PhaseNet / phasenet /visulization.py
zhuwq0's picture
upload phasenet
7b07ad9
raw
history blame
23.4 kB
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
import numpy as np
import os
def plot_residual(diff_p, diff_s, diff_ps, tol, dt):
box = dict(boxstyle='round', facecolor='white', alpha=1)
text_loc = [0.07, 0.95]
plt.figure(figsize=(8,3))
plt.subplot(1,3,1)
plt.hist(diff_p, range=(-tol, tol), bins=int(2*tol/dt)+1, facecolor='b', edgecolor='black', linewidth=1)
plt.ylabel("Number of picks")
plt.xlabel("Residual (s)")
plt.text(text_loc[0], text_loc[1], "(i)", horizontalalignment='left', verticalalignment='top',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.title("P-phase")
plt.subplot(1,3,2)
plt.hist(diff_s, range=(-tol, tol), bins=int(2*tol/dt)+1, facecolor='b', edgecolor='black', linewidth=1)
plt.xlabel("Residual (s)")
plt.text(text_loc[0], text_loc[1], "(ii)", horizontalalignment='left', verticalalignment='top',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.title("S-phase")
plt.subplot(1,3,3)
plt.hist(diff_ps, range=(-tol, tol), bins=int(2*tol/dt)+1, facecolor='b', edgecolor='black', linewidth=1)
plt.xlabel("Residual (s)")
plt.text(text_loc[0], text_loc[1], "(iii)", horizontalalignment='left', verticalalignment='top',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.title("PS-phase")
plt.tight_layout()
plt.savefig("residuals.png", dpi=300)
plt.savefig("residuals.pdf")
# def plot_waveform(config, data, pred, label=None,
# itp=None, its=None, itps=None,
# itp_pred=None, its_pred=None, itps_pred=None,
# fname=None, figure_dir="./", epoch=0, max_fig=10):
# dt = config.dt if hasattr(config, "dt") else 1.0
# t = np.arange(0, pred.shape[1]) * dt
# box = dict(boxstyle='round', facecolor='white', alpha=1)
# text_loc = [0.05, 0.77]
# if fname is None:
# fname = [f"{epoch:03d}_{i:02d}" for i in range(len(data))]
# else:
# fname = [fname[i].decode().rstrip(".npz") for i in range(len(fname))]
# for i in range(min(len(data), max_fig)):
# plt.figure(i)
# plt.subplot(411)
# plt.plot(t, data[i, :, 0, 0], 'k', label='E', linewidth=0.5)
# plt.autoscale(enable=True, axis='x', tight=True)
# tmp_min = np.min(data[i, :, 0, 0])
# tmp_max = np.max(data[i, :, 0, 0])
# if (itp is not None) and (its is not None):
# for j in range(len(itp[i])):
# lb = "P" if j==0 else ""
# plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'C0', label=lb, linewidth=0.5)
# for j in range(len(its[i])):
# lb = "S" if j==0 else ""
# plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'C1', label=lb, linewidth=0.5)
# if (itps is not None):
# for j in range(len(itps[i])):
# lb = "PS" if j==0 else ""
# plt.plot([itps[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'C2', label=lb, linewidth=0.5)
# plt.ylabel('Amplitude')
# plt.legend(loc='upper right', fontsize='small')
# plt.gca().set_xticklabels([])
# plt.text(text_loc[0], text_loc[1], '(i)', horizontalalignment='center',
# transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
# plt.subplot(412)
# plt.plot(t, data[i, :, 0, 1], 'k', label='N', linewidth=0.5)
# plt.autoscale(enable=True, axis='x', tight=True)
# tmp_min = np.min(data[i, :, 