|
from collections.abc import Sequence |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from .configuration_prosst import ProSSTConfig |
|
import torch.nn.functional as F |
|
|
|
|
|
def build_relative_position(query_size, key_size, device): |
|
""" |
|
Build relative position according to the query and key |
|
|
|
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key |
|
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - |
|
P_k\\) |
|
|
|
Args: |
|
query_size (int): the length of query |
|
key_size (int): the length of key |
|
|
|
Return: |
|
`torch.LongTensor`: A tensor with shape [1, query_size, key_size] |
|
|
|
""" |
|
|
|
q_ids = torch.arange(query_size, dtype=torch.long, device=device) |
|
k_ids = torch.arange(key_size, dtype=torch.long, device=device) |
|
rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1) |
|
rel_pos_ids = rel_pos_ids[:query_size, :] |
|
rel_pos_ids = rel_pos_ids.unsqueeze(0) |
|
return rel_pos_ids |
|
|
|
|
|
@torch.jit.script |
|
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): |
|
return c2p_pos.expand( |
|
[ |
|
query_layer.size(0), |
|
query_layer.size(1), |
|
query_layer.size(2), |
|
relative_pos.size(-1), |
|
] |
|
) |
|
|
|
|
|
@torch.jit.script |
|
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): |
|
return c2p_pos.expand( |
|
[ |
|
query_layer.size(0), |
|
query_layer.size(1), |
|
key_layer.size(-2), |
|
key_layer.size(-2), |
|
] |
|
) |
|
|
|
|
|
@torch.jit.script |
|
def pos_dynamic_expand(pos_index, p2c_att, key_layer): |
|
return pos_index.expand( |
|
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)) |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
Rotary position embeddings based on those in |
|
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation |
|
matrices which depend on their relative positions. |
|
""" |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / ( |
|
10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim) |
|
) |
|
inv_freq = inv_freq |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=2): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( |
|
self.inv_freq |
|
) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :] |
|
self._sin_cached = emb.sin()[None, None, :, :] |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward( |
|
self, q: torch.Tensor, k: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables( |
|
k, seq_dimension=-2 |
|
) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
class MaskedConv1d(nn.Conv1d): |
|
"""A masked 1-dimensional convolution layer. |
|
|
|
Takes the same arguments as torch.nn.Conv1D, except that the padding is set automatically. |
|
|
|
Shape: |
|
Input: (N, L, in_channels) |
|
input_mask: (N, L, 1), optional |
|
Output: (N, L, out_channels) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
): |
|
""" |
|
:param in_channels: input channels |
|
:param out_channels: output channels |
|
:param kernel_size: the kernel width |
|
:param stride: filter shift |
|
:param dilation: dilation factor |
|
:param groups: perform depth-wise convolutions |
|
:param bias: adds learnable bias to output |
|
""" |
|
padding = dilation * (kernel_size - 1) // 2 |
|
super().__init__( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
padding=padding, |
|
) |
|
|
|
def forward(self, x, input_mask=None): |
|
if input_mask is not None: |
|
x = x * input_mask |
|
return super().forward(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
class Attention1dPooling(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.layer = MaskedConv1d(config.hidden_size, 1, 1) |
|
|
|
def forward(self, x, input_mask=None): |
|
batch_szie = x.shape[0] |
|
attn = self.layer(x) |
|
attn = attn.view(batch_szie, -1) |
|
if input_mask is not None: |
|
attn = attn.masked_fill_( |
|
~input_mask.view(batch_szie, -1).bool(), float("-inf") |
|
) |
|
attn = F.softmax(attn, dim=-1).view(batch_szie, -1, 1) |
|
out = (attn * x).sum(dim=1) |
|
return out |
|
|
|
|
|
class MeanPooling(nn.Module): |
|
