct | Llama3-8B-Instruct |
|
26 |
+
| MMTBench-VAL | 57.6 | **60.7** |
|
27 |
+
| MMBench-EN-V1.1 | 74 | **78.2** |
|
28 |
+
| MMBench-CN-V1.1 | 70.1 | **75.2** |
|
29 |
+
| MMStar | 51.8 | **57.2** |
|
30 |
+
| MMMU-Val | 45.8 | **48.6** |
|
31 |
+
| MathVista-Mini | 54.3 | **62.4** |
|
32 |
+
| HallusionBenchAvg | 42.4 | **44.5** |
|
33 |
+
| AI2D | 78.4 | **82.5** |
|
34 |
+
| OCRBench | 725 | **743** |
|
35 |
+
| MMVet | **52.8** | 52.2 |
|
36 |
+
| RealWorldQA | 63.5 | **64.6** |
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
Below is a code snippet to run Ovis with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference).
|
40 |
+
```bash
|
41 |
+
pip install torch==2.1.0 transformers==4.42.4 deepspeed==0.14.0 pillow==10.3.0
|
42 |
+
```
|
43 |
+
```python
|
44 |
+
import torch
|
45 |
+
from PIL import Image
|
46 |
+
from transformers import AutoModelForCausalLM
|
47 |
+
|
48 |
+
# load model
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.5-Llama3-8B",
|
50 |
+
torch_dtype=torch.bfloat16,
|
51 |
+
multimodal_max_length=8192,
|
52 |
+
trust_remote_code=True).cuda()
|
53 |
+
text_tokenizer = model.get_text_tokenizer()
|
54 |
+
visual_tokenizer = model.get_visual_tokenizer()
|
55 |
+
conversation_formatter = model.get_conversation_formatter()
|
56 |
+
|
57 |
+
# enter image path and prompt
|
58 |
+
image_path = input("Enter image path: ")
|
59 |
+
image = Image.open(image_path)
|
60 |
+
text = input("Enter prompt: ")
|
61 |
+
query = f'<image>\n{text}'
|
62 |
+
prompt, input_ids = conversation_formatter.format_query(query)
|
63 |
+
input_ids = torch.unsqueeze(input_ids, dim=0).to(device=model.device)
|
64 |
+
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id).to(device=model.device)
|
65 |
+
pixel_values = [visual_tokenizer.preprocess_image(image).to(
|
66 |
+
dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
|
67 |
+
|
68 |
+
# generate output
|
69 |
+
with torch.inference_mode():
|
70 |
+
gen_kwargs = dict(
|
71 |
+
max_new_tokens=1024,
|
72 |
+
do_sample=False,
|
73 |
+
top_p=None,
|
74 |
+
top_k=None,
|
75 |
+
temperature=None,
|
76 |
+
repetition_penalty=None,
|
77 |
+
eos_token_id=model.generation_config.eos_token_id,
|
78 |
+
pad_token_id=text_tokenizer.pad_token_id,
|
79 |
+
use_cache=True
|
80 |
+
)
|
81 |
+
output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
|
82 |
+
output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
|
83 |
+
print(f'Output: {output}')
|
84 |
+
```
|
85 |
+
|
86 |
+
## Citation
|
87 |
+
If you find Ovis useful, please cite the paper
|
88 |
+
```
|
89 |
+
@article{lu2024ovis,
|
90 |
+
title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
|
91 |
+
author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
|
92 |
+
year={2024},
|
93 |
+
journal={arXiv:2405.20797}
|
94 |
+
}
|
95 |
+
```
|
96 |
+
|
97 |
+
## License
|
98 |
+
The project is licensed under the Apache 2.0 License and is restricted to uses that comply with the license agreements of Qwen, Llama3, Clip, and Siglip.
|
config.json
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Ovis"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_ovis.OvisConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_ovis.Ovis"
|
8 |
+
},
|
9 |
+
"conversation_formatter_class": "Llama3ConversationFormatter",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"llm_config": {
|
12 |
+
"_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": [
|
15 |
+
"LlamaForCausalLM"
|
16 |
+
],
|
17 |
+
"attention_bias": false,
|
18 |
+
"attention_dropout": 0.0,
|
19 |
+
"bad_words_ids": null,
|
20 |
+
"begin_suppress_tokens": null,
|
21 |
+
"bos_token_id": 128000,
|
22 |
+
"chunk_size_feed_forward": 0,
|
23 |
+
"cross_attention_hidden_size": null,
|
24 |
+
"decoder_start_token_id": null,
|
25 |
+
"diversity_penalty": 0.0,
|
26 |
+
"do_sample": false,
|
27 |
+
"early_stopping": false,
|
28 |
+
"encoder_no_repeat_ngram_size": 0,
|
29 |
+
"eos_token_id": 128001,
|
30 |
+
"exponential_decay_length_penalty": null,
|
31 |
+
"finetuning_task": null,
|
32 |
+
"forced_bos_token_id": null,
|
33 |
+
"forced_eos_token_id": null,
|
34 |
+
"hidden_act": "silu",
|
35 |
+
"hidden_size": 4096,
|
36 |
+
"id2label": {
|
37 |
+
"0": "LABEL_0",
|
38 |
+
"1": "LABEL_1"
|
39 |
+
},
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"intermediate_size": 14336,
|
42 |
+
"is_decoder": false,
|
43 |
+
"is_encoder_decoder": false,
|
44 |
+
"label2id": {
|
45 |
+
"LABEL_0": 0,
|
46 |
+
"LABEL_1": 1
|
47 |
+
},
|
48 |
+
"length_penalty": 1.0,
|
49 |
+
"max_length": 20,
|
50 |
+
"max_position_embeddings": 8192,
|
51 |
+
"min_length": 0,
|
52 |
+
"mlp_bias": false,
|
53 |
+
"model_type": "llama",
|
54 |
+
"no_repeat_ngram_size": 0,
|
55 |
+
"num_attention_heads": 32,
|
56 |
+
"num_beam_groups": 1,
|
57 |
+
"num_beams": 1,
|
58 |
+
"num_hidden_layers": 32,
|
59 |
+
"num_key_value_heads": 8,
|
60 |
+
"num_return_sequences": 1,
|
61 |
+
"output_attentions": false,
|
62 |
+
"output_hidden_states": false,
|
63 |
+
"output_scores": false,
|
64 |
+
"pad_token_id": null,
|
65 |
+
"prefix": null,
|
66 |
+
"pretraining_tp": 1,
|
67 |
+
"problem_type": null,
|
68 |
+
"pruned_heads": {},
|
69 |
+
"remove_invalid_values": false,
|
70 |
+
"repetition_penalty": 1.0,
|
71 |
+
"return_dict": true,
|
72 |
+
"return_dict_in_generate": false,
|
73 |
+
"rms_norm_eps": 1e-05,
|
74 |
+
"rope_scaling": null,
|
75 |
+
"rope_theta": 500000.0,
|
76 |
+
"sep_token_id": null,
|
77 |
+
"suppress_tokens": null,
|
78 |
+
"task_specific_params": null,
|
79 |
+
"temperature": 1.0,
|
80 |
+
"tf_legacy_loss": false,
|
81 |
+
"tie_encoder_decoder": false,
|
82 |
+
"tie_word_embeddings": false,
|
83 |
+
"tokenizer_class": null,
|
84 |
+
"top_k": 50,
|
85 |
+
"top_p": 1.0,
|
86 |
+
"torch_dtype": "bfloat16",
|
87 |
+
"torchscript": false,
|
88 |
+
"typical_p": 1.0,
|
89 |
+
"use_bfloat16": false,
|
90 |
+
"use_cache": true,
|
91 |
+
"vocab_size": 128256
|
92 |
+
},
|
93 |
+
"model_type": "ovis",
|
94 |
+
"multimodal_max_length": 8192,
|
95 |
+
"torch_dtype": "bfloat16",
|
96 |
+
"transformers_version": "4.42.4",
|
97 |
+
"use_cache": true,
|
98 |
+
"visual_tokenizer_config": {
|
99 |
+
"_name_or_path": "",
|
100 |
+
"add_cross_attention": false,
|
101 |
+
"architectures": null,
|
102 |
+
"backbone_config": {
|
103 |
+
"_name_or_path": "google/siglip-so400m-patch14-384",
|
104 |
+
"add_cross_attention": false,
|
105 |
+
"architectures": null,
|
106 |
+
"attention_dropout": 0.0,
|
107 |
+
"bad_words_ids": null,
|
108 |
+
"begin_suppress_tokens": null,
|
109 |
+
"bos_token_id": null,
|
110 |
+
"chunk_size_feed_forward": 0,
|
111 |
+
"cross_attention_hidden_size": null,
|
112 |
+
"decoder_start_token_id": null,
|
113 |
+
"diversity_penalty": 0.0,
|
114 |
+
"do_sample": false,
|
115 |
+
"early_stopping": false,
|
116 |
+
"encoder_no_repeat_ngram_size": 0,
|
117 |
+
"eos_token_id": null,
|
118 |
+
"exponential_decay_length_penalty": null,
|
119 |
+
"finetuning_task": null,
|
120 |
+
"forced_bos_token_id": null,
|
121 |
+
"forced_eos_token_id": null,
|
122 |
+
"hidden_act": "gelu_pytorch_tanh",
|
123 |
+
"hidden_size": 1152,
|
124 |
+
"id2label": {
|
125 |
+
"0": "LABEL_0",
|
126 |
+
"1": "LABEL_1"
|
127 |
+
},
|
128 |
+
"image_size": 384,
|
129 |
+
"intermediate_size": 4304,
|
130 |
+
"is_decoder": false,
|
131 |
+
"is_encoder_decoder": false,
|
132 |
+
"label2id": {
|
133 |
+
"LABEL_0": 0,
|
134 |
+
"LABEL_1": 1
|
135 |
+
},
|
136 |
+
"layer_norm_eps": 1e-06,
|
137 |
+
"length_penalty": 1.0,
|
138 |
+
"max_length": 20,
|
139 |
+
"min_length": 0,
|
140 |
+
"model_type": "siglip_vision_model",
|
141 |
+
"no_repeat_ngram_size": 0,
|
142 |
+
"num_attention_heads": 16,
|
143 |
+
"num_beam_groups": 1,
|
144 |
+
"num_beams": 1,
|
145 |
+
"num_channels": 3,
|
146 |
+
"num_hidden_layers": 27,
|
147 |
+
"num_return_sequences": 1,
|
148 |
+
"output_attentions": false,
|
149 |
+
"output_hidden_states": false,
|
150 |
+
"output_scores": false,
|
151 |
+
"pad_token_id": null,
|
152 |
+
"patch_size": 14,
|
153 |
+
"prefix": null,
|
154 |
+
"problem_type": null,
|
155 |
+
"pruned_heads": {},
|
156 |
+
"remove_invalid_values": false,
|
157 |
+
"repetition_penalty": 1.0,
|
158 |
+
"return_dict": true,
|
159 |
+
"return_dict_in_generate": false,
|
160 |
+
"sep_token_id": null,
|
161 |
+
"suppress_tokens": null,
|
162 |
+
"task_specific_params": null,
|
163 |
+
"temperature": 1.0,
|
164 |
+
"tf_legacy_loss": false,
|
165 |
+
"tie_encoder_decoder": false,
|
166 |
+
"tie_word_embeddings": true,
|
167 |
+
"tokenizer_class": null,
|
168 |
+
"top_k": 50,
|
169 |
+
"top_p": 1.0,
|
170 |
+
"torch_dtype": null,
|
171 |
+
"torchscript": false,
|
172 |
+
"typical_p": 1.0,
|
173 |
+
"use_bfloat16": false
|
174 |
+
},
|
175 |
+
"backbone_kwargs": {},
|
176 |
+
"bad_words_ids": null,
|
177 |
+
"begin_suppress_tokens": null,
|
178 |
+
"bos_token_id": null,
|
179 |
+
"chunk_size_feed_forward": 0,
|
180 |
+
"cross_attention_hidden_size": null,
|
181 |