0, 1])
# tmp_max = np.max(data[i, :, 0, 1])
# if (itp is not None) and (its is not None):
# for j in range(len(itp[i])):
# lb = "P" if j==0 else ""
# plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'C0', label=lb, linewidth=0.5)
# for j in range(len(its[i])):
# lb = "S" if j==0 else ""
# plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'C1', label=lb, linewidth=0.5)
# if (itps is not None):
# for j in range(len(itps[i])):
# lb = "PS" if j==0 else ""
# plt.plot([itps[i][j]*dt, itps[i][j]*dt], [tmp_min, tmp_max], 'C2', label=lb, linewidth=0.5)
# plt.ylabel('Amplitude')
# plt.legend(loc='upper right', fontsize='small')
# plt.gca().set_xticklabels([])
# plt.text(text_loc[0], text_loc[1], '(ii)', horizontalalignment='center',
# transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
# plt.subplot(413)
# plt.plot(t, data[i, :, 0, 2], 'k', label='Z', linewidth=0.5)
# plt.autoscale(enable=True, axis='x', tight=True)
# tmp_min = np.min(data[i, :, 0, 2])
# tmp_max = np.max(data[i, :, 0, 2])
# if (itp is not None) and (its is not None):
# for j in range(len(itp[i])):
# lb = "P" if j==0 else ""
# plt.plot([itp[i][j]*dt, itp[i][j]*dt], [tmp_min, tmp_max], 'C0', label=lb, linewidth=0.5)
# for j in range(len(its[i])):
# lb = "S" if j==0 else ""
# plt.plot([its[i][j]*dt, its[i][j]*dt], [tmp_min, tmp_max], 'C1', label=lb, linewidth=0.5)
# if (itps is not None):
# for j in range(len(itps[i])):
# lb = "PS" if j==0 else ""
# plt.plot([itps[i][j]*dt, itps[i][j]*dt], [tmp_min, tmp_max], 'C2', label=lb, linewidth=0.5)
# plt.ylabel('Amplitude')
# plt.legend(loc='upper right', fontsize='small')
# plt.gca().set_xticklabels([])
# plt.text(text_loc[0], text_loc[1], '(iii)', horizontalalignment='center',
# transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
# plt.subplot(414)
# if label is not None:
# plt.plot(t, label[i, :, 0, 1], 'C0', label='P', linewidth=1)
# plt.plot(t, label[i, :, 0, 2], 'C1', label='S', linewidth=1)
# if label.shape[-1] == 4:
# plt.plot(t, label[i, :, 0, 3], 'C2', label='PS', linewidth=1)
# plt.plot(t, pred[i, :, 0, 1], '--C0', label='$\hat{P}$', linewidth=1)
# plt.plot(t, pred[i, :, 0, 2], '--C1', label='$\hat{S}$', linewidth=1)
# if pred.shape[-1] == 4:
# plt.plot(t, pred[i, :, 0, 3], '--C2', label='$\hat{PS}$', linewidth=1)
# plt.autoscale(enable=True, axis='x', tight=True)
# if (itp_pred is not None) and (its_pred is not None) :
# for j in range(len(itp_pred)):
# plt.plot([itp_pred[j]*dt, itp_pred[j]*dt], [-0.1, 1.1], '--C0', linewidth=1)
# for j in range(len(its_pred)):
# plt.plot([its_pred[j]*dt, its_pred[j]*dt], [-0.1, 1.1], '--C1', linewidth=1)
# if (itps_pred is not None):
# for j in range(len(itps_pred)):
# plt.plot([itps_pred[j]*dt, itps_pred[j]*dt], [-0.1, 1.1], '--C2', linewidth=1)
# plt.ylim([-0.05, 1.05])
# plt.text(text_loc[0], text_loc[1], '(iv)', horizontalalignment='center',
# transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
# plt.legend(loc='upper right', fontsize='small', ncol=2)
# plt.xlabel('Time (s)')
# plt.ylabel('Probability')
# plt.tight_layout()
# plt.gcf().align_labels()
# try:
# plt.savefig(os.path.join(figure_dir, fname[i]+'.png'), bbox_inches='tight')
# except FileNotFoundError:
# os.makedirs(os.path.dirname(os.path.join(figure_dir, fname[i])), exist_ok=True)
# plt.savefig(os.path.join(figure_dir, fname[i]+'.png'), bbox_inches='tight')
# plt.close(i)
# return 0
def plot_waveform(data, pred, fname, label=None,