"""Mean Pooling for sentence-level classification tasks.""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, features, input_mask=None): |
|
if input_mask is not None: |
|
|
|
masked_features = features * input_mask.unsqueeze(2) |
|
sum_features = torch.sum(masked_features, dim=1) |
|
mean_pooled_features = sum_features / input_mask.sum(dim=1, keepdim=True) |
|
else: |
|
mean_pooled_features = torch.mean(features, dim=1) |
|
return mean_pooled_features |
|
|
|
|
|
class ContextPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
scale_hidden = getattr(config, "scale_hidden", 1) |
|
if config.pooling_head == "mean": |
|
self.mean_pooling = MeanPooling() |
|
elif config.pooling_head == "attention": |
|
self.mean_pooling = Attention1dPooling(config) |
|
self.dense = nn.Linear( |
|
config.pooler_hidden_size, scale_hidden * config.pooler_hidden_size |
|
) |
|
self.dropout = nn.Dropout(config.pooler_dropout) |
|
self.config = config |
|
|
|
def forward(self, hidden_states, input_mask=None): |
|
|
|
|
|
|
|
context_token = self.mean_pooling(hidden_states, input_mask) |
|
context_token = self.dropout(context_token) |
|
pooled_output = self.dense(context_token) |
|
pooled_output = torch.tanh(pooled_output) |
|
return pooled_output |
|
|
|
@property |
|
def output_dim(self): |
|
return self.config.hidden_size |
|
|
|
|
|
class ProSSTLayerNorm(nn.Module): |
|
"""LayerNorm module in the TF style (epsilon inside the square root).""" |
|
|
|
def __init__(self, size, eps=1e-12): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(size)) |
|
self.bias = nn.Parameter(torch.zeros(size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_type = hidden_states.dtype |
|
hidden_states = hidden_states.float() |
|
mean = hidden_states.mean(-1, keepdim=True) |
|
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) |
|
hidden_states = (hidden_states - mean) / torch.sqrt( |
|
variance + self.variance_epsilon |
|
) |
|
hidden_states = hidden_states.to(input_type) |
|
y = self.weight * hidden_states + self.bias |
|
return y |
|
|
|
|
|
class DisentangledSelfAttention(nn.Module): |
|
|
|
def __init__(self, config: ProSSTConfig): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
|
|
self.pos_att_type = ( |
|
config.pos_att_type if config.pos_att_type is not None else [] |
|
) |
|
|
|
self.relative_attention = getattr(config, "relative_attention", False) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "relative" |
|
) |
|
if self.position_embedding_type == "rotary": |
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) |
|
if self.relative_attention: |
|
|
|
if "aa2ss" in self.pos_att_type: |
|
self.ss_proj = nn.Linear( |
|
config.hidden_size, self.all_head_size, bias=False |
|
) |
|
|
|
if "ss2aa" in self.pos_att_type: |
|
self.ss_q_proj = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
elif self.position_embedding_type == "relative": |
|
if self.relative_attention: |
|
self.max_relative_positions = getattr( |
|
config, "max_relative_positions", -1 |
|
) |
|
if self.max_relative_positions < 1: |
|
self.max_relative_positions = config.max_position_embeddings |
|
self.pos_dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
if "aa2pos" in self.pos_att_type: |
|
self.pos_proj = nn.Linear( |
|
config.hidden_size, self.all_head_size, bias=False |
|
) |
|
|
|
if "pos2aa" in self.pos_att_type: |
|
self.pos_q_proj = nn.Linear( |
|
config.hidden_size, self.all_head_size |
|
) |
|
|
|
if "aa2ss" in self.pos_att_type: |
|
self.ss_proj = nn.Linear( |
|
config.hidden_size, self.all_head_size, bias=False |
|
) |
|
|
|
if "ss2aa" in self.pos_att_type: |
|
self.ss_q_proj = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
|
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1) |
|
|
|
x = x.view(new_x_shape) |
|
|
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=False, |
|
query_states=None, |
|
relative_pos=None, |
|
rel_embeddings=None, |
|
ss_hidden_states=None, |
|
): |
|
query_layer = self.transpose_for_scores(self.query(hidden_states)) |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) |
|
|
|
