ABrinkmann commited on
Commit
b69cd65
·
1 Parent(s): 553fc4e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: deberta-v3-large-finetuned-ner-10epochs-V2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # deberta-v3-large-finetuned-ner-10epochs-V2
19
+
20
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1180
23
+ - Precision: 0.9033
24
+ - Recall: 0.9347
25
+ - F1: 0.9187
26
+ - Accuracy: 0.9813
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0663 | 1.0 | 2261 | 0.0715 | 0.8709 | 0.9194 | 0.8945 | 0.9787 |
58
+ | 0.0583 | 2.0 | 4522 | 0.0629 | 0.8845 | 0.9267 | 0.9051 | 0.9800 |
59
+ | 0.0442 | 3.0 | 6783 | 0.0635 | 0.8841 | 0.9404 | 0.9114 | 0.9802 |
60
+ | 0.0402 | 4.0 | 9044 | 0.0588 | 0.9011 | 0.9283 | 0.9145 | 0.9821 |
61
+ | 0.0327 | 5.0 | 11305 | 0.0676 | 0.8919 | 0.9385 | 0.9146 | 0.9818 |
62
+ | 0.0245 | 6.0 | 13566 | 0.0713 | 0.9037 | 0.9331 | 0.9182 | 0.9821 |
63
+ | 0.0183 | 7.0 | 15827 | 0.0848 | 0.9049 | 0.9181 | 0.9114 | 0.9812 |
64
+ | 0.0157 | 8.0 | 18088 | 0.0898 | 0.8957 | 0.9411 | 0.9178 | 0.9818 |
65
+ | 0.009 | 9.0 | 20349 | 0.1027 | 0.8965 | 0.9385 | 0.9170 | 0.9817 |
66
+ | 0.0068 | 10.0 | 22610 | 0.1180 | 0.9033 | 0.9347 | 0.9187 | 0.9813 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.30.1
72
+ - Pytorch 2.0.1+cu117
73
+ - Datasets 2.12.0
74
+ - Tokenizers 0.13.3