itp=None, its=None, itps=None,
itp_pred=None, its_pred=None, itps_pred=None,
figure_dir="./", dt=0.01):
t = np.arange(0, pred.shape[0]) * dt
box = dict(boxstyle='round', facecolor='white', alpha=1)
text_loc = [0.05, 0.77]
plt.figure()
plt.subplot(411)
plt.plot(t, data[:, 0, 0], 'k', label='E', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(data[:, 0, 0])
tmp_max = np.max(data[:, 0, 0])
if (itp is not None) and (its is not None):
for j in range(len(itp)):
lb = "P" if j==0 else ""
plt.plot([itp[j]*dt, itp[j]*dt], [tmp_min, tmp_max], 'C0', label=lb, linewidth=0.5)
for j in range(len(its[i])):
lb = "S" if j==0 else ""
plt.plot([its[j]*dt, its[j]*dt], [tmp_min, tmp_max], 'C1', label=lb, linewidth=0.5)
if (itps is not None):
for j in range(len(itps)):
lb = "PS" if j==0 else ""
plt.plot([itps[j]*dt, its[j]*dt], [tmp_min, tmp_max], 'C2', label=lb, linewidth=0.5)
plt.ylabel('Amplitude')
plt.legend(loc='upper right', fontsize='small')
plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(i)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.subplot(412)
plt.plot(t, data[:, 0, 1], 'k', label='N', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(data[:, 0, 1])
tmp_max = np.max(data[:, 0, 1])
if (itp is not None) and (its is not None):
for j in range(len(itp)):
lb = "P" if j==0 else ""
plt.plot([itp[j]*dt, itp[j]*dt], [tmp_min, tmp_max], 'C0', label=lb, linewidth=0.5)
for j in range(len(its)):
lb = "S" if j==0 else ""
plt.plot([its[j]*dt, its[j]*dt], [tmp_min, tmp_max], 'C1', label=lb, linewidth=0.5)
if (itps is not None):
for j in range(len(itps)):
lb = "PS" if j==0 else ""
plt.plot([itps[j]*dt, itps[j]*dt], [tmp_min, tmp_max], 'C2', label=lb, linewidth=0.5)
plt.ylabel('Amplitude')
plt.legend(loc='upper right', fontsize='small')
plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(ii)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.subplot(413)
plt.plot(t, data[:, 0, 2], 'k', label='Z', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(data[:, 0, 2])
tmp_max = np.max(data[:, 0, 2])
if (itp is not None) and (its is not None):
for j in range(len(itp)):
lb = "P" if j==0 else ""
plt.plot([itp[j]*dt, itp[j]*dt], [tmp_min, tmp_max], 'C0', label=lb, linewidth=0.5)
for j in range(len(its)):
lb = "S" if j==0 else ""
plt.plot([its[j]*dt, its[j]*dt], [tmp_min, tmp_max], 'C1', label=lb, linewidth=0.5)
if (itps is not None):
for j in range(len(itps)):
lb = "PS" if j==0 else ""
plt.plot([itps[j]*dt, itps[j]*dt], [tmp_min, tmp_max], 'C2', label=lb, linewidth=0.5)
plt.ylabel('Amplitude')
plt.legend(loc='upper right', fontsize='small')
plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(iii)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.subplot(414)
if label is not None:
plt.plot(t, label[:, 0, 1], 'C0', label='P', linewidth=1)