rel_att = None |
|
scale_factor = 1 + len(self.pos_att_type) |
|
scale = torch.sqrt( |
|
torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor |
|
) |
|
query_layer = query_layer / scale.to(dtype=query_layer.dtype) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.relative_attention: |
|
if self.position_embedding_type == "relative": |
|
rel_embeddings = self.pos_dropout(rel_embeddings) |
|
rel_att = self.disentangled_att_bias( |
|
query_layer, |
|
key_layer, |
|
relative_pos, |
|
rel_embeddings, |
|
scale_factor, |
|
ss_hidden_states, |
|
) |
|
|
|
if rel_att is not None: |
|
attention_scores = attention_scores + rel_att |
|
|
|
rmask = ~(attention_mask.to(torch.bool)) |
|
attention_probs = attention_scores.masked_fill(rmask, float("-inf")) |
|
attention_probs = torch.softmax(attention_probs, -1) |
|
attention_probs = attention_probs.masked_fill(rmask, 0.0) |
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (-1,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
if output_attentions: |
|
return (context_layer, attention_probs) |
|
else: |
|
return context_layer |
|
|
|
def disentangled_att_bias( |
|
self, |
|
query_layer, |
|
key_layer, |
|
relative_pos, |
|
rel_embeddings, |
|
scale_factor, |
|
ss_hidden_states, |
|
): |
|
if self.position_embedding_type == "relative": |
|
if relative_pos is None: |
|
q = query_layer.size(-2) |
|
relative_pos = build_relative_position( |
|
q, key_layer.size(-2), query_layer.device |
|
) |
|
if relative_pos.dim() == 2: |
|
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) |
|
elif relative_pos.dim() == 3: |
|
relative_pos = relative_pos.unsqueeze(1) |
|
|
|
elif relative_pos.dim() != 4: |
|
raise ValueError( |
|
f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}" |
|
) |
|
|
|
att_span = min( |
|
max(query_layer.size(-2), key_layer.size(-2)), |
|
self.max_relative_positions, |
|
) |
|
relative_pos = relative_pos.long().to(query_layer.device) |
|
rel_embeddings = rel_embeddings[ |
|
self.max_relative_positions |
|
- att_span : self.max_relative_positions |
|
+ att_span, |
|
:, |
|
].unsqueeze(0) |
|
|
|
score = 0 |
|
|
|
if "aa2pos" in self.pos_att_type: |
|
pos_key_layer = self.pos_proj(rel_embeddings) |
|
pos_key_layer = self.transpose_for_scores(pos_key_layer) |
|
aa2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2)) |
|
aa2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) |
|
aa2p_att = torch.gather( |
|
aa2p_att, |
|
dim=-1, |
|
index=c2p_dynamic_expand(aa2p_pos, query_layer, relative_pos), |
|
) |
|
score += aa2p_att |
|
|
|
if "pos2aa" in self.pos_att_type: |
|
pos_query_layer = self.pos_q_proj(rel_embeddings) |
|
pos_query_layer = self.transpose_for_scores(pos_query_layer) |
|
pos_query_layer /= torch.sqrt( |
|
torch.tensor(pos_query_layer.size(-1), dtype=torch.float) |
|
* scale_factor |
|
) |
|
if query_layer.size(-2) != key_layer.size(-2): |
|
r_pos = build_relative_position( |
|
key_layer.size(-2), key_layer.size(-2), query_layer.device |
|
) |
|
else: |
|
r_pos = relative_pos |
|
p2aa_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) |
|
p2aa_att = torch.matmul( |
|
key_layer, |
|
pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype), |
|
) |
|
p2aa_att = torch.gather( |
|
p2aa_att, |
|
dim=-1, |
|
index=p2c_dynamic_expand(p2aa_pos, query_layer, key_layer), |
|
).transpose(-1, -2) |
|
|
|
if query_layer.size(-2) != key_layer.size(-2): |
|
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1) |
|
p2aa_att = torch.gather( |
|
p2aa_att, |
|
dim=-2, |
|
index=pos_dynamic_expand(pos_index, p2aa_att, key_layer), |
|
) |
|
score += p2aa_att |
|
|
|
|
|
if "aa2ss" in self.pos_att_type: |
|
assert ss_hidden_states is not None |
|
ss_key_layer = self.ss_proj(ss_hidden_states) |
|
ss_key_layer = self.transpose_for_scores(ss_key_layer) |
|
|
|
aa2ss_att = torch.matmul(query_layer, ss_key_layer.transpose(-1, -2)) |
|
score += aa2ss_att |
|
|
|
if "ss2aa" in self.pos_att_type: |
|
assert ss_hidden_states is not None |
|
ss_query_layer = self.ss_q_proj(ss_hidden_states) |
|