+
"decoder_start_token_id": null,
|
182 |
+
"depths": null,
|
183 |
+
"diversity_penalty": 0.0,
|
184 |
+
"do_sample": false,
|
185 |
+
"drop_cls_token": false,
|
186 |
+
"early_stopping": false,
|
187 |
+
"encoder_no_repeat_ngram_size": 0,
|
188 |
+
"eos_token_id": null,
|
189 |
+
"exponential_decay_length_penalty": null,
|
190 |
+
"finetuning_task": null,
|
191 |
+
"forced_bos_token_id": null,
|
192 |
+
"forced_eos_token_id": null,
|
193 |
+
"hd_booster": "s2wrapper",
|
194 |
+
"hidden_stride": 1,
|
195 |
+
"id2label": {
|
196 |
+
"0": "LABEL_0",
|
197 |
+
"1": "LABEL_1"
|
198 |
+
},
|
199 |
+
"is_decoder": false,
|
200 |
+
"is_encoder_decoder": false,
|
201 |
+
"label2id": {
|
202 |
+
"LABEL_0": 0,
|
203 |
+
"LABEL_1": 1
|
204 |
+
},
|
205 |
+
"length_penalty": 1.0,
|
206 |
+
"max_length": 20,
|
207 |
+
"min_length": 0,
|
208 |
+
"model_type": "siglip_visual_tokenizer",
|
209 |
+
"no_repeat_ngram_size": 0,
|
210 |
+
"num_beam_groups": 1,
|
211 |
+
"num_beams": 1,
|
212 |
+
"num_return_sequences": 1,
|
213 |
+
"output_attentions": false,
|
214 |
+
"output_hidden_states": false,
|
215 |
+
"output_scores": false,
|
216 |
+
"pad_token_id": null,
|
217 |
+
"prefix": null,
|
218 |
+
"problem_type": null,
|
219 |
+
"pruned_heads": {},
|
220 |
+
"remove_invalid_values": false,
|
221 |
+
"repetition_penalty": 1.0,
|
222 |
+
"return_dict": true,
|
223 |
+
"return_dict_in_generate": false,
|
224 |
+
"sep_token_id": null,
|
225 |
+
"suppress_tokens": null,
|
226 |
+
"task_specific_params": null,
|
227 |
+
"tau": 1.0,
|
228 |
+
"temperature": 1.0,
|
229 |
+
"tf_legacy_loss": false,
|
230 |
+
"tie_encoder_decoder": false,
|
231 |
+
"tie_word_embeddings": true,
|
232 |
+
"tokenize_function": "softmax",
|
233 |
+
"tokenizer_class": null,
|
234 |
+
"top_k": 50,
|
235 |
+
"top_p": 1.0,
|
236 |
+
"torch_dtype": null,
|
237 |
+
"torchscript": false,
|
238 |
+
"typical_p": 1.0,
|
239 |
+
"use_bfloat16": false,
|
240 |
+
"use_indicators": true,
|
241 |
+
"vocab_size": 131072
|
242 |
+
}
|
243 |
+
}
|
configuration_ovis.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from typing import List, Dict, Union, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import PretrainedConfig, AutoConfig
|
7 |
+
|
8 |
+
IGNORE_INDEX = -100
|
9 |
+
IMAGE_TOKEN_INDEX = -200
|
10 |
+
IMAGE_TOKEN = "<image>"
|
11 |
+
|
12 |
+
|
13 |
+
# ----------------------------------------------------------------------
|
14 |
+
# Visual Tokenizer Configuration
|
15 |
+
# ----------------------------------------------------------------------
|
16 |
+
class BaseVisualTokenizerConfig(PretrainedConfig):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
vocab_size=16384,
|
20 |
+
tokenize_function="softmax",
|
21 |
+
tau=1.0,
|
22 |
+
depths=None,
|
23 |
+
use_indicators=False,
|
24 |
+
drop_cls_token=False,
|
25 |
+
backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
|
26 |
+
hidden_stride: int = 1,
|
27 |
+
hd_booster: Optional[str] = None,
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
self.vocab_size = vocab_size
|
32 |
+
self.tokenize_function = tokenize_function
|
33 |
+
self.tau = tau
|
34 |
+
if isinstance(depths, str):
|
35 |
+
depths = [int(x) for x in depths.split('|')]
|
36 |
+
self.depths = depths
|
37 |
+
self.backbone_kwargs = {}
|
38 |
+
self.use_indicators = use_indicators
|
39 |
+
self.drop_cls_token = drop_cls_token
|
40 |
+
if backbone_config is not None:
|
41 |
+
assert isinstance(backbone_config, (PretrainedConfig, dict)), \
|
42 |
+
(f"expect `backbone_config` to be instance of PretrainedConfig or dict,"
|
43 |
+
f" but got {type(backbone_config)} type")
|
44 |
+
if not isinstance(backbone_config, PretrainedConfig):
|
45 |
+
model_type = backbone_config['model_type']
|
46 |
+
backbone_config.pop('model_type')
|
47 |
+
backbone_config = AutoConfig.for_model(model_type, **backbone_config)
|
48 |
+
self.backbone_config = backbone_config
|
49 |
+
self.hidden_stride = hidden_stride
|
50 |
+
self.hd_booster = hd_booster
|
51 |
+
|
52 |
+
|
53 |
+
class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig):
|
54 |
+
model_type = "clip_visual_tokenizer"
|
55 |
+
|
56 |
+
def __init__(self, **kwargs):
|
57 |
+
super().__init__(**kwargs)
|
58 |
+
if self.depths:
|
59 |
+
assert len(self.depths) == 1
|
60 |
+
self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
|
61 |
+
|
62 |
+
|
63 |
+
class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig):
|
64 |
+
model_type = "siglip_visual_tokenizer"
|
65 |
+
|
66 |
+
def __init__(self, **kwargs):
|
67 |
+
super().__init__(**kwargs)
|
68 |
+
if self.drop_cls_token:
|
69 |
+
logging.warning(
|
70 |
+
f'SiglipVisionModel has no cls token,'
|
71 |
+
f' so `drop_cls_token=True` is ignored and reset to `False`')
|
72 |
+
self.drop_cls_token = False
|
73 |
+
if self.depths:
|
74 |
+
assert len(self.depths) == 1
|
75 |
+
self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
|
76 |
+
|
77 |
+
|
78 |
+
AutoConfig.register("clip_visual_tokenizer", ClipVisualTokenizerConfig)
|
79 |
+
AutoConfig.register("siglip_visual_tokenizer", SiglipVisualTokenizerConfig)
|
80 |
+
|
81 |
+
|
82 |
+
# ----------------------------------------------------------------------
|
83 |
+
# Ovis Configuration
|
84 |
+
# ----------------------------------------------------------------------
|
85 |
+
class OvisConfig(PretrainedConfig):
|
86 |
+
model_type = "ovis"
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
llm_config: Optional[Union[PretrainedConfig, dict]] = None,
|
91 |
+
visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
|
92 |
+
multimodal_max_length=2048,
|
93 |
+
hidden_size=None,
|
94 |
+
conversation_formatter_class=None,
|
95 |
+
**kwargs
|
96 |
+
):
|
97 |
+
super().__init__(**kwargs)
|
98 |
+
if llm_config is not None:
|
99 |
+
assert isinstance(llm_config, (PretrainedConfig, dict)), \
|
100 |
+
(f"expect `llm_config` to be instance of PretrainedConfig or dict,"
|
101 |
+
f" but got {type(llm_config)} type")
|
102 |
+
if not isinstance(llm_config, PretrainedConfig):
|
103 |
+
model_type = llm_config['model_type']
|
104 |
+
llm_config.pop('model_type')
|
105 |
+
llm_config = AutoConfig.for_model(model_type, **llm_config)
|
106 |
+
self.llm_config = llm_config
|
107 |
+
if visual_tokenizer_config is not None:
|
108 |
+
assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
|
109 |
+
(f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict,"
|
110 |
+
f" but got {type(visual_tokenizer_config)} type")
|
111 |
+
if not isinstance(visual_tokenizer_config, PretrainedConfig):
|
112 |
+
model_type = visual_tokenizer_config['model_type']
|
113 |
+
visual_tokenizer_config.pop('model_type')
|
114 |
+
visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
|
115 |
+
self.visual_tokenizer_config = visual_tokenizer_config
|
116 |
+
self.multimodal_max_length = multimodal_max_length
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.conversation_formatter_class = conversation_formatter_class
|
119 |
+
|
120 |
+
|
121 |
+
# ----------------------------------------------------------------------
|
122 |
+
# Conversation Formatter
|
123 |
+
# ----------------------------------------------------------------------
|
124 |
+
class ConversationFormatter(ABC):
|
125 |
+
support_tokenizer_types = None
|
126 |
+
|
127 |
+
def __init__(self, tokenizer):
|
128 |
+
tokenizer_type = type(tokenizer).__name__
|
129 |
+
assert tokenizer_type in self.support_tokenizer_types, \
|
130 |
+
(f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`,'
|
131 |
+
f' but got `{tokenizer_type}`')
|
132 |
+
self.tokenizer = tokenizer
|
133 |
+
self.image_symbol = IMAGE_TOKEN
|
134 |
+
self.image_token_index = IMAGE_TOKEN_INDEX
|
135 |
+
self.ignore_index = IGNORE_INDEX
|
136 |
+
|
137 |
+
def _tokenize_with_image_symbol(self, text):
|
138 |
+
text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
|
139 |
+
text.split(self.image_symbol)]
|
140 |
+
token_ids = []
|
141 |
+
num_chuck = len(text_chunks)
|
142 |
+
for i, chunk in enumerate(text_chunks):
|
143 |
+
token_ids.extend(chunk)
|
144 |
+
if i < num_chuck - 1:
|
145 |
+
token_ids.append(self.image_token_index)
|
146 |
+
return token_ids
|
147 |
+
|
148 |
+
@abstractmethod
|
149 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
150 |
+
pass
|
151 |
+
|
152 |
+
@abstractmethod
|
153 |
+
def format_query(self, query, generation_preface=""):
|
154 |
+
pass
|
155 |
+
|
156 |
+
|
157 |
+
class QwenConversationFormatter(ConversationFormatter):
|
158 |
+
support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast']
|
159 |
+
|
160 |
+
def __init__(self, tokenizer):
|
161 |
+
super().__init__(tokenizer)
|
162 |
+
self.from2role = {
|
163 |
+
"system": "<|im_start|>system\n",
|
164 |
+
"human": "<|im_start|>user\n",
|
165 |
+
"gpt": "<|im_start|>assistant\n",
|
166 |
+
}
|
167 |
+
self.gpt_token_num = None
|
168 |
+
self.im_end = "<|im_end|>\n"
|
169 |
+
self.default_system_prompt = "You are a helpful assistant."
