Ovis-Clip-Llama3-8B / modeling_ovis.py
runninglsy's picture
initial commit
f3e7f79
import os
from datetime import datetime
from importlib import import_module
from typing import List, Union, Callable, Optional
import deepspeed
import torch
from torch import Tensor, LongTensor, IntTensor
from torch.nn import init
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config
from .visual_tokenizer import ClipVisualTokenizer
from .configuration_ovis import OvisConfig
from .conversation_formatter import ConversationFormatter
from .utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX, BEGIN_LINE, END_LINE, rank0_print
class VisualEmbedding(torch.nn.Embedding):
def forward(self, input: Tensor) -> Tensor:
if any((isinstance(input, LongTensor), isinstance(input, IntTensor))):
return super().forward(input)
return torch.matmul(input, self.weight)
def reset_parameters(self, mean=0., std=1.) -> None:
init.normal_(self.weight, mean=mean, std=std)
self._fill_padding_idx_with_zero()
class OvisPreTrainedModel(PreTrainedModel):
config_class = OvisConfig
base_model_prefix = "ovis"
class Ovis(OvisPreTrainedModel):
def __init__(self, config: OvisConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if kwargs.get('train_from_scratch'):
self.llm = AutoModelForCausalLM.from_pretrained(kwargs['llm_name_or_path'], token=None) # add token for gated model
self.generation_config = self.llm.generation_config
self.config.llm_config = self.llm.config
self.config.hidden_size = self.llm.config.hidden_size # for deepspeed auto configuration
self.text_tokenizer = AutoTokenizer.from_pretrained(kwargs['llm_name_or_path'], token=None) # add token for gated model
if self.text_tokenizer.pad_token_id is None and kwargs.get('pad_token_id') is not None:
self.text_tokenizer.pad_token_id = kwargs['pad_token_id']
if kwargs.get('visual_tokenizer_pretrained_path'):
self.visual_tokenizer = AutoModel.from_pretrained(kwargs['visual_tokenizer_pretrained_path'],
image_processor_name_or_path=kwargs[
'visual_tokenizer_pretrained_path'])
else:
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
train_from_scratch=True)
self.config.visual_tokenizer_config = self.visual_tokenizer.config
else:
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
image_processor_name_or_path=self.config.name_or_path)
# initialize vte
if is_deepspeed_zero3_enabled():
with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size)
else:
self.visual_tokenizer.to(device=self.llm.device)
self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)
def _merge_modules(modules_list: tuple):
merged_modules = []
for modules in modules_list:
merged_modules.extend(modules if modules else [])
return merged_modules
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
self._keep_in_fp32_modules = _merge_modules(
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
self.supports_gradient_checkpointing = all(
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
self._supports_flash_attn_2 = all(
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
self._supports_cache_class = all((self.llm._supports_cache_class, self.visual_tokenizer._supports_cache_class))
def get_text_tokenizer(self):
return self.text_tokenizer
def get_visual_tokenizer(self):
return self.visual_tokenizer
def re_init_vte(self, mean, std):
vte = self.get_vte()
rank0_print(BEGIN_LINE)
rank0_print(f'[{datetime.now()}] Before re-initialization of vte: ')
with deepspeed.zero.GatheredParameters([vte.weight]):
rank0_print(f'vte.weight: {vte.weight}')
with deepspeed.zero.GatheredParameters([vte.weight], modifier_rank=0):
if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
vte.reset_parameters(mean, std)
rank0_print(f'[{datetime.now()}] After re-initialization of vte:')
with deepspeed.zero.GatheredParameters([vte.weight]):
rank0_print(f'vte.weight: {vte.weight}')
rank0_print(END_LINE)
def get_monitor_tensors(self):
monitor_tensors = dict(
wte=self.get_wte().weight,
lm_head=self.get_lm_head().weight,
vte=self.get_vte().weight
)
monitor_tensors.update(
{f'visual_tokenizer_{k}': v for k, v in self.get_visual_tokenizer().get_monitor_tensors().items()})
return monitor_tensors
def get_lm_head(self):
return self.get_llm().get_output_embeddings()
def get_llm(self):
return self.llm
def get_vte(self):
return self.vte
def get_wte(self):
return self.llm.get_input_embeddings()
def get_conversation_formatter(self) -> ConversationFormatter:
if getattr(self, 'conversation_formatter', None) is None:
self.conversation_formatter = getattr(import_module(".conversation_formatter", __package__),
self.config.conversation_formatter_class)(self.text_tokenizer)
return self.conversation_formatter
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pixel_values: List[Optional[torch.Tensor]],
labels: Optional[torch.Tensor] = None, **kwargs):
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
text_input_ids=input_ids,
text_attention_masks=attention_mask,
text_labels=labels,
pixel_values=pixel_values,
with_kv_cache=kwargs.get('past_key_values') is not None)
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
def merge_multimodal(self, text_input_ids: torch.Tensor, text_attention_masks: torch.Tensor,
text_labels: Optional[torch.Tensor], pixel_values: List[Optional[torch.Tensor]],
with_kv_cache: bool = False):
if with_kv_cache:
return None, self.get_wte()(text_input_ids), text_labels, text_attention_masks
if self.training:
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
# (see below in this function); so, the gradient will not be affected.
num_images = [x.shape[0] for x in pixel_values]
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
split_size_or_sections=num_images, dim=0)
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
split_size_or_sections=num_images, dim=0)
visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
else:
# When inference, sample can include only text with `None` pixel_value
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
if sum(num_images) > 0:
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
split_size_or_sections=num_images, dim=0)
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
split_size_or_sections=num_images, dim=0)
visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
else:
# just placeholders
visual_embeds = [None] * len(num_images)
visual_input_ids = [None] * len(num_images)
visual_labels = [None] * len(num_images)
# just placeholders
text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=text_input_ids.device)
input_embeds = []
attention_masks = []
labels = []
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
):
image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX)
text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0))
image_token_positions = torch.where(image_token_mask)[0].tolist()
if len(image_token_positions) > 0:
input_embed_parts = []
attention_mask_parts = []
label_parts = []
prev_image_token_position = -1
for index, image_token_position in enumerate(image_token_positions):
input_embed_parts.append(
text_embed[prev_image_token_position + 1:image_token_position, :])
label_parts.append(
text_label[prev_image_token_position + 1:image_token_position])
attention_mask_parts.append(
text_attention_mask[prev_image_token_position + 1:image_token_position])
input_embed_parts.append(visual_embed[index])
attention_mask_parts.append(
torch.ones_like(visual_label[index], device=text_label.device, dtype=torch.bool))
label_parts.append(visual_label[index].to(device=text_label.device))
prev_image_token_position = image_token_position
if prev_image_token_position + 1 < text_input_id.shape[0]:
input_embed_parts.append(
text_embed[prev_image_token_position + 1:, :])
attention_mask_parts.append(
text_attention_mask[prev_image_token_position + 1:])
label_parts.append(
text_label[prev_image_token_position + 1:])
input_embed = torch.cat(input_embed_parts, dim=0)
attention_mask = torch.cat(attention_mask_parts, dim=0)
label = torch.cat(label_parts, dim=0)
else:
input_embed = text_embed
attention_mask = text_attention_mask
label = text_label
if self.training:
# Make visual_embed involved in the backward graph, to be compatible with deepspeed zero and ddp.
input_embed += torch.sum(visual_embed * 0.0)
input_embeds.append(input_embed)
attention_masks.append(attention_mask)
labels.append(label)
batch_input_embeds = torch.nn.utils.rnn.pad_sequence(input_embeds, batch_first=True, padding_value=0.0)[:,
:self.config.multimodal_max_length, :]
batch_attention_mask = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)[
:,
:self.config.multimodal_max_length]
batch_labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)[:,
:self.config.multimodal_max_length]
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
state_dict: Optional[dict] = None,
save_function: Callable = torch.save,
push_to_hub: bool = False,
max_shard_size: Union[int, str] = "5GB",
safe_serialization: bool = True,
variant: Optional[str] = None,
token: Optional[Union[str, bool]] = None,
save_peft_format: bool = True,
**kwargs,
):
super().save_pretrained(save_directory,
is_main_process=is_main_process,
state_dict=state_dict,
save_function=save_function,
safe_serialization=safe_serialization)
self.get_text_tokenizer().save_pretrained(save_directory)
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
# uncomment the following will additionally save a separate visual tokenizer
# visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
# self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
# is_main_process=is_main_process,
# state_dict=None,
# save_function=save_function,
# safe_serialization=safe_serialization)
# self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)
# TODO: support batch generation
def prepare_inputs_for_generation(
self, input_ids, pixel_values, attention_mask, past_key_values=None, inputs_embeds=None, **kwargs):
if past_key_values is not None:
input_ids = input_ids[:, -1:]
attention_mask = attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values
}
)
return model_inputs