Severine commited on
Commit
feaed04
1 Parent(s): 4b7c2fa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: sv
3
+ ---
4
+
5
+ # A Swedish Bert model
6
+
7
+ ## Model description
8
+ This model has the same architecture as the Bert Large model. It is implemented with the Megatron Bert Architecture containing following parameters:
9
+ <figure>
10
+
11
+ | Hyperparameter | Value |
12
+ |----------------------|------------|
13
+ | \\(n_{parameters}\\) | 340M |
14
+ | \\(n_{layers}\\) | 24 |
15
+ | \\(n_{heads}\\) | 16 |
16
+ | \\(n_{ctx}\\) | 1024 |
17
+ | \\(n_{vocab}\\) | 30592 |
18
+
19
+
20
+ ## Training data
21
+ This repository contains a BERT Large model pretrained on a Swedish text corpus of around 80 GB from a variety of sources as shown below.
22
+ <figure>
23
+
24
+ | Dataset | Genre | Size(GB)|
25
+ |----------------------|------|------|
26
+ | Anföranden | Politics |0.9|
27
+ |DCEP|Politics|0.6|
28
+ |DGT|Politics|0.7|
29
+ |Fass|Medical|0.6|
30
+ |Författningar|Legal|0.1|
31
+ |Web data|Misc|45.0|
32
+ |JRC|Legal|0.4|
33
+ |Litteraturbanken|Books|0.3O|
34
+ |SCAR|Misc|28.0|
35
+ |SOU|Politics|5.3|
36
+ |Subtitles|Drama|1.3|
37
+ |Wikipedia|Facts|1.8|
38
+
39
+
40
+ ## Intended uses & limitations
41
+ The raw model can be used for the usual tasks of masked language modeling or next sentence prediction. It is also often fine-tuned on a downstream task to improve its performance in a specific domain/task.
42
+ <br>
43
+ <br>
44
+
45
+ ## How to use
46
+
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
49
+ tokenizer = AutoTokenizer.from_pretrained("AI-Nordics/bert-large-swedish-cased")
50
+ model = AutoModelForMaskedLM.from_pretrained("AI-Nordics/bert-large-swedish-cased")
51
+