|
170 |
+
|
171 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
172 |
+
if self.gpt_token_num is None:
|
173 |
+
self.gpt_token_num = len(
|
174 |
+
self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
|
175 |
+
|
176 |
+
if conversations[0]["from"] != "system":
|
177 |
+
conversations.insert(0, {
|
178 |
+
"from": "system",
|
179 |
+
"value": self.default_system_prompt
|
180 |
+
})
|
181 |
+
|
182 |
+
if generation_preface is not None:
|
183 |
+
conversations.append({
|
184 |
+
"from": "gpt",
|
185 |
+
"value": generation_preface
|
186 |
+
})
|
187 |
+
|
188 |
+
prompt = ""
|
189 |
+
input_ids = []
|
190 |
+
labels = []
|
191 |
+
num_conversation = len(conversations)
|
192 |
+
for i, conversation in enumerate(conversations):
|
193 |
+
frm = conversation["from"]
|
194 |
+
role = self.from2role[frm]
|
195 |
+
message = conversation["value"]
|
196 |
+
text = role + message
|
197 |
+
if i < num_conversation - 1 or generation_preface is None:
|
198 |
+
text += self.im_end
|
199 |
+
prompt += text
|
200 |
+
token_ids = self._tokenize_with_image_symbol(text)
|
201 |
+
input_ids.extend(token_ids)
|
202 |
+
label_ids = [self.ignore_index] * len(token_ids)
|
203 |
+
if frm == "gpt" and generation_preface is None:
|
204 |
+
# learning `\n` following `im_end` is meaningless, so the last `\n` token is ignored in label
|
205 |
+
label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1]
|
206 |
+
labels.extend(label_ids)
|
207 |
+
|
208 |
+
assert self._tokenize_with_image_symbol(prompt) == input_ids
|
209 |
+
assert len(input_ids) == len(labels)
|
210 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
211 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
212 |
+
|
213 |
+
return prompt, input_ids, labels
|
214 |
+
|
215 |
+
def format_query(self, query, generation_preface=""):
|
216 |
+
prompt, input_ids, _ = self.format([{
|
217 |
+
"from": "human",
|
218 |
+
"value": query
|
219 |
+
}], generation_preface=generation_preface)
|
220 |
+
|
221 |
+
return prompt, input_ids
|
222 |
+
|
223 |
+
|
224 |
+
class Llama3ConversationFormatter(ConversationFormatter):
|
225 |
+
support_tokenizer_types = ['PreTrainedTokenizerFast']
|
226 |
+
|
227 |
+
def __init__(self, tokenizer):
|
228 |
+
super().__init__(tokenizer)
|
229 |
+
self.from2role = {
|
230 |
+
"system": "<|start_header_id|>system<|end_header_id|>\n\n",
|
231 |
+
"human": "<|start_header_id|>user<|end_header_id|>\n\n",
|
232 |
+
"gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
|
233 |
+
}
|
234 |
+
self.gpt_token_num = None
|
235 |
+
self.im_end = "<|eot_id|>"
|
236 |
+
self.default_system_prompt = "You are a helpful and honest multimodal assistant."
|
237 |
+
self.bos_token = "<|begin_of_text|>"
|
238 |
+
self.bos_token_ids = None
|
239 |
+
|
240 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
241 |
+
if self.gpt_token_num is None:
|
242 |
+
self.gpt_token_num = len(
|
243 |
+
self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
|
244 |
+
|
245 |
+
if self.bos_token_ids is None:
|
246 |
+
self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
|
247 |
+
|
248 |
+
if conversations[0]["from"] != "system":
|
249 |
+
conversations.insert(0, {
|
250 |
+
"from": "system",
|
251 |
+
"value": self.default_system_prompt
|
252 |
+
})
|
253 |
+
|
254 |
+
if generation_preface is not None:
|
255 |
+
conversations.append({
|
256 |
+
"from": "gpt",
|
257 |
+
"value": generation_preface
|
258 |
+
})
|
259 |
+
|
260 |
+
prompt = "" + self.bos_token
|
261 |
+
input_ids = [] + self.bos_token_ids
|
262 |
+
labels = [] + [IGNORE_INDEX] * len(input_ids)
|
263 |
+
num_conversation = len(conversations)
|
264 |
+
for i, conversation in enumerate(conversations):
|
265 |
+
frm = conversation["from"]
|
266 |
+
role = self.from2role[frm]
|
267 |
+
message = conversation["value"].strip()
|
268 |
+
text = role + message
|
269 |
+
if i < num_conversation - 1 or generation_preface is None:
|
270 |
+
text += self.im_end
|
271 |
+
prompt += text
|
272 |
+
token_ids = self._tokenize_with_image_symbol(text)
|
273 |
+
input_ids.extend(token_ids)
|
274 |
+
label_ids = [self.ignore_index] * len(token_ids)
|
275 |
+
if frm == "gpt":
|
276 |
+
label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
|
277 |
+
labels.extend(label_ids)
|
278 |
+
|
279 |
+
assert self._tokenize_with_image_symbol(prompt) == input_ids
|
280 |
+
assert len(input_ids) == len(labels)
|
281 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
282 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
283 |
+
|
284 |
+
return prompt, input_ids, labels
|
285 |
+
|
286 |
+
def format_query(self, query, generation_preface=""):
|
287 |
+
prompt, input_ids, _ = self.format([{
|
288 |
+
"from": "human",
|
289 |
+
"value": query
|
290 |
+
}], generation_preface=generation_preface)
|
291 |
+
|
292 |
+
return prompt, input_ids
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128009
|
7 |
+
],
|
8 |
+
"max_length": 4096,
|
9 |
+
"multimodal_max_length": 8192,
|
10 |
+
"temperature": 0.6,
|
11 |
+
"top_p": 0.9,
|
12 |
+
"transformers_version": "4.42.4"
|
13 |
+
}
|
modeling_ovis.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from importlib import import_module
|
3 |
+
from typing import List, Callable, Union, Optional
|
4 |
+
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import LongTensor, IntTensor, Tensor
|
9 |
+
from transformers import CLIPImageProcessor, CLIPVisionModel, SiglipImageProcessor, SiglipVisionModel
|
10 |
+
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
|
11 |
+
from transformers.generation.utils import GenerateOutput
|
12 |
+
|
13 |
+
from .configuration_ovis import BaseVisualTokenizerConfig, ClipVisualTokenizerConfig, SiglipVisualTokenizerConfig
|
14 |
+
from .configuration_ovis import OvisConfig, ConversationFormatter, IGNORE_INDEX, IMAGE_TOKEN_INDEX
|
15 |
+
|
16 |
+
|
17 |
+
# ----------------------------------------------------------------------
|
18 |
+
# Visual Tokenizer
|
19 |
+
# ----------------------------------------------------------------------
|
20 |
+
class BaseVisualTokenizer(PreTrainedModel):
|
21 |
+
base_model_prefix = "backbone"
|
22 |
+
main_input_name = None
|
23 |
+
_image_processor_class = None
|
24 |
+
_image_processor_kwargs = {}
|
25 |
+
_backbone_class = None
|
26 |
+
_backbone_name_or_path = None
|
27 |
+
|
28 |
+
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
|
29 |
+
super().__init__(config, *inputs, **kwargs)
|
30 |
+
if kwargs.get('train_from_scratch'):
|
31 |
+
self.image_processor = self._image_processor_class.from_pretrained(
|
32 |
+
self._backbone_name_or_path, **self._image_processor_kwargs)
|
33 |
+
self.backbone = self._backbone_class.from_pretrained(
|
34 |
+
self._backbone_name_or_path, **self.config.backbone_kwargs)
|
35 |
+
self.config.backbone_config = self.backbone.config
|
36 |
+
else:
|
37 |
+
self.image_processor = AutoImageProcessor.from_pretrained(
|
38 |
+
kwargs['image_processor_name_or_path'])
|
39 |
+
self.backbone = AutoModel.from_config(self.config.backbone_config)
|
40 |
+
self.head = None
|
41 |
+
|
42 |
+
assert all((self.image_processor.do_resize,
|
43 |
+
not getattr(self.image_processor, 'do_center_crop', False),
|
44 |
+
self.image_processor.do_rescale,
|
45 |
+
self.image_processor.do_normalize
|
46 |
+
)), f"image_processor `{self.image_processor}` is not supported currently"
|
47 |
+
|
48 |
+
def get_backbone(self):
|
49 |
+
return self.backbone
|
50 |
+
|
51 |
+
def get_image_processor(self):
|
52 |
+
return self.image_processor
|
53 |
+
|
54 |
+
def get_zero_pixel_values(self, n=1):
|
55 |
+
height, width = self.get_image_size()
|
56 |
+
if self.config.hd_booster is None:
|
57 |
+
return torch.zeros(n, 3, height, width)
|
58 |
+
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
|
59 |
+
return torch.zeros(n, 3 * 5, height, width)
|
60 |
+
else:
|
61 |
+
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
|
62 |
+
|
63 |
+
def get_head(self):
|
64 |
+
return self.head
|
65 |
+
|
66 |
+
def get_image_size(self):
|
67 |
+
raise NotImplementedError
|
68 |
+
|
69 |
+