plt.plot(t, label[:, 0, 2], 'C1', label='S', linewidth=1)
if label.shape[-1] == 4:
plt.plot(t, label[:, 0, 3], 'C2', label='PS', linewidth=1)
plt.plot(t, pred[:, 0, 1], '--C0', label='$\hat{P}$', linewidth=1)
plt.plot(t, pred[:, 0, 2], '--C1', label='$\hat{S}$', linewidth=1)
if pred.shape[-1] == 4:
plt.plot(t, pred[:, 0, 3], '--C2', label='$\hat{PS}$', linewidth=1)
plt.autoscale(enable=True, axis='x', tight=True)
if (itp_pred is not None) and (its_pred is not None) :
for j in range(len(itp_pred)):
plt.plot([itp_pred[j]*dt, itp_pred[j]*dt], [-0.1, 1.1], '--C0', linewidth=1)
for j in range(len(its_pred)):
plt.plot([its_pred[j]*dt, its_pred[j]*dt], [-0.1, 1.1], '--C1', linewidth=1)
if (itps_pred is not None):
for j in range(len(itps_pred)):
plt.plot([itps_pred[j]*dt, itps_pred[j]*dt], [-0.1, 1.1], '--C2', linewidth=1)
plt.ylim([-0.05, 1.05])
plt.text(text_loc[0], text_loc[1], '(iv)', horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.legend(loc='upper right', fontsize='small', ncol=2)
plt.xlabel('Time (s)')
plt.ylabel('Probability')
plt.tight_layout()
plt.gcf().align_labels()
try:
plt.savefig(os.path.join(figure_dir, fname+'.png'), bbox_inches='tight')
except FileNotFoundError:
os.makedirs(os.path.dirname(os.path.join(figure_dir, fname)), exist_ok=True)
plt.savefig(os.path.join(figure_dir, fname+'.png'), bbox_inches='tight')
plt.close()
return 0
def plot_array(config, data, pred, label=None,
itp=None, its=None, itps=None,
itp_pred=None, its_pred=None, itps_pred=None,
fname=None, figure_dir="./", epoch=0):
dt = config.dt if hasattr(config, "dt") else 1.0
t = np.arange(0, pred.shape[1]) * dt
box = dict(boxstyle='round', facecolor='white', alpha=1)
text_loc = [0.05, 0.95]
if fname is None:
fname = [f"{epoch:03d}_{i:03d}" for i in range(len(data))]
else:
fname = [fname[i].decode().rstrip(".npz") for i in range(len(fname))]
for i in range(len(data)):
plt.figure(i, figsize=(10, 5))
plt.clf()
plt.subplot(121)
for j in range(data.shape[-2]):
plt.plot(t, data[i, :, j, 0]/10 + j, 'k', label='E', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
tmp_min = np.min(data[i, :, 0, 0])
tmp_max = np.max(data[i, :, 0, 0])
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
# plt.legend(loc='upper right', fontsize='small')
# plt.gca().set_xticklabels([])
plt.text(text_loc[0], text_loc[1], '(i)', horizontalalignment='center', verticalalignment="top",
transform=plt.gca().transAxes, fontsize="large", fontweight="normal", bbox=box)
plt.subplot(122)
for j in range(pred.shape[-2]):
if label is not None:
plt.plot(t, label[i, :, j, 1]+j, 'C2', label='P', linewidth=0.5)
plt.plot(t, label[i, :, j, 2]+j, 'C3', label='S', linewidth=0.5)
# plt.plot(t, label[i, :, j, 0]+j, 'C4', label='N', linewidth=0.5)
plt.plot(t, pred[i, :, j, 1]+j, 'C0', label='$\hat{P}$', linewidth=1)
plt.plot(t, pred[i, :, j, 2]+j, 'C1', label='$\hat{S}$', linewidth=1)
plt.autoscale(enable=True, axis='x', tight=True)
if (itp_pred is not None) and (its_pred is not None) and (itps_pred is not None):
for j in range(len(itp_pred)):
plt.plot([itp_pred[j]*dt, itp_pred[j]*dt], [-0.1, 1.1], '--C0', linewidth=1)
for j in range(len(its_pred)):
