AI-RESEARCHER-2024
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing import image as image_processor
|
5 |
+
import numpy as np
|
6 |
+
from tensorflow.keras.applications.vgg16 import preprocess_input
|
7 |
+
from tensorflow.keras.models import load_model
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
from ultralytics import YOLO
|
10 |
+
import cv2
|
11 |
+
from huggingface_hub import from_pretrained_keras
|
12 |
+
|
13 |
+
class Config:
|
14 |
+
ASSETS_DIR = os.path.join(os.path.dirname(__file__), 'assets')
|
15 |
+
MODELS_DIR = os.path.join(ASSETS_DIR, 'models')
|
16 |
+
FONT_DIR = os.path.join(ASSETS_DIR, 'arial.ttf')
|
17 |
+
MODELS = {
|
18 |
+
"Calculus and Caries Classification": "classification.h5",
|
19 |
+
"Caries Detection": "detection.pt",
|
20 |
+
"Dental X-Ray Segmentation": "dental_xray_seg.h5"
|
21 |
+
}
|
22 |
+
EXAMPLES = {
|
23 |
+
"Calculus and Caries Classification": os.path.join(ASSETS_DIR, 'classification'),
|
24 |
+
"Caries Detection": os.path.join(ASSETS_DIR, 'detection'),
|
25 |
+
"Dental X-Ray Segmentation": os.path.join(ASSETS_DIR, 'segmentation')
|
26 |
+
}
|
27 |
+
|
28 |
+
class ModelManager:
|
29 |
+
@staticmethod
|
30 |
+
def load_model(model_name: str):
|
31 |
+
model_path = os.path.join(Config.MODELS_DIR, Config.MODELS[model_name])
|
32 |
+
if model_name == "Dental X-Ray Segmentation":
|
33 |
+
try:
|
34 |
+
return from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
|
35 |
+
except:
|
36 |
+
return tf.keras.models.load_model(model_path)
|
37 |
+
elif model_name == "Caries Detection":
|
38 |
+
return YOLO(model_path)
|
39 |
+
else:
|
40 |
+
return load_model(model_path)
|
41 |
+
|
42 |
+
|
43 |
+
class ImageProcessor:
|
44 |
+
|
45 |
+
def process_image(self, image: Image.Image, model_name: str):
|
46 |
+
if model_name == "Calculus and Caries Classification":
|
47 |
+
return self.classify_image(image, model_name)
|
48 |
+
elif model_name == "Caries Detection":
|
49 |
+
return self.detect_caries(image)
|
50 |
+
elif model_name == "Dental X-Ray Segmentation":
|
51 |
+
return self.segment_dental_xray(image)
|
52 |
+
|
53 |
+
def classify_image(self, image: Image.Image, model_name: str):
|
54 |
+
model = ModelManager.load_model(model_name)
|
55 |
+
img = image.resize((224, 224))
|
56 |
+
x = image_processor.img_to_array(img)
|
57 |
+
x = np.expand_dims(x, axis=0)
|
58 |
+
img_data = preprocess_input(x)
|
59 |
+
result = model.predict(img_data)
|
60 |
+
if result[0][0] > result[0][1]:
|
61 |
+
prediction = 'Calculus'
|
62 |
+
else:
|
63 |
+
prediction = 'Caries'
|
64 |
+
|
65 |
+
# Draw the classification result on the image
|
66 |
+
draw = ImageDraw.Draw(image)
|
67 |
+
font = ImageFont.truetype(Config.FONT_DIR, 20)
|
68 |
+
text = f"Classified as: {prediction}"
|
69 |
+
text_width, text_height = draw.textsize(text, font=font)
|
70 |
+
draw.rectangle([(0, 0), (text_width, text_height)], fill="black")
|
71 |
+
draw.text((0, 0), text, fill="white", font=font)
|
72 |
+
|
73 |
+
return image
|
74 |
+
|
75 |
+
def detect_caries(self, image: Image.Image):
|
76 |
+
model = ModelManager.load_model("Caries Detection")
|
77 |
+
results = model.predict(image)
|
78 |
+
result = results[0]
|
79 |
+
draw = ImageDraw.Draw(image)
|
80 |
+
font = ImageFont.truetype(Config.FONT_DIR, 20)
|
81 |
+
|
82 |
+
for box in result.boxes:
|
83 |
+
x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()]
|
84 |
+
class_id = box.cls[0].item()
|
85 |
+
prob = round(box.conf[0].item(), 2)
|
86 |
+
label = f"{result.names[class_id]}: {prob}"
|
87 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
|
88 |
+
text_width, text_height = draw.textsize(label, font=font)
|
89 |
+
draw.rectangle([(x1, y1 - text_height), (x1 + text_width, y1)], fill="red")
|
90 |
+