ss_query_layer = self.transpose_for_scores(ss_query_layer) |
|
ss_query_layer /= torch.sqrt( |
|
torch.tensor(ss_query_layer.size(-1), dtype=torch.float) |
|
* scale_factor |
|
) |
|
ss2aa_att = torch.matmul( |
|
key_layer, query_layer.transpose(-1, -2).to(dtype=key_layer.dtype) |
|
) |
|
score += ss2aa_att |
|
return score |
|
elif self.position_embedding_type == "rotary": |
|
score = 0 |
|
if "aa2ss" in self.pos_att_type: |
|
assert ss_hidden_states is not None |
|
ss_key_layer = self.ss_proj(ss_hidden_states) |
|
ss_key_layer = self.transpose_for_scores(ss_key_layer) |
|
aa2ss_att = torch.matmul(query_layer, ss_key_layer.transpose(-1, -2)) |
|
score += aa2ss_att |
|
|
|
if "ss2aa" in self.pos_att_type: |
|
assert ss_hidden_states is not None |
|
ss_query_layer = self.ss_q_proj(ss_hidden_states) |
|
ss_query_layer = self.transpose_for_scores(ss_query_layer) |
|
ss_query_layer /= torch.sqrt( |
|
torch.tensor(ss_query_layer.size(-1), dtype=torch.float) |
|
* scale_factor |
|
) |
|
ss2aa_att = torch.matmul( |
|
key_layer, query_layer.transpose(-1, -2).to(dtype=key_layer.dtype) |
|
) |
|
score += ss2aa_att |
|
return score |
|
|
|
|
|
class ProSSTSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = ProSSTLayerNorm(config.hidden_size, config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class ProSSTAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = DisentangledSelfAttention(config) |
|
self.output = ProSSTSelfOutput(config) |
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=False, |
|
query_states=None, |
|
relative_pos=None, |
|
rel_embeddings=None, |
|
ss_hidden_states=None, |
|
): |
|
self_output = self.self( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions, |
|
query_states=query_states, |
|
relative_pos=relative_pos, |
|
rel_embeddings=rel_embeddings, |
|
ss_hidden_states=ss_hidden_states, |
|
) |
|
if output_attentions: |
|
self_output, att_matrix = self_output |
|
if query_states is None: |
|
query_states = hidden_states |
|
attention_output = self.output(self_output, query_states) |
|
|
|
if output_attentions: |
|
return (attention_output, att_matrix) |
|
else: |
|
return attention_output |
|
|
|
|
|
class ProSSTIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ProSSTOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = ProSSTLayerNorm(config.hidden_size, config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.config = config |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class ProSSTLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention = ProSSTAttention(config) |
|
self.intermediate = ProSSTIntermediate(config) |
|
self.output = ProSSTOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
query_states=None, |
|
relative_pos=None, |
|
rel_embeddings=None, |
|
output_attentions=False, |
|
ss_hidden_states=None, |
|
): |
|
attention_output = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
query_states=query_states, |
|
relative_pos=relative_pos, |
|
rel_embeddings=rel_embeddings, |
|
ss_hidden_states=ss_hidden_states, |
|
) |
|
if output_attentions: |
|
attention_output, att_matrix = attention_output |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
if output_attentions: |
|
return (layer_output, att_matrix) |
|
else: |
|
return layer_output |
|
|
|
|
|
class ProSSTEncoder(nn.Module): |
|
"""Modified BertEncoder with relative position bias support""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.layer = nn.ModuleList( |
|
[ProSSTLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.relative_attention = getattr(config, "relative_attention", False) |
|
if self.relative_attention: |
|
self.max_relative_positions = getattr(config, "max_relative_positions", -1) |
|
if self.max_relative_positions < 1: |
|
self.max_relative_positions = config.max_position_embeddings |
|
self.rel_embeddings = nn.Embedding( |
|
self.max_relative_positions * 2, config.hidden_size |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def get_rel_embedding(self): |
|
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None |