plt.plot([its_pred[j]*dt, its_pred[j]*dt], [-0.1, 1.1], '--C1', linewidth=1)
for j in range(len(itps_pred)):
plt.plot([itps_pred[j]*dt, itps_pred[j]*dt], [-0.1, 1.1], '--C2', linewidth=1)
# plt.ylim([-0.05, 1.05])
plt.text(text_loc[0], text_loc[1], '(ii)', horizontalalignment='center', verticalalignment="top",
transform=plt.gca().transAxes, fontsize="large", fontweight="normal", bbox=box)
# plt.legend(loc='upper right', fontsize='small', ncol=2)
plt.xlabel('Time (s)')
plt.ylabel('Probability')
plt.tight_layout()
plt.gcf().align_labels()
try:
plt.savefig(os.path.join(figure_dir, fname[i]+'.png'), bbox_inches='tight')
except FileNotFoundError:
os.makedirs(os.path.dirname(os.path.join(figure_dir, fname[i])), exist_ok=True)
plt.savefig(os.path.join(figure_dir, fname[i]+'.png'), bbox_inches='tight')
plt.close(i)
return 0
def plot_spectrogram(config, data, pred, label=None,
itp=None, its=None, itps=None,
itp_pred=None, its_pred=None, itps_pred=None,
time=None, freq=None,
fname=None, figure_dir="./", epoch=0):
# dt = config.dt
# df = config.df
# t = np.arange(0, data.shape[1]) * dt
# f = np.arange(0, data.shape[2]) * df
t, f = time, freq
dt = t[1] - t[0]
box = dict(boxstyle='round', facecolor='white', alpha=1)
text_loc = [0.05, 0.75]
if fname is None:
fname = [f"{i:03d}" for i in range(len(data))]
elif type(fname[0]) is bytes:
fname = [f.decode() for f in fname]
numbers = ["(i)", "(ii)", "(iii)", "(iv)"]
for i in range(len(data)):
fig = plt.figure(i)
# gs = fig.add_gridspec(4, 1)
for j in range(3):
# fig.add_subplot(gs[j, 0])
plt.subplot(4,1,j+1)
plt.pcolormesh(t, f, np.abs(data[i, :, :, j]+1j*data[i, :, :, j+3]).T, vmax=2*np.std(data[i, :, :, j]+1j*data[i, :, :, j+3]), cmap="jet", shading='auto')
plt.autoscale(enable=True, axis='x', tight=True)
plt.gca().set_xticklabels([])
if j == 1:
plt.ylabel('Frequency (Hz)')
plt.text(text_loc[0], text_loc[1], numbers[j], horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
# fig.add_subplot(gs[-1, 0])
plt.subplot(4,1,4)
if label is not None:
plt.plot(t, label[i, :, 0, 1], '--C0', linewidth=1)
plt.plot(t, label[i, :, 0, 2], '--C3', linewidth=1)
plt.plot(t, label[i, :, 0, 3], '--C1', linewidth=1)
plt.plot(t, pred[i, :, 0, 1], 'C0', label='P', linewidth=1)
plt.plot(t, pred[i, :, 0, 2], 'C3', label='S', linewidth=1)
plt.plot(t, pred[i, :, 0, 3], 'C1', label='PS', linewidth=1)
plt.plot(t, t*0, 'k', linewidth=1)
plt.autoscale(enable=True, axis='x', tight=True)
if (itp_pred is not None) and (its_pred is not None) and (itps_pred is not None):
for j in range(len(itp_pred)):
plt.plot([itp_pred[j]*dt, itp_pred[j]*dt], [-0.1, 1.1], ':C3', linewidth=1)
for j in range(len(its_pred)):
plt.plot([its_pred[j]*dt, its_pred[j]*dt], [-0.1, 1.1], '-.C6', linewidth=1)
for j in range(len(itps_pred)):
plt.plot([itps_pred[j]*dt, itps_pred[j]*dt], [-0.1, 1.1], '--C8', linewidth=1)
plt.ylim([-0.05, 1.05])
plt.text(text_loc[0], text_loc[1], numbers[-1], horizontalalignment='center',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.legend(loc='upper right', fontsize='small', ncol=1)
plt.xlabel('Time (s)')
plt.ylabel('Probability')
# plt.tight_layout()
plt.gcf().align_labels()