draw.text((x1, y1 - text_height), label, fill="white", font=font)
|
91 |
+
|
92 |
+
return image
|
93 |
+
|
94 |
+
def segment_dental_xray(self, image: Image.Image):
|
95 |
+
model = ModelManager.load_model("Dental X-Ray Segmentation")
|
96 |
+
img = np.asarray(image)
|
97 |
+
img_cv = self.convert_one_channel(img)
|
98 |
+
img_cv = cv2.resize(img_cv, (512, 512), interpolation=cv2.INTER_LANCZOS4)
|
99 |
+
img_cv = np.float32(img_cv / 255)
|
100 |
+
img_cv = np.reshape(img_cv, (1, 512, 512, 1))
|
101 |
+
prediction = model.predict(img_cv)
|
102 |
+
predicted = prediction[0]
|
103 |
+
predicted = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
104 |
+
mask = np.uint8(predicted * 255)
|
105 |
+
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
106 |
+
kernel = np.ones((5, 5), dtype=np.float32)
|
107 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
108 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1)
|
109 |
+
cnts, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
110 |
+
|
111 |
+
# Make a writable copy of the image
|
112 |
+
img_writable = self.convert_rgb(img).copy()
|
113 |
+
output = cv2.drawContours(img_writable, cnts, -1, (255, 0, 0), 3)
|
114 |
+
return Image.fromarray(output)
|
115 |
+
|
116 |
+
def convert_one_channel(self, img):
|
117 |
+
if len(img.shape) > 2:
|
118 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
119 |
+
return img
|
120 |
+
|
121 |
+
def convert_rgb(self, img):
|
122 |
+
if len(img.shape) == 2:
|
123 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
124 |
+
return img
|
125 |
+
|
126 |
+
|
127 |
+
class GradioInterface:
|
128 |
+
def __init__(self):
|
129 |
+
self.image_processor = ImageProcessor()
|
130 |
+
self.preloaded_examples = self.preload_examples()
|
131 |
+
|
132 |
+
def preload_examples(self):
|
133 |
+
preloaded = {}
|
134 |
+
for model_name, example_dir in Config.EXAMPLES.items():
|
135 |
+
examples = [os.path.join(example_dir, img) for img in os.listdir(example_dir)]
|
136 |
+
preloaded[model_name] = examples
|
137 |
+
return preloaded
|
138 |
+
|
139 |
+
def create_interface(self):
|
140 |
+
app_styles = """
|
141 |
+
<style>
|
142 |
+
/* Global Styles */
|
143 |
+
body, #root {
|
144 |
+
font-family: Helvetica, Arial, sans-serif;
|
145 |
+
background-color: #1a1a1a;
|
146 |
+
color: #fafafa;
|
147 |
+
}
|
148 |
+
/* Header Styles */
|
149 |
+
.app-header {
|
150 |
+
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
|
151 |
+
padding: 24px;
|
152 |
+
border-radius: 8px;
|
153 |
+
margin-bottom: 24px;
|
154 |
+
text-align: center;
|
155 |
+
}
|
156 |
+
.app-title {
|
157 |
+
font-size: 48px;
|
158 |
+
margin: 0;
|
159 |
+
color: #fafafa;
|
160 |
+
}
|
161 |
+
.app-subtitle {
|
162 |
+
font-size: 24px;
|
163 |
+
margin: 8px 0 16px;
|
164 |
+
color: #fafafa;
|
165 |
+
}
|
166 |
+
.app-description {
|
167 |
+
font-size: 16px;
|
168 |
+
line-height: 1.6;
|
169 |
+
opacity: 0.8;
|
170 |
+
margin-bottom: 24px;
|
171 |
+
}
|
172 |
+
/* Button Styles */
|
173 |
+
.publication-links {
|
174 |
+
display: flex;
|
175 |
+
justify-content: center;
|
176 |
+
flex-wrap: wrap;
|
177 |
+
gap: 8px;
|
178 |
+
margin-bottom: 16px;
|
179 |
+
}
|
180 |
+
.publication-link {
|
181 |
+
display: inline-flex;
|
182 |
+
align-items: center;
|
183 |
+
padding: 8px 16px;
|
184 |
+
background-color: #333;
|
185 |
+
color: #fff !important;
|
186 |
+
text-decoration: none !important;
|
187 |
+
border-radius: 20px;
|
188 |
+
font-size: 14px;
|
189 |
+
transition: background-color 0.3s;
|
190 |
+
}
|
191 |
+
.publication-link:hover {
|
192 |
+
background-color: #555;
|
193 |
+
}
|
194 |
+
.publication-link i {
|
195 |
+
margin-right: 8px;
|
196 |
+
}
|
197 |
+
/* Content Styles */
|
198 |
+
.content-container {
|
199 |
+
background-color: #2a2a2a;