def preprocess_image(self, image: PIL.Image.Image, convert_to_rgb=True):
|
70 |
+
def _preprocess(img: PIL.Image.Image):
|
71 |
+
# first resize and preprocess
|
72 |
+
sides = self.get_image_size()
|
73 |
+
if sides[0] != sides[1]:
|
74 |
+
raise ValueError('get_image_size() returns non-square size')
|
75 |
+
side = sides[0]
|
76 |
+
|
77 |
+
w, h = img.size
|
78 |
+
if w == h:
|
79 |
+
new_width = new_height = side
|
80 |
+
elif w > h:
|
81 |
+
new_width = side
|
82 |
+
new_height = int(h / w * new_width)
|
83 |
+
else:
|
84 |
+
new_height = side
|
85 |
+
new_width = int(w / h * new_height)
|
86 |
+
new_size = dict(height=new_height, width=new_width)
|
87 |
+
pixel_values = self.image_processor.preprocess(
|
88 |
+
img, size=new_size, return_tensors='pt')['pixel_values']
|
89 |
+
|
90 |
+
# then pad to square
|
91 |
+
square_values = torch.zeros(
|
92 |
+
[1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
|
93 |
+
new_height, new_width = pixel_values.shape[2:]
|
94 |
+
if new_height == new_width:
|
95 |
+
square_values[:, :, :, :] = pixel_values
|
96 |
+
elif new_height > new_width:
|
97 |
+
from_index = (side - new_width) // 2
|
98 |
+
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
|
99 |
+
else:
|
100 |
+
from_index = (side - new_height) // 2
|
101 |
+
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
|
102 |
+
|
103 |
+
return square_values
|
104 |
+
|
105 |
+
if convert_to_rgb and image.mode != 'RGB':
|
106 |
+
image = image.convert('RGB')
|
107 |
+
|
108 |
+
if self.config.hd_booster is None:
|
109 |
+
return _preprocess(image) # [1, 3, side, side]
|
110 |
+
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
|
111 |
+
width, height = image.size
|
112 |
+
is_low_resolution = (height < self.get_image_size()[0] * 1.5 or
|
113 |
+
width < self.get_image_size()[1] * 1.5)
|
114 |
+
if self.config.hd_booster == 's2wrapper-adaptive' and is_low_resolution:
|
115 |
+
values = self.get_zero_pixel_values() + torch.inf
|
116 |
+
values[0][:3] = _preprocess(image)[0]
|
117 |
+
else:
|
118 |
+
center_x, center_y = width // 2, height // 2
|
119 |
+
image_top_left = image.crop((0, 0, center_x, center_y))
|
120 |
+
image_top_right = image.crop((center_x, 0, width, center_y))
|
121 |
+
image_bottom_left = image.crop((0, center_y, center_x, height))
|
122 |
+
image_bottom_right = image.crop((center_x, center_y, width, height))
|
123 |
+
imgs = [image, image_top_left, image_top_right, image_bottom_left, image_bottom_right]
|
124 |
+
values = torch.cat([_preprocess(img) for img in imgs], dim=1)
|
125 |
+
return values # [1, 3*5, side, side]
|
126 |
+
else:
|
127 |
+
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
|
128 |
+
|
129 |
+
def get_backbone_layer(self, index):
|
130 |
+
return self.backbone.vision_model.encoder.layers[index]
|
131 |
+
|
132 |
+
def tokenize(self, logits):
|
133 |
+
def st_argmax(y_soft, dim): # straight-through softmax
|
134 |
+
index = y_soft.max(dim, keepdim=True)[1]
|
135 |
+
y_hard = torch.zeros_like(
|
136 |
+
y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
137 |
+
ret = y_hard - y_soft.detach() + y_soft
|
138 |
+
return ret
|
139 |
+
|
140 |
+
if self.config.tokenize_function == 'softmax':
|
141 |
+
tokens = F.softmax(logits, dim=-1)
|
142 |
+
elif self.config.tokenize_function == 'gumbel_argmax':
|
143 |
+
tokens = F.gumbel_softmax(logits, tau=self.config.tau, hard=True)
|
144 |
+
elif self.config.tokenize_function == 'st_argmax':
|
145 |
+
tokens = st_argmax(logits, dim=-1)
|
146 |
+
else:
|
147 |
+
raise ValueError(
|
148 |
+
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax,'
|
149 |
+
f' but got {self.config.tokenize_function}')
|
150 |
+
return tokens
|
151 |
+
|
152 |
+
|
153 |
+
class ClipVisualTokenizer(BaseVisualTokenizer):
|
154 |
+
config_class = ClipVisualTokenizerConfig
|
155 |
+
supports_gradient_checkpointing = True
|
156 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
157 |
+
_image_processor_class = CLIPImageProcessor
|
158 |
+
_image_processor_kwargs = dict(do_center_crop=False)
|
159 |
+
_backbone_class = CLIPVisionModel
|
160 |
+
_backbone_name_or_path = "openai/clip-vit-large-patch14-336"
|
161 |
+
|
162 |
+
def __init__(self, config: ClipVisualTokenizerConfig = None, *inputs, **kwargs):
|
163 |
+
super().__init__(config, *inputs, **kwargs)
|
164 |
+
head_dim = self.config.vocab_size
|
165 |
+
if self.config.use_indicators:
|
166 |
+
head_dim -= 2 # reserved for two image indicator tokens
|
167 |
+
if self.config.hd_booster is None:
|
168 |
+
self.head = torch.nn.Sequential(
|
169 |
+
torch.nn.Linear(self.backbone.config.hidden_size, head_dim, bias=False),
|
170 |
+
torch.nn.LayerNorm(head_dim)
|
171 |
+
)
|
172 |
+
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
|
173 |
+
self.head = torch.nn.Sequential(
|
174 |
+
torch.nn.Linear(self.backbone.config.hidden_size * 2, head_dim, bias=False),
|
175 |
+
torch.nn.LayerNorm(head_dim)
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
|
179 |
+
|
180 |
+
def get_image_size(self):
|
181 |
+
height = self.image_processor.crop_size["height"]
|
182 |
+
width = self.image_processor.crop_size["width"]
|
183 |
+
return height, width
|
184 |
+
|
185 |
+
def encode(self, pixel_values):
|
186 |
+
if self.config.hd_booster is None:
|
187 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
188 |
+
features = output.hidden_states[-1]
|
189 |
+
if self.config.drop_cls_token:
|
190 |
+
features = features[:, 1:, :]
|
191 |
+
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
|
192 |
+
n, c, side, _ = pixel_values.shape
|
193 |
+
if self.config.hd_booster == 's2wrapper-adaptive':
|
194 |
+
pixel_values_mask = torch.isinf(pixel_values) # [n, c, side, side]
|
195 |
+
pixel_values = torch.masked_fill(pixel_values, pixel_values_mask, 0.0)
|
196 |
+
pixel_values = pixel_values.reshape(n * 5, c // 5, side, side)
|
197 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
198 |
+
features = output.hidden_states[-1]
|
199 |
+
if self.config.drop_cls_token:
|
200 |
+
features = features[:, 1:, :]
|
201 |
+
_, l, d = features.shape
|
202 |
+
features = features.reshape(n, 5, l, d)
|
203 |
+
features_overall = features[:, 0, :, :] # [n, l, d]
|
204 |
+
features_parts = features[:, 1:, :, :] # [n, 4, l, d]
|
205 |
+
sqrt_l = int(l ** 0.5)
|
206 |
+
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
207 |
+
features_parts = features_parts.reshape(n, 4, sqrt_l, sqrt_l, d) # [n, 4, sqrt(l), sqrt(l), d]
|
208 |
+
features_top = torch.concat(
|
209 |
+
[features_parts[:, 0, :, :, :], features_parts[:, 1, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
|
210 |
+
features_bottom = torch.concat(
|
211 |
+
[features_parts[:, 2, :, :, :], features_parts[:, 3, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
|
212 |
+
features_merge = torch.concat([features_top, features_bottom], dim=-3) # [n, sqrt(l)*2, sqrt(l)*2, d]
|
213 |
+
features_pool = F.interpolate(
|
214 |
+
features_merge.permute(0, 3, 1, 2).to(torch.float32),
|
215 |
+
size=sqrt_l,
|
216 |
+
mode='area'
|
217 |
+
) # [n, d, sqrt_l, sqrt_l]
|
218 |
+
features_pool = features_pool.flatten(2).permute(0, 2, 1).to(features.dtype) # [n, l, d]
|
219 |
+
if self.config.hd_booster == 's2wrapper-adaptive':
|
220 |
+
features_pool_mask = torch.unsqueeze(
|
221 |
+
torch.unsqueeze(pixel_values_mask[:, -1, -1, -1], dim=-1), dim=-1) # [n, 1, 1]
|
222 |
+
features_pool = torch.masked_fill(features_pool, features_pool_mask, 0.0)
|
223 |
+
features = torch.cat([features_overall, features_pool], dim=-1) # [n, l, 2*d]
|
224 |
+
else:
|
225 |
+
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
|
226 |
+
return features
|
227 |
+
|
228 |
+
def forward(self, pixel_values) -> Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
|
229 |
+
features = self.encode(pixel_values)
|
230 |
+
logits = self.head(features)
|
231 |
+
tokens = self.tokenize(logits)
|
232 |
+
if self.config.use_indicators:
|
233 |
+
# tokens' shape is [BatchSize, #Token, VocabSize-2], so padding with [BatchSize, #Token, 2],
|
234 |
+
# after which, tokens' shape should become [BatchSize, #Token, VocabSize]
|