try:
plt.savefig(os.path.join(figure_dir, f'{epoch:02d}_'+fname[i]+'.png'), bbox_inches='tight')
except FileNotFoundError:
os.makedirs(os.path.dirname(os.path.join(figure_dir, fname[i])), exist_ok=True)
plt.savefig(os.path.join(figure_dir, f'{epoch:02d}_'+fname[i]+'.png'), bbox_inches='tight')
plt.close(i)
return 0
def plot_spectrogram_waveform(config, spectrogram, waveform, pred, label=None,
itp=None, its=None, itps=None, picks=None,
time=None, freq=None,
fname=None, figure_dir="./", epoch=0):
# dt = config.dt
# df = config.df
# t = np.arange(0, spectrogram.shape[1]) * dt
# f = np.arange(0, spectrogram.shape[2]) * df
t, f = time, freq
dt = t[1] - t[0]
box = dict(boxstyle='round', facecolor='white', alpha=1)
text_loc = [0.02, 0.90]
if fname is None:
fname = [f"{i:03d}" for i in range(len(spectrogram))]
elif type(fname[0]) is bytes:
fname = [f.decode() for f in fname]
numbers = ["(i)", "(ii)", "(iii)", "(iv)", "(v)", "(vi)", "(vii)"]
for i in range(len(spectrogram)):
fig = plt.figure(i, figsize=(6.4, 10))
# gs = fig.add_gridspec(4, 1)
for j in range(3):
# fig.add_subplot(gs[j, 0])
plt.subplot(7,1,j*2+1)
plt.plot(waveform[i,:,j], 'k', linewidth=0.5)
plt.autoscale(enable=True, axis='x', tight=True)
plt.gca().set_xticklabels([])
plt.ylabel('')
plt.text(text_loc[0], text_loc[1], numbers[j*2], horizontalalignment='left', verticalalignment='top',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
for j in range(3):
# fig.add_subplot(gs[j, 0])
plt.subplot(7,1,j*2+2)
plt.pcolormesh(t, f, np.abs(spectrogram[i, :, :, j]+1j*spectrogram[i, :, :, j+3]).T, vmax=2*np.std(spectrogram[i, :, :, j]+1j*spectrogram[i, :, :, j+3]), cmap="jet", shading='auto')
plt.autoscale(enable=True, axis='x', tight=True)
plt.gca().set_xticklabels([])
if j == 1:
plt.ylabel('Frequency (Hz) or Amplitude')
plt.text(text_loc[0], text_loc[1], numbers[j*2+1], horizontalalignment='left', verticalalignment='top',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
# fig.add_subplot(gs[-1, 0])
plt.subplot(7,1,7)
if label is not None:
plt.plot(t, label[i, :, 0, 1], '--C0', linewidth=1)
plt.plot(t, label[i, :, 0, 2], '--C3', linewidth=1)
plt.plot(t, label[i, :, 0, 3], '--C1', linewidth=1)
plt.plot(t, pred[i, :, 0, 1], 'C0', label='P', linewidth=1)
plt.plot(t, pred[i, :, 0, 2], 'C3', label='S', linewidth=1)
plt.plot(t, pred[i, :, 0, 3], 'C1', label='PS', linewidth=1)
plt.plot(t, t*0, 'k', linewidth=1)
plt.autoscale(enable=True, axis='x', tight=True)
plt.ylim([-0.05, 1.05])
plt.text(text_loc[0], text_loc[1], numbers[-1], horizontalalignment='left', verticalalignment='top',
transform=plt.gca().transAxes, fontsize="small", fontweight="normal", bbox=box)
plt.legend(loc='upper right', fontsize='small', ncol=1)
plt.xlabel('Time (s)')
plt.ylabel('Probability')
# plt.tight_layout()
plt.gcf().align_labels()
try:
plt.savefig(os.path.join(figure_dir, f'{epoch:02d}_'+fname[i]+'.png'), bbox_inches='tight')
except FileNotFoundError:
os.makedirs(os.path.dirname(os.path.join(figure_dir, fname[i])), exist_ok=True)
plt.savefig(os.path.join(figure_dir, f'{epoch:02d}_'+fname[i]+'.png'), bbox_inches='tight')
plt.close(i)
return 0