|
return rel_embeddings |
|
|
|
def get_attention_mask(self, attention_mask): |
|
if attention_mask.dim() <= 2: |
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
attention_mask = extended_attention_mask * extended_attention_mask.squeeze( |
|
-2 |
|
).unsqueeze(-1) |
|
elif attention_mask.dim() == 3: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
return attention_mask |
|
|
|
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): |
|
if self.relative_attention and relative_pos is None: |
|
q = ( |
|
query_states.size(-2) |
|
if query_states is not None |
|
else hidden_states.size(-2) |
|
) |
|
relative_pos = build_relative_position( |
|
q, hidden_states.size(-2), hidden_states.device |
|
) |
|
return relative_pos |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
output_hidden_states=True, |
|
output_attentions=False, |
|
query_states=None, |
|
relative_pos=None, |
|
ss_hidden_states=None, |
|
return_dict=True, |
|
): |
|
attention_mask = self.get_attention_mask(attention_mask) |
|
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
if isinstance(hidden_states, Sequence): |
|
next_kv = hidden_states[0] |
|
else: |
|
next_kv = hidden_states |
|
rel_embeddings = self.get_rel_embedding() |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
next_kv, |
|
attention_mask, |
|
query_states, |
|
relative_pos, |
|
rel_embeddings, |
|
ss_hidden_states, |
|
) |
|
else: |
|
hidden_states = layer_module( |
|
next_kv, |
|
attention_mask, |
|
query_states=query_states, |
|
relative_pos=relative_pos, |
|
rel_embeddings=rel_embeddings, |
|
output_attentions=output_attentions, |
|
ss_hidden_states=ss_hidden_states, |
|
) |
|
|
|
if output_attentions: |
|
hidden_states, att_m = hidden_states |
|
|
|
if query_states is not None: |
|
query_states = hidden_states |
|
if isinstance(hidden_states, Sequence): |
|
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None |
|
else: |
|
next_kv = hidden_states |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (att_m,) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, all_hidden_states, all_attentions] |
|
if v is not None |
|
) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
class ProSSTEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
pad_token_id = getattr(config, "pad_token_id", 0) |
|
self.embedding_size = getattr(config, "embedding_size", config.hidden_size) |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, self.embedding_size, padding_idx=pad_token_id |
|
) |
|
|
|
self.position_biased_input = getattr(config, "position_biased_input", False) |
|
if not self.position_biased_input: |
|
self.position_embeddings = None |
|
else: |
|
|
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, self.embedding_size |
|
) |
|
|
|
if config.type_vocab_size > 0: |
|
self.token_type_embeddings = nn.Embedding( |
|
config.type_vocab_size, self.embedding_size |
|
) |
|
|
|
if config.ss_vocab_size > 0: |
|
self.ss_embeddings = nn.Embedding(config.ss_vocab_size, self.embedding_size) |
|
self.ss_layer_norm = ProSSTLayerNorm( |
|
config.hidden_size, config.layer_norm_eps |
|
) |
|
|
|
if self.embedding_size != config.hidden_size: |
|
self.embed_proj = nn.Linear( |
|
self.embedding_size, config.hidden_size, bias=False |
|
) |
|
self.LayerNorm = ProSSTLayerNorm(config.hidden_size, config.layer_norm_eps) |
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.config = config |
|
|
|
|
|
if self.position_biased_input: |
|
self.register_buffer( |
|
"position_ids", |
|
torch.arange(config.max_position_embeddings).expand((1, -1)), |
|
persistent=False, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
ss_input_ids=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
mask=None, |
|
inputs_embeds=None, |
|
): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None and self.position_biased_input: |
|
position_ids = self.position_ids[:, :seq_length] |
|
if seq_length > position_ids.size(1): |
|
zero_padding = ( |
|
torch.zeros( |
|
(input_shape[0], seq_length - position_ids.size(1)), |
|
dtype=torch.long, |