235 |
+
batch_size, token_len, _ = tokens.shape
|
236 |
+
padding_tensor = torch.zeros(
|
237 |
+
size=(batch_size, token_len, 2),
|
238 |
+
dtype=tokens.dtype,
|
239 |
+
device=tokens.device,
|
240 |
+
layout=tokens.layout,
|
241 |
+
requires_grad=False
|
242 |
+
)
|
243 |
+
tokens = torch.cat((tokens, padding_tensor), dim=2)
|
244 |
+
|
245 |
+
# adding indicator tokens, after which tokens' shape should become [BatchSize, 1+#Token+1, VocabSize]
|
246 |
+
begin_indicator = torch.zeros(
|
247 |
+
size=(batch_size, 1),
|
248 |
+
dtype=torch.long,
|
249 |
+
device=tokens.device,
|
250 |
+
requires_grad=False
|
251 |
+
) + self.config.vocab_size - 2
|
252 |
+
begin_indicator_token = F.one_hot(
|
253 |
+
begin_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
|
254 |
+
end_indicator = torch.zeros(
|
255 |
+
size=(batch_size, 1),
|
256 |
+
dtype=torch.long,
|
257 |
+
device=tokens.device,
|
258 |
+
requires_grad=False
|
259 |
+
) + self.config.vocab_size - 1
|
260 |
+
end_indicator_token = F.one_hot(
|
261 |
+
end_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
|
262 |
+
tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1)
|
263 |
+
return tokens
|
264 |
+
|
265 |
+
|
266 |
+
class SiglipVisualTokenizer(BaseVisualTokenizer):
|
267 |
+
config_class = SiglipVisualTokenizerConfig
|
268 |
+
supports_gradient_checkpointing = True
|
269 |
+
_no_split_modules = ["SiglipVisionTransformer"]
|
270 |
+
_image_processor_class = SiglipImageProcessor
|
271 |
+
_image_processor_kwargs = {}
|
272 |
+
_backbone_class = SiglipVisionModel
|
273 |
+
_backbone_name_or_path = "google/siglip-so400m-patch14-384"
|
274 |
+
|
275 |
+
def __init__(self, config: SiglipVisualTokenizerConfig = None, *inputs, **kwargs):
|
276 |
+
super().__init__(config, *inputs, **kwargs)
|
277 |
+
head_dim = self.config.vocab_size
|
278 |
+
if self.config.use_indicators:
|
279 |
+
head_dim -= 2 # reserved for two image indicator tokens
|
280 |
+
if self.config.hd_booster is None:
|
281 |
+
self.head = torch.nn.Sequential(
|
282 |
+
torch.nn.Linear(
|
283 |
+
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride,
|
284 |
+
head_dim,
|
285 |
+
bias=False
|
286 |
+
),
|
287 |
+
torch.nn.LayerNorm(head_dim)
|
288 |
+
)
|
289 |
+
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
|
290 |
+
self.head = torch.nn.Sequential(
|
291 |
+
torch.nn.Linear(
|
292 |
+
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride * 2,
|
293 |
+
head_dim,
|
294 |
+
bias=False
|
295 |
+
),
|
296 |
+
torch.nn.LayerNorm(head_dim)
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
|
300 |
+
|
301 |
+
def get_image_size(self):
|
302 |
+
height = self.image_processor.size["height"]
|
303 |
+
width = self.image_processor.size["width"]
|
304 |
+
return height, width
|
305 |
+
|
306 |
+
def encode(self, pixel_values):
|
307 |
+
if self.config.hd_booster is None:
|
308 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
309 |
+
features = output.hidden_states[-1]
|
310 |
+
if self.config.drop_cls_token:
|
311 |
+
features = features[:, 1:, :]
|
312 |
+
elif self.config.hd_booster in ['s2wrapper', 's2wrapper-adaptive']:
|
313 |
+
n, c, side, _ = pixel_values.shape
|
314 |
+
if self.config.hd_booster == 's2wrapper-adaptive':
|
315 |
+
pixel_values_mask = torch.isinf(pixel_values) # [n, c, side, side]
|
316 |
+
pixel_values = torch.masked_fill(pixel_values, pixel_values_mask, 0.0)
|
317 |
+
pixel_values = pixel_values.reshape(n * 5, c // 5, side, side)
|
318 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
319 |
+
features = output.hidden_states[-1]
|
320 |
+
if self.config.drop_cls_token:
|
321 |
+
features = features[:, 1:, :]
|
322 |
+
_, l, d = features.shape
|
323 |
+
features = features.reshape(n, 5, l, d)
|
324 |
+
features_overall = features[:, 0, :, :] # [n, l, d]
|
325 |
+
features_parts = features[:, 1:, :, :] # [n, 4, l, d]
|
326 |
+
sqrt_l = int(l ** 0.5)
|
327 |
+
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
328 |
+
features_parts = features_parts.reshape(n, 4, sqrt_l, sqrt_l, d) # [n, 4, sqrt(l), sqrt(l), d]
|
329 |
+
features_top = torch.concat(
|
330 |
+
[features_parts[:, 0, :, :, :], features_parts[:, 1, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
|
331 |
+
features_bottom = torch.concat(
|
332 |
+
[features_parts[:, 2, :, :, :], features_parts[:, 3, :, :, :]], dim=-2) # [n, sqrt(l), sqrt(l)*2, d]
|
333 |
+
features_merge = torch.concat([features_top, features_bottom], dim=-3) # [n, sqrt(l)*2, sqrt(l)*2, d]
|
334 |
+
features_pool = F.interpolate(
|
335 |
+
features_merge.permute(0, 3, 1, 2).to(torch.float32),
|
336 |
+
size=sqrt_l,
|
337 |
+
mode='area'
|
338 |
+
) # [n, d, sqrt_l, sqrt_l]
|
339 |
+
features_pool = features_pool.flatten(2).permute(0, 2, 1).to(features.dtype) # [n, l, d]
|
340 |
+
if self.config.hd_booster == 's2wrapper-adaptive':
|
341 |
+
features_pool_mask = torch.unsqueeze(
|
342 |
+
torch.unsqueeze(pixel_values_mask[:, -1, -1, -1], dim=-1), dim=-1) # [n, 1, 1]
|
343 |
+
features_pool = torch.masked_fill(features_pool, features_pool_mask, 0.0)
|
344 |
+
features = torch.cat([features_overall, features_pool], dim=-1) # [n, l, 2*d]
|
345 |
+
else:
|
346 |
+
raise ValueError(f'Unsupported hd_booster {self.config.hd_booster}')
|
347 |
+
|
348 |
+
# merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
|
349 |
+
# e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81
|
350 |
+
if self.config.hidden_stride > 1:
|
351 |
+
n, l, d = features.shape # this `d` maybe different from the above `d
|
352 |
+
sqrt_l = int(l ** 0.5)
|
353 |
+
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
354 |
+
assert l % (self.config.hidden_stride ** 2) == 0, \
|
355 |
+
"The token sequence length should be divisible by `hidden_stride**2`."
|
356 |
+
features = features.reshape(n, sqrt_l, sqrt_l, d)
|
357 |
+
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
|
358 |
+
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
|
359 |
+
features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
|
360 |
+
features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
|
361 |
+
features = features.reshape(n, l // (self.config.hidden_stride * self.config.hidden_stride),
|
362 |
+
self.config.hidden_stride * self.config.hidden_stride * d)
|
363 |
+
|
364 |
+
return features
|
365 |
+
|
366 |
+
def forward(self, pixel_values) -> Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
|
367 |
+
features = self.encode(pixel_values)
|
368 |
+
logits = self.head(features)
|
369 |
+
tokens = self.tokenize(logits)
|
370 |
+
if self.config.use_indicators:
|
371 |
+
# tokens' shape is [BatchSize, #Token, VocabSize-2], so padding with [BatchSize, #Token, 2], after
|
372 |
+
# which, tokens' shape should become [BatchSize, #Token, VocabSize]
|
373 |
+
batch_size, token_len, _ = tokens.shape
|
374 |
+
padding_tensor = torch.zeros(
|
375 |
+
size=(batch_size, token_len, 2),
|
376 |
+
dtype=tokens.dtype,
|
377 |
+
device=tokens.device,
|
378 |
+
layout=tokens.layout,
|
379 |
+
requires_grad=False
|
380 |
+
)
|
381 |
+
tokens = torch.cat((tokens, padding_tensor), dim=2)
|
382 |
+
|
383 |
+
# adding indicator tokens, after which tokens' shape should become [BatchSize, 1+#Token+1, VocabSize]
|
384 |
+
begin_indicator = torch.zeros(
|
385 |
+
size=(batch_size, 1),
|
386 |
+
dtype=torch.long,
|
387 |
+
device=tokens.device,
|
388 |
+
requires_grad=False
|
389 |
+
) + self.config.vocab_size - 2
|
390 |
+
begin_indicator_token = F.one_hot(
|
391 |
+
begin_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
|
392 |
+
end_indicator = torch.zeros(
|
393 |
+
size=(batch_size, 1),
|
394 |
+
dtype=torch.long,
|
395 |
+
device=tokens.device,
|
396 |
+
requires_grad=False
|
397 |
+
) + self.config.vocab_size - 1
|
398 |
+
end_indicator_token = F.one_hot(
|
399 |
+
end_indicator, num_classes=self.config.vocab_size).to(dtype=tokens.dtype)
|
400 |
+
tokens = torch.cat((begin_indicator_token, tokens, end_indicator_token), dim=1)
|
401 |
+
return tokens
|
402 |
+
|
403 |
+
|
404 |
+
AutoModel.register(ClipVisualTokenizerConfig, ClipVisualTokenizer)
|
405 |
+