|
200 |
+
border-radius: 8px;
|
201 |
+
padding: 24px;
|
202 |
+
margin-bottom: 24px;
|
203 |
+
}
|
204 |
+
/* Image Styles */
|
205 |
+
.image-preview img {
|
206 |
+
max-width: 512px;
|
207 |
+
max-height: 512px;
|
208 |
+
margin: 0 auto;
|
209 |
+
border-radius: 4px;
|
210 |
+
display: block;
|
211 |
+
object-fit: contain;
|
212 |
+
}
|
213 |
+
/* Control Styles */
|
214 |
+
.control-panel {
|
215 |
+
background-color: #333;
|
216 |
+
padding: 16px;
|
217 |
+
border-radius: 8px;
|
218 |
+
margin-top: 16px;
|
219 |
+
}
|
220 |
+
/* Gradio Component Overrides */
|
221 |
+
.gr-button {
|
222 |
+
background-color: #4a4a4a;
|
223 |
+
color: #fff;
|
224 |
+
border: none;
|
225 |
+
border-radius: 4px;
|
226 |
+
padding: 8px 16px;
|
227 |
+
cursor: pointer;
|
228 |
+
transition: background-color 0.3s;
|
229 |
+
}
|
230 |
+
.gr-button:hover {
|
231 |
+
background-color: #5a5a5a;
|
232 |
+
}
|
233 |
+
.gr-input, .gr-dropdown {
|
234 |
+
background-color: #3a3a3a;
|
235 |
+
color: #fff;
|
236 |
+
border: 1px solid #4a4a4a;
|
237 |
+
border-radius: 4px;
|
238 |
+
padding: 8px;
|
239 |
+
}
|
240 |
+
.gr-form {
|
241 |
+
background-color: transparent;
|
242 |
+
}
|
243 |
+
.gr-panel {
|
244 |
+
border: none;
|
245 |
+
background-color: transparent;
|
246 |
+
}
|
247 |
+
/* Override any conflicting styles from Bulma */
|
248 |
+
.button.is-normal.is-rounded.is-dark {
|
249 |
+
color: #fff !important;
|
250 |
+
text-decoration: none !important;
|
251 |
+
}
|
252 |
+
</style>
|
253 |
+
"""
|
254 |
+
|
255 |
+
header_html = f"""
|
256 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css">
|
257 |
+
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
|
258 |
+
{app_styles}
|
259 |
+
<div class="app-header">
|
260 |
+
<h1 class="app-title">AI in Dentistry</h1>
|
261 |
+
<h2 class="app-subtitle"> Advancing Imaging and Clinical Transcription</h2>
|
262 |
+
<p class="app-description">
|
263 |
+
This application demonstrates the use of AI in dentistry for tasks such as classification, detection, and segmentation.
|
264 |
+
</p>
|
265 |
+
</div>
|
266 |
+
"""
|
267 |
+
|
268 |
+
def process_image(image, model_name):
|
269 |
+
result = self.image_processor.process_image(image, model_name)
|
270 |
+
return result
|
271 |
+
|
272 |
+
def update_examples(model_name):
|
273 |
+
examples = self.preloaded_examples[model_name]
|
274 |
+
return gr.Dataset(samples=[[example] for example in examples])
|
275 |
+
|
276 |
+
with gr.Blocks() as demo:
|
277 |
+
gr.HTML(header_html)
|
278 |
+
with gr.Row(elem_classes="content-container"):
|
279 |
+
with gr.Column():
|
280 |
+
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
|
281 |
+
with gr.Row(elem_classes="control-panel"):
|
282 |
+
model_name = gr.Dropdown(
|
283 |
+
label="Model",
|
284 |
+
choices=list(Config.MODELS.keys()),
|
285 |
+
value="Calculus and Caries Classification",
|
286 |
+
)
|
287 |
+
examples = gr.Examples(
|
288 |
+
inputs=input_image,
|
289 |
+
examples=self.preloaded_examples["Calculus and Caries Classification"],
|
290 |
+
)
|
291 |
+
with gr.Column():
|
292 |
+
result = gr.Image(label="Result", elem_classes="image-preview")
|
293 |
+
run_button = gr.Button("Run", elem_classes="gr-button")
|
294 |
+
|
295 |
+
model_name.change(
|
296 |
+
fn=update_examples,
|
297 |
+
inputs=model_name,
|
298 |
+
outputs=examples.dataset,
|
299 |
+
)
|
300 |
+
|
301 |
+
run_button.click(
|
302 |
+
fn=process_image,
|
303 |
+
inputs=[input_image, model_name],
|
304 |
+
outputs=result,
|
305 |
+
)
|
306 |
+
|
307 |
+
return demo
|
308 |
+
|
309 |
+
def main():
|
310 |
+
interface = GradioInterface()
|
311 |
+
demo = interface.create_interface()
|
312 |
+
demo.launch(share=False)
|
313 |
+
|
314 |
+
if __name__ == "__main__":
|
315 |
+
main()
|