|
device=position_ids.device, |
|
) |
|
+ 2047 |
|
) |
|
position_ids = torch.cat([position_ids, zero_padding], dim=1) |
|
|
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=self.position_ids.device |
|
) |
|
|
|
if inputs_embeds is None: |
|
if self.config.token_dropout: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
inputs_embeds.masked_fill_( |
|
(input_ids == self.config.mask_token_id).unsqueeze(-1), 0.0 |
|
) |
|
mask_ratio_train = self.config.mlm_probability * 0.8 |
|
src_lengths = mask.sum(dim=-1) |
|
mask_ratio_observed = (input_ids == self.config.mask_token_id).sum( |
|
-1 |
|
).to(inputs_embeds.dtype) / src_lengths |
|
inputs_embeds = ( |
|
inputs_embeds |
|
* (1 - mask_ratio_train) |
|
/ (1 - mask_ratio_observed)[:, None, None] |
|
) |
|
else: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
if self.position_embeddings is not None and self.position_biased_input: |
|
position_embeddings = self.position_embeddings(position_ids.long()) |
|
else: |
|
position_embeddings = torch.zeros_like(inputs_embeds) |
|
|
|
embeddings = inputs_embeds |
|
if self.position_biased_input: |
|
embeddings += position_embeddings |
|
if self.config.type_vocab_size > 0: |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
embeddings += token_type_embeddings |
|
|
|
if self.embedding_size != self.config.hidden_size: |
|
embeddings = self.embed_proj(embeddings) |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
|
|
if mask is not None: |
|
if mask.dim() != embeddings.dim(): |
|
if mask.dim() == 4: |
|
mask = mask.squeeze(1).squeeze(1) |
|
mask = mask.unsqueeze(2) |
|
mask = mask.to(embeddings.dtype) |
|
embeddings = embeddings * mask |
|
|
|
embeddings = self.dropout(embeddings) |
|
|
|
if self.config.ss_vocab_size > 0: |
|
ss_embeddings = self.ss_embeddings(ss_input_ids) |
|
ss_embeddings = self.ss_layer_norm(ss_embeddings) |
|
if mask is not None: |
|
if mask.dim() != ss_embeddings.dim(): |
|
if mask.dim() == 4: |
|
mask = mask.squeeze(1).squeeze(1) |
|
mask = mask.unsqueeze(2) |
|
mask = mask.to(ss_embeddings.dtype) |
|
ss_embeddings = ss_embeddings * mask |
|
ss_embeddings = self.dropout(ss_embeddings) |
|
return embeddings, ss_embeddings |
|
|
|
return embeddings, None |
|
|
|
|
|
class ProSSTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ProSSTConfig |
|
base_model_prefix = "ProSST" |
|
_keys_to_ignore_on_load_unexpected = ["position_embeddings"] |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, ProSSTEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class ProSSTModel(ProSSTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embeddings = ProSSTEmbeddings(config) |
|
self.encoder = ProSSTEncoder(config) |
|
self.config = config |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embeddings.word_embeddings = new_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
raise NotImplementedError( |
|
"The prune function is not implemented in DeBERTa model." |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
ss_input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, device=device) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
embedding_output, ss_embeddings = self.embeddings( |
|
input_ids=input_ids, |
|
ss_input_ids=ss_input_ids, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask, |
|
output_hidden_states=True, |
|
output_attentions=output_attentions, |
|
return_dict=return_dict, |
|
ss_hidden_states=ss_embeddings, |
|
) |
|
encoded_layers = encoder_outputs[1] |
|
|
|
sequence_output = encoded_layers[-1] |
|
|
|
if not return_dict: |
|
return (sequence_output,) + encoder_outputs[ |
|
(1 if output_hidden_states else 2) : |
|
] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=( |
|
encoder_outputs.hidden_states if output_hidden_states else None |
|
), |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class ProSSTPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.embedding_size = getattr(config, "embedding_size", config.hidden_size) |
|
|
|