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
|
406 |
+
|
407 |
+
|
408 |
+
# ----------------------------------------------------------------------
|
409 |
+
# Ovis
|
410 |
+
# ----------------------------------------------------------------------
|
411 |
+
class VisualEmbedding(torch.nn.Embedding):
|
412 |
+
def forward(self, input: Tensor) -> Tensor:
|
413 |
+
if any((isinstance(input, LongTensor), isinstance(input, IntTensor))):
|
414 |
+
return super().forward(input)
|
415 |
+
return torch.matmul(input, self.weight)
|
416 |
+
|
417 |
+
|
418 |
+
class OvisPreTrainedModel(PreTrainedModel):
|
419 |
+
config_class = OvisConfig
|
420 |
+
base_model_prefix = "ovis"
|
421 |
+
|
422 |
+
|
423 |
+
class Ovis(OvisPreTrainedModel):
|
424 |
+
|
425 |
+
def __init__(self, config: OvisConfig, *inputs, **kwargs):
|
426 |
+
super().__init__(config, *inputs, **kwargs)
|
427 |
+
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
|
428 |
+
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
|
429 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
430 |
+
self.visual_tokenizer = AutoModel.from_config(
|
431 |
+
self.config.visual_tokenizer_config,
|
432 |
+
image_processor_name_or_path=self.config.name_or_path
|
433 |
+
)
|
434 |
+
self.vte = VisualEmbedding(
|
435 |
+
self.config.visual_tokenizer_config.vocab_size,
|
436 |
+
self.config.hidden_size,
|
437 |
+
device=self.visual_tokenizer.device,
|
438 |
+
dtype=self.visual_tokenizer.dtype
|
439 |
+
)
|
440 |
+
|
441 |
+
def _merge_modules(modules_list: tuple):
|
442 |
+
merged_modules = []
|
443 |
+
for modules in modules_list:
|
444 |
+
merged_modules.extend(modules if modules else [])
|
445 |
+
return merged_modules
|
446 |
+
|
447 |
+
self._no_split_modules = _merge_modules(
|
448 |
+
(self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
|
449 |
+
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
|
450 |
+
self._keep_in_fp32_modules = _merge_modules(
|
451 |
+
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
|
452 |
+
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
|
453 |
+
self.supports_gradient_checkpointing = all(
|
454 |
+
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
|
455 |
+
self._supports_flash_attn_2 = all(
|
456 |
+
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
|
457 |
+
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
|
458 |
+
|
459 |
+
def get_text_tokenizer(self):
|
460 |
+
return self.text_tokenizer
|
461 |
+
|
462 |
+
def get_visual_tokenizer(self):
|
463 |
+
return self.visual_tokenizer
|
464 |
+
|
465 |
+
def get_llm(self):
|
466 |
+
return self.llm
|
467 |
+
|
468 |
+
def get_vte(self):
|
469 |
+
return self.vte
|
470 |
+
|
471 |
+
def get_wte(self):
|
472 |
+
return self.llm.get_input_embeddings()
|
473 |
+
|
474 |
+
def get_conversation_formatter(self) -> ConversationFormatter:
|
475 |
+
if getattr(self, 'conversation_formatter', None) is None:
|
476 |
+
self.conversation_formatter = getattr(
|
477 |
+
import_module(".configuration_ovis", __package__),
|
478 |
+
self.config.conversation_formatter_class
|
479 |
+
)(self.text_tokenizer)
|
480 |
+
return self.conversation_formatter
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
input_ids: torch.Tensor,
|
485 |
+
attention_mask: torch.Tensor,
|
486 |
+
labels: Optional[torch.Tensor],
|
487 |
+
pixel_values: List[Optional[torch.Tensor]],
|
488 |
+
**kwargs
|
489 |
+
):
|
490 |
+
assert self.training, "`forward` can only be used in training. For inference, use `generate`."
|
491 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
492 |
+
text_input_ids=input_ids,
|
493 |
+
text_attention_masks=attention_mask,
|
494 |
+
text_labels=labels,
|
495 |
+
pixel_values=pixel_values
|
496 |
+
)
|
497 |
+
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
|
498 |
+
|
499 |
+
def merge_multimodal(
|
500 |
+
self,
|
501 |
+
text_input_ids: torch.Tensor,
|
502 |
+
text_attention_masks: torch.Tensor,
|
503 |
+
text_labels: Optional[torch.Tensor],
|
504 |
+
pixel_values: List[Optional[torch.Tensor]]
|
505 |
+
):
|
506 |
+
input_device = text_input_ids.device
|
507 |
+
if self.training:
|
508 |
+
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
|
509 |
+
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
|
510 |
+
# (see below in this function); so, the gradient will not be affected.
|
511 |
+
num_images = [x.shape[0] for x in pixel_values]
|
512 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
|
513 |
+
visual_embeds = torch.split(
|
514 |
+
self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
515 |
+
split_size_or_sections=num_images,
|
516 |
+
dim=0
|
517 |
+
)
|
518 |
+
visual_input_ids = torch.split(
|
519 |
+
torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
520 |
+
split_size_or_sections=num_images,
|
521 |
+
dim=0
|
522 |
+
)
|
523 |
+
visual_labels = [
|
524 |
+
torch.full(
|
525 |
+
x.shape, IGNORE_INDEX, dtype=torch.long, device=input_device
|
526 |
+
) for x in visual_input_ids
|
527 |
+
]
|
528 |
+
else:
|
529 |
+
# When inference, sample can include only text with `None` pixel_value
|
530 |
+
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
|
531 |
+
if sum(num_images) > 0:
|
532 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
|
533 |
+
visual_embeds = torch.split(
|
534 |
+
self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
535 |
+
split_size_or_sections=num_images,
|
536 |
+
dim=0
|
537 |
+
)
|
538 |
+
visual_input_ids = torch.split(
|
539 |
+
torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
540 |
+
split_size_or_sections=num_images,
|
541 |
+
dim=0
|
542 |
+
)
|
543 |
+
visual_labels = [
|
544 |
+
torch.full(
|
545 |
+
x.shape, IGNORE_INDEX, dtype=torch.long, device=input_device
|
546 |
+
) for x in visual_input_ids
|
547 |
+
]
|
548 |
+
else:
|
549 |
+
# just placeholders
|
550 |
+
visual_embeds = [None] * len(num_images)
|
551 |
+
visual_input_ids = [None] * len(num_images)
|
552 |
+
visual_labels = [None] * len(num_images)
|
553 |
+
# just placeholders
|
554 |
+
text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=input_device)
|
555 |
+
|
556 |
+
input_embeds = []
|
557 |
+
attention_masks = []
|
558 |
+
labels = []
|
559 |
+
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
|
560 |
+
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
|
561 |
+
):
|
562 |
+
image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX)
|
563 |
+
text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0))
|
564 |
+
image_token_positions = torch.where(image_token_mask)[0].tolist()
|
565 |
+
if len(image_token_positions) > 0:
|
566 |
+
input_embed_parts = []
|
567 |
+
attention_mask_parts = []
|
568 |
+
label_parts = []
|
569 |
+
prev_image_token_position = -1
|
570 |
+
for index, image_token_position in enumerate(image_token_positions):
|
571 |
+
input_embed_parts.append(
|
572 |
+
text_embed[prev_image_token_position + 1:image_token_position, :])
|
573 |
+
label_parts.append(
|
574 |
+
text_label[prev_image_token_position + 1:image_token_position])
|
575 |
+
attention_mask_parts.append(
|
576 |
+
text_attention_mask[prev_image_token_position + 1:image_token_position])
|
577 |
+
input_embed_parts.append(visual_embed[index])
|
578 |
+
attention_mask_parts.append(
|
579 |
+
torch.ones_like(visual_label[index], dtype=torch.bool))
|
580 |
+
label_parts.append(visual_label[index])
|
581 |
+
prev_image_token_position = image_token_position
|
582 |
+
if prev_image_token_position + 1 < text_input_id.shape[0]:
|
583 |
+
input_embed_parts.append(
|
584 |
+
text_embed[prev_image_token_position + 1:, :])
|
585 |
+
attention_mask_parts.append(
|
586 |
+
text_attention_mask[prev_image_token_position + 1:])
|
587 |
+
label_parts.append(
|
588 |
+
text_label[prev_image_token_position + 1:])
|
589 |
+
input_embed = torch.cat(input_embed_parts, dim=0)
|
590 |
+
attention_mask = torch.cat(attention_mask_parts, dim=0)
|
591 |
+
label = torch.cat(label_parts, dim=0)
|
592 |
+
else:
|
593 |
+
input_embed = text_embed
|
594 |
+
attention_mask = text_attention_mask
|
595 |
+
label = text_label
|
596 |
+
if self.training:
|
597 |
+
# Make visual_embed involved in the backward graph,
|
598 |
+
# to be compatible with deepspeed zero and ddp.
|
599 |
+
input_embed += torch.sum(visual_embed * 0.0)
|
600 |
+
input_embeds.append(input_embed)
|
601 |
+
attention_masks.append(attention_mask)
|
602 |
+
labels.append(label)
|
603 |
+
|
604 |
+
batch_input_embeds = torch.nn.utils.rnn.pad_sequence(
|
605 |
+
input_embeds, batch_first=True, padding_value=0.0)[:, :self.config.multimodal_max_length, :]
|
606 |
+
batch_attention_mask = torch.nn.utils.rnn.pad_sequence(
|
607 |
+
attention_masks, batch_first=True, padding_value=False)[:, :self.config.multimodal_max_length]
|
608 |
+
batch_labels = torch.nn.utils.rnn.pad_sequence(
|
609 |
+
labels, batch_first=True, padding_value=IGNORE_INDEX)[:, :self.config.multimodal_max_length]
|
610 |
+
|
611 |
+
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
|
612 |
+
|
613 |
+
def save_pretrained(
|
614 |
+
self,
|
615 |
+
save_directory: Union[str, os.PathLike],
|
616 |
+
is_main_process: bool = True,
|
617 |
+
state_dict: Optional[dict] = None,
|
618 |
+
save_function: Callable = torch.save,
|
619 |
+
push_to_hub: bool = False,
|
620 |
+
max_shard_size: Union[int, str] = "5GB",
|
621 |
+
safe_serialization: bool = True,
|
622 |
+
variant: Optional[str] = None,
|
623 |
+
token: Optional[Union[str, bool]] = None,
|
624 |
+
save_peft_format: bool = True,
|
625 |
+
**kwargs
|
626 |
+
):
|
627 |
+
super().save_pretrained(save_directory,
|
628 |
+
is_main_process=is_main_process,
|
629 |
+
state_dict=state_dict,
|
630 |
+
save_function=save_function,
|
631 |
+
safe_serialization=safe_serialization)
|
632 |
+
self.get_text_tokenizer().save_pretrained(save_directory)
|
633 |
+
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
|
634 |
+
|
635 |
+
# uncomment the following will additionally save a separate visual tokenizer
|
636 |
+
# visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
|
637 |
+
# self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
|
638 |
+
# is_main_process=is_main_process,
|
639 |
+
# state_dict=None,
|
640 |
+
# save_function=save_function,
|
641 |
+
# safe_serialization=safe_serialization)
|
642 |
+
# self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)
|
643 |
+
|
644 |
+
# TODO: support batch generation
|
645 |
+
def generate(
|
646 |
+
self,
|
647 |
+
inputs: Optional[torch.Tensor] = None,
|
648 |
+
**kwargs
|
649 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
650 |
+
assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`'
|
651 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
652 |
+
text_input_ids=inputs,
|
653 |
+
text_attention_masks=kwargs.pop('attention_mask'),
|
654 |
+
text_labels=None,
|
655 |
+
pixel_values=kwargs.pop('pixel_values')
|
656 |
+
)
|
657 |
+
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
|
658 |
+
kwargs['past_key_values'] = self.get_llm()._get_cache(
|
659 |
+
'hybrid', getattr(kwargs, "num_beams", 1), kwargs['max_new_tokens'] + inputs_embeds.shape[-2]
|
660 |
+
)
|
661 |
+
self.get_llm()._supports_cache_class = True
|
662 |
+
kwargs['cache_implementation'] = None
|
663 |
+
|
664 |
+
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "SiglipImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"processor_class": "SiglipProcessor",
|
18 |
+
"resample": 3,
|
19 |
+
"rescale_factor": 0.00392156862745098,
|
20 |
+
"size": {
|
21 |
+
"height": 384,
|
22 |
+
"width": 384
|
23 |
+
}
|
24 |
+
}
|
pytorch_model-00001-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51746afd49f62a19dea005be6b449906e54c6cd820526d718e03a7f391acd295
|
3 |
+
size 4976717634
|
pytorch_model-00002-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6290b6257c5125d2c4a1beac3e5692d8f3b84300ad0dc0919d6f9a41bc28284
|
3 |
+
size 4999826694
|
pytorch_model-00003-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f09a8ff71a9680b1f80053b8ab3c0db736f3cdf206a2a660d71363a4b4a22f
|
3 |
+
size 4915939210
|
pytorch_model-00004-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff367cb3f86b688b0c40534a8b91c674ca2a162fe083c222748df6a48e5148d4
|
3 |
+
size 3702995441
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 18595210360
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llm.lm_head.weight": "pytorch_model-00004-of-00004.bin",
|
7 |
+
"llm.model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
|
8 |
+
"llm.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
9 |
+
"llm.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
10 |
+
"llm.model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
11 |
+
"llm.model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
12 |
+
"llm.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
13 |
+
"llm.model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
14 |
+
"llm.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
15 |
+
"llm.model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
16 |
+
"llm.model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
17 |
+
"llm.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
18 |
+
"llm.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
19 |
+
"llm.model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
20 |
+
"llm.model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
21 |
+
"llm.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
22 |
+
"llm.model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
23 |
+
"llm.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
24 |
+
"llm.model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
25 |
+
"llm.model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
26 |
+
"llm.model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
27 |
+
"llm.model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
28 |
+
"llm.model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
29 |
+
"llm.model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
30 |
+
"llm.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
31 |
+
"llm.model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
32 |
+
"llm.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
33 |
+
"llm.model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
34 |
+
"llm.model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
35 |
+
"llm.model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
36 |
+
"llm.model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
37 |
+
"llm.model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
38 |
+
"llm.model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
39 |
+
"llm.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
40 |
+
"llm.model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
41 |
+
"llm.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
42 |
+
"llm.model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
43 |
+
"llm.model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
44 |
+
"llm.model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
45 |
+
"llm.model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
46 |
+
"llm.model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
47 |
+
"llm.model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
48 |
+
"llm.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
49 |
+
"llm.model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
50 |
+
"llm.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
51 |
+
"llm.model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
52 |
+
"llm.model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
53 |
+
"llm.model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
54 |
+
"llm.model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
55 |
+
"llm.model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
56 |
+
"llm.model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
57 |
+
"llm.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
58 |
+
"llm.model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
59 |
+
"llm.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
60 |
+
"llm.model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
61 |
+
"llm.model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
62 |
+
"llm.model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
63 |
+
"llm.model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
64 |
+
"llm.model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
65 |
+
"llm.model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
66 |
+
"llm.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
67 |
+
"llm.model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
68 |
+
"llm.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
69 |
+
"llm.model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
70 |
+
"llm.model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
71 |
+
"llm.model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
72 |
+
"llm.model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
73 |
+
"llm.model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
74 |
+
"llm.model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
75 |
+
"llm.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
76 |
+
"llm.model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
77 |
+
"llm.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
78 |
+
"llm.model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
79 |
+
"llm.model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
80 |
+
"llm.model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
81 |
+
"llm.model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
82 |
+
"llm.model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
83 |
+
"llm.model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
84 |
+
"llm.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
85 |
+
"llm.model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
86 |
+
"llm.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
87 |
+
"llm.model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
88 |
+
"llm.model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
89 |
+
"llm.model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
90 |
+
"llm.model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
91 |
+
"llm.model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
92 |
+
"llm.model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
93 |
+
"llm.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
94 |
+
"llm.model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
95 |
+
"llm.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
96 |
+
"llm.model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
97 |
+
"llm.model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
98 |
+
"llm.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
99 |
+
"llm.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
100 |
+
"llm.model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
101 |
+
"llm.model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
102 |
+
"llm.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
103 |
+
"llm.model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
104 |
+
"llm.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
105 |
+
"llm.model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
106 |
+
"llm.model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
107 |
+
"llm.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
108 |
+
"llm.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
109 |
+
"llm.model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
110 |
+
"llm.model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
111 |
+
"llm.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
112 |
+
"llm.model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
113 |
+
"llm.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
114 |
+
"llm.model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
115 |
+
"llm.model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
116 |
+
"llm.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
117 |
+
"llm.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
118 |
+
"llm.model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
119 |
+
"llm.model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
120 |
+
"llm.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
121 |
+
"llm.model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
122 |
+
"llm.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
123 |
+
"llm.model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
124 |
+
"llm.model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
125 |
+
"llm.model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
126 |
+
"llm.model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
127 |
+
"llm.model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
128 |
+
"llm.model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
129 |
+
"llm.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
130 |
+
"llm.model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
131 |
+
"llm.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
132 |
+
"llm.model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
133 |
+
"llm.model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
134 |
+
"llm.model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
135 |
+
"llm.model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
136 |
+
"llm.model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
137 |
+
"llm.model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
138 |
+
"llm.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
139 |
+
"llm.model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
140 |
+
"llm.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
141 |
+
"llm.model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
142 |
+
"llm.model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
143 |
+
"llm.model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
144 |
+
"llm.model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
145 |
+
"llm.model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
146 |
+
"llm.model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
147 |
+
"llm.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
148 |
+
"llm.model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
149 |
+
"llm.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
150 |
+
"llm.model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
151 |
+
"llm.model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
152 |
+
"llm.model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
153 |
+
"llm.model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
154 |
+
"llm.model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
155 |
+
"llm.model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
156 |
+
"llm.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
157 |
+
"llm.model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
158 |
+
"llm.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
159 |
+
"llm.model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
160 |
+
"llm.model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
161 |
+
"llm.model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
162 |
+
"llm.model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
163 |
+
"llm.model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
164 |
+
"llm.model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
165 |
+
"llm.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
166 |
+
"llm.model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
167 |
+
"llm.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
168 |
+
"llm.model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
169 |
+
"llm.model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
170 |
+
"llm.model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
171 |
+
"llm.model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
172 |
+
"llm.model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
173 |
+
"llm.model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
174 |
+
"llm.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
175 |
+
"llm.model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
176 |
+
"llm.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
177 |
+
"llm.model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
178 |
+
"llm.model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
179 |
+
"llm.model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
180 |
+
"llm.model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
181 |
+
"llm.model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
182 |
+
"llm.model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
183 |
+
"llm.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
184 |
+
"llm.model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
185 |
+
"llm.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
186 |
+
"llm.model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
187 |
+
"llm.model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
188 |
+
"llm.model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
189 |
+
"llm.model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
190 |
+
"llm.model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
191 |
+
"llm.model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
192 |
+
"llm.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
193 |
+
"llm.model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
194 |
+
"llm.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
195 |
+
"llm.model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
196 |
+
"llm.model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
197 |
+
"llm.model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
198 |
+
"llm.model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
199 |
+
"llm.model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
200 |
+
"llm.model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
201 |
+
"llm.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
202 |
+
"llm.model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
203 |
+
"llm.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
204 |
+
"llm.model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
205 |
+
"llm.model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
206 |
+
"llm.model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
207 |
+
"llm.model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
208 |
+
"llm.model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
209 |
+
"llm.model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
210 |
+
"llm.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
211 |
+
"llm.model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
212 |
+
"llm.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
213 |
+
"llm.model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
214 |
+
"llm.model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
215 |
+
"llm.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
216 |
+
"llm.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
217 |
+
"llm.model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
218 |
+
"llm.model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
219 |
+
"llm.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
220 |
+
"llm.model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
221 |
+
"llm.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
222 |
+
"llm.model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
223 |
+
"llm.model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
224 |
+
"llm.model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
225 |
+
"llm.model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
226 |
+
"llm.model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
227 |
+
"llm.model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
228 |
+
"llm.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
229 |
+
"llm.model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
230 |
+
"llm.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
231 |
+
"llm.model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
232 |
+
"llm.model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
233 |
+
"llm.model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
234 |
+
"llm.model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
235 |
+
"llm.model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
236 |
+
"llm.model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
237 |
+
"llm.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
238 |
+
"llm.model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
239 |
+
"llm.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
240 |
+
"llm.model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
241 |
+
"llm.model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
242 |
+
"llm.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
243 |
+
"llm.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
244 |
+
"llm.model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
245 |
+
"llm.model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
246 |
+
"llm.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
247 |
+
"llm.model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
248 |
+
"llm.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
249 |
+
"llm.model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
250 |
+
"llm.model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
251 |
+
"llm.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
252 |
+
"llm.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
253 |
+
"llm.model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
254 |
+
"llm.model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
255 |
+
"llm.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
256 |
+
"llm.model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
257 |
+
"llm.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
258 |
+
"llm.model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
259 |
+
"llm.model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
260 |
+
"llm.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
261 |
+
"llm.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
262 |
+
"llm.model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
263 |
+
"llm.model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
264 |
+
"llm.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
265 |
+
"llm.model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
266 |
+
"llm.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
267 |
+
"llm.model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
268 |
+
"llm.model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
269 |
+
"llm.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
270 |
+
"llm.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
271 |
+
"llm.model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
272 |
+
"llm.model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
273 |
+
"llm.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
274 |
+
"llm.model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
275 |
+
"llm.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
276 |
+
"llm.model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
277 |
+
"llm.model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
278 |
+
"llm.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
279 |
+
"llm.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
280 |
+
"llm.model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
281 |
+
"llm.model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
282 |
+
"llm.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
283 |
+
"llm.model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
284 |
+
"llm.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
285 |
+
"llm.model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
286 |
+
"llm.model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
287 |
+
"llm.model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
288 |
+
"llm.model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
289 |
+
"llm.model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
290 |
+
"llm.model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
291 |
+
"llm.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
292 |
+
"llm.model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
293 |
+
"llm.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
294 |
+
"llm.model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
295 |
+
"llm.model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
296 |
+
"llm.model.norm.weight": "pytorch_model-00004-of-00004.bin",
|
297 |
+
"visual_tokenizer.backbone.vision_model.embeddings.patch_embedding.bias": "pytorch_model-00004-of-00004.bin",
|
298 |
+
"visual_tokenizer.backbone.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00004-of-00004.bin",
|
299 |
+
"visual_tokenizer.backbone.vision_model.embeddings.position_embedding.weight": "pytorch_model-00004-of-00004.bin",
|
300 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
301 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
302 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
303 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
304 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
305 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
306 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
307 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
308 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
309 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
310 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
311 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
312 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
313 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
314 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
315 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
316 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
317 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
318 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
319 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
320 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
321 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
322 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
323 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
324 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
325 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
326 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
327 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
328 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
329 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
330 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
331 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
332 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
333 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
334 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
335 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
336 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
337 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
338 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
339 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
340 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
341 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
342 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
343 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
344 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
345 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
346 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
347 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
348 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
349 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
350 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
351 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
352 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
353 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
354 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
355 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
356 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
357 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
358 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
359 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
360 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
361 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
362 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
363 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
364 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
365 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
366 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
367 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
368 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
369 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
370 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
371 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
372 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
373 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
374 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
375 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
376 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
377 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
378 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
379 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
380 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
381 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
382 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
383 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
384 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
385 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
386 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
387 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
388 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
389 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
390 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
391 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
392 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
393 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
394 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
395 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
396 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
397 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
398 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
399 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
400 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
401 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
402 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
403 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
404 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
405 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
406 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
407 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
408 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
409 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
410 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
411 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
412 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
413 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
414 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
415 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
416 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
417 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
418 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
419 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
420 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
421 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
422 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
423 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
424 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
425 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
426 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
427 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
428 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
429 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
430 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
431 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
432 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
433 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
434 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
435 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
436 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
437 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
438 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
439 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
440 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
441 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
442 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
443 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
444 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
445 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
446 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
447 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
448 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
449 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
450 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
451 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
452 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
453 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
454 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
455 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
456 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
457 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
458 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
459 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
460 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
461 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
462 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
463 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
464 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
465 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
466 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
467 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
468 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
469 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
470 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
471 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
472 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
473 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
474 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
475 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
476 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
477 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
478 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
479 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
480 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
481 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
482 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
483 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
484 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
485 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
486 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
487 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
488 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
489 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
490 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
491 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
492 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
493 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
494 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
495 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
496 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
497 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
498 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
499 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
500 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
501 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
502 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
503 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
504 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
505 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
506 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
507 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
508 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
509 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
510 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
511 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
512 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
513 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
514 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
515 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
516 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
517 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
518 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
519 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
520 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
521 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
522 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
523 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
524 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
525 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
526 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
527 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
528 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
529 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
530 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
531 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
532 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
533 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
534 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
535 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
536 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
537 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
538 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
539 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
540 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
541 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
542 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
543 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
544 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
545 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
546 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
547 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
548 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
549 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
550 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
551 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
552 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
553 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
554 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
555 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
556 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
557 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
558 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
559 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
560 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
561 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
562 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
563 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
564 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
565 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
566 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
567 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
568 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
569 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
570 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
571 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
572 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
573 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
574 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
575 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
576 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
577 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
578 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
579 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
580 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
581 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
582 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
583 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
584 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
585 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
586 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
587 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
588 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
589 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
590 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
591 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
592 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
593 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
594 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
595 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
596 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
597 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
598 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
599 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
600 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
601 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
602 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
603 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
604 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
605 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
606 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
607 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
608 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
609 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
610 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
611 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
612 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
613 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
614 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
615 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
616 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
617 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
618 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
619 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
620 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
621 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
622 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
623 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
624 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
625 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
626 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
627 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
628 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
629 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
630 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
631 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
632 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
633 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
634 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
635 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
636 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
637 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
638 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
639 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
640 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
641 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
642 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
643 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
644 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
645 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
646 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
647 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
648 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
649 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
650 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
651 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
652 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
653 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
654 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
655 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
656 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
657 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
658 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
659 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
660 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
661 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
662 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
663 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
664 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
665 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
666 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
667 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
668 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
669 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
670 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
671 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
672 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
673 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
674 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
675 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
676 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
677 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
678 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
679 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
680 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
681 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
682 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
683 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
684 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
685 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
686 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
687 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
688 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
689 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
690 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
691 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
692 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
693 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
694 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
695 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
696 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
697 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
698 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
699 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
700 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
701 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
702 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
703 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
704 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
705 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
706 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
707 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
708 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
709 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
710 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
711 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
712 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
713 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
714 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
715 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
716 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00004-of-00004.bin",
|
717 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00004-of-00004.bin",
|
718 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00004-of-00004.bin",
|
719 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00004-of-00004.bin",
|
720 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
721 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
722 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
723 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
724 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
|
725 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
726 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
727 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
728 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
|
729 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
730 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
|
731 |
+
"visual_tokenizer.backbone.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
732 |
+
"visual_tokenizer.backbone.vision_model.head.attention.in_proj_bias": "pytorch_model-00004-of-00004.bin",
|
733 |
+
"visual_tokenizer.backbone.vision_model.head.attention.in_proj_weight": "pytorch_model-00004-of-00004.bin",
|
734 |
+
"visual_tokenizer.backbone.vision_model.head.attention.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
735 |
+
"visual_tokenizer.backbone.vision_model.head.attention.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
736 |
+
"visual_tokenizer.backbone.vision_model.head.layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
737 |
+
"visual_tokenizer.backbone.vision_model.head.layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
738 |
+
"visual_tokenizer.backbone.vision_model.head.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
739 |
+
"visual_tokenizer.backbone.vision_model.head.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
740 |
+
"visual_tokenizer.backbone.vision_model.head.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
741 |
+
"visual_tokenizer.backbone.vision_model.head.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
742 |
+
"visual_tokenizer.backbone.vision_model.head.probe": "pytorch_model-00004-of-00004.bin",
|
743 |
+
"visual_tokenizer.backbone.vision_model.post_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
744 |
+
"visual_tokenizer.backbone.vision_model.post_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
745 |
+
"visual_tokenizer.head.0.weight": "pytorch_model-00004-of-00004.bin",
|
746 |
+
"visual_tokenizer.head.1.bias": "pytorch_model-00004-of-00004.bin",
|
747 |
+
"visual_tokenizer.head.1.weight": "pytorch_model-00004-of-00004.bin",
|
748 |
+
"vte.weight": "pytorch_model-00004-of-00004.bin"
|
749 |
+
}
|
750 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end_of_text|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|reserved_special_token_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|reserved_special_token_4|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|reserved_special_token_5|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_6|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_7|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_8|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_9|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_10|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_11|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_12|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_13|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_14|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_15|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_16|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_17|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_18|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_19|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_20|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_21|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_22|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_23|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_24|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_25|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_26|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_27|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_28|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_29|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_30|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_31|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_32|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_33|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_34|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_35|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_36|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_37|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_38|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_39|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_40|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_41|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_42|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_43|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_44|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_45|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_46|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_47|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_48|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_49|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_50|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_51|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_52|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_53|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_54|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_55|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_56|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_57|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_58|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_59|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_60|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_61|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_62|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_63|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_64|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_65|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_66|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_67|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_68|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_69|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_70|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_71|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_72|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_73|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_74|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_75|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_76|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_77|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_78|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_79|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_80|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_81|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_82|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_83|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_84|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_85|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_86|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_87|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_88|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_89|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_90|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_91|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_92|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_93|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_94|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_95|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_96|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_97|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_98|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_99|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_100|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_101|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_102|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_103|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_104|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_105|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_106|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_107|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_108|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_109|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_110|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_111|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_112|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_113|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_114|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_115|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_116|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_117|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_118|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_119|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_120|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_121|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_122|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_123|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_124|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_125|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_126|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_127|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_128|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_129|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_130|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_131|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_132|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_133|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_134|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_135|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_136|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_137|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_138|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_139|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_140|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_141|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_142|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_143|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_144|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_145|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_146|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_147|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_148|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_149|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_150|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_151|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_152|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_153|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_154|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_155|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_156|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_157|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_158|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_159|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_160|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_161|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_162|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_163|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_164|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_165|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_166|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_167|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_168|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_169|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_170|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_171|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_172|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_173|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_174|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_175|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_176|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_177|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_178|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_179|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_180|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_181|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_182|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_183|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_184|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_185|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_186|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_187|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_188|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_189|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_190|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_191|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_192|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_193|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_194|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_195|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_196|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_197|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_198|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_199|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_200|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_201|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_202|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_203|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_204|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_205|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_206|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_207|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_208|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_209|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_210|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_211|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_212|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_213|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_214|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_215|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_216|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_217|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_218|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_219|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_220|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_221|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_222|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_223|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_224|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_225|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_226|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_227|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_228|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_229|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_230|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_231|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_232|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_233|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_234|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_235|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_236|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_237|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_238|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_239|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_240|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_241|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_242|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_243|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_244|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_245|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_246|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_247|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_248|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_249|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_250|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"attention_mask"
|
2059 |
+
],
|
2060 |
+
"model_max_length": 1000000000000000019884624838656,
|
2061 |
+
"pad_token": "<|end_of_text|>",
|
2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
+
}
|