self.dense = nn.Linear(config.hidden_size, self.embedding_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ProSSTLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = ProSSTPredictionHeadTransform(config) |
|
|
|
self.embedding_size = getattr(config, "embedding_size", config.hidden_size) |
|
|
|
|
|
self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ProSSTOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = ProSSTLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class ProSSTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ProSSTConfig |
|
base_model_prefix = "ProSST" |
|
_keys_to_ignore_on_load_unexpected = ["position_embeddings"] |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, ProSSTEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class ProSSTForMaskedLM(ProSSTPreTrainedModel): |
|
_tied_weights_keys = [ |
|
"cls.predictions.decoder.weight", |
|
"cls.predictions.decoder.bias", |
|
] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.prosst = ProSSTModel(config) |
|
self.cls = ProSSTOnlyMLMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.prosst.embeddings.word_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
ss_input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.prosst( |
|
input_ids, |
|
ss_input_ids=ss_input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[1:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class ProSSTForSequenceClassification(ProSSTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
num_labels = getattr(config, "num_labels", 2) |
|
self.num_labels = num_labels |
|
self.scale_hidden = getattr(config, "scale_hidden", 1) |
|
self.prosst = ProSSTModel(config) |
|
self.pooler = ContextPooler(config) |
|
output_dim = self.pooler.output_dim * self.scale_hidden |
|
|
|
self.classifier = nn.Linear(output_dim, num_labels) |
|
drop_out = getattr(config, "cls_dropout", None) |
|
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out |
|
self.dropout = nn.Dropout(drop_out) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.prosst.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.prosst.set_input_embeddings(new_embeddings) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
ss_input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.prosst( |
|
input_ids, |
|
ss_input_ids=ss_input_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
encoder_layer = outputs[0] |
|
pooled_output = self.pooler(encoder_layer, attention_mask) |
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
|
|
loss_fn = nn.MSELoss() |
|
logits = logits.view(-1).to(labels.dtype) |
|
loss = loss_fn(logits, labels.view(-1)) |
|
elif labels.dim() == 1 or labels.size(-1) == 1: |
|
label_index = (labels >= 0).nonzero() |
|
labels = labels.long() |
|
if label_index.size(0) > 0: |
|
labeled_logits = torch.gather( |
|
logits, |
|
0, |
|
label_index.expand(label_index.size(0), logits.size(1)), |
|
) |
|
labels = torch.gather(labels, 0, label_index.view(-1)) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
labeled_logits.view(-1, self.num_labels).float(), |
|
labels.view(-1), |
|
) |
|
else: |
|
loss = torch.tensor(0).to(logits) |
|
else: |
|
log_softmax = nn.LogSoftmax(-1) |
|
loss = -((log_softmax(logits) * labels).sum(-1)).mean() |
|
elif self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "binary_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits.squeeze(), labels.squeeze().to(logits.dtype)) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels.to(logits.dtype)) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class ProSSTForTokenClassification(ProSSTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.prosst = ProSSTModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.prosst( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
ProSSTModel.register_for_auto_class("AutoModel") |
|
ProSSTForMaskedLM.register_for_auto_class("AutoModelForMaskedLM") |
|
ProSSTForSequenceClassification.register_for_auto_class( |
|
"AutoModelForSequenceClassification" |
|
) |
|
ProSSTForTokenClassification.register_for_auto_class("AutoModelForTokenClassification") |
|
|