Model save
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/Multilingual-MiniLM-L12-H384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: trainRanker_VI_AR_non_top
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# trainRanker_VI_AR_non_top
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.5894
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 2e-05
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 750
|
44 |
+
- training_steps: 25000
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
+
| 0.5737 | 0.04 | 2500 | 0.5894 |
|
52 |
+
| 0.5866 | 0.08 | 5000 | 0.5894 |
|
53 |
+
| 0.5744 | 0.12 | 7500 | 0.5894 |
|
54 |
+
| 0.5771 | 0.16 | 10000 | 0.5894 |
|
55 |
+
| 0.5834 | 0.2 | 12500 | 0.5894 |
|
56 |
+
| 0.5751 | 0.24 | 15000 | 0.5894 |
|
57 |
+
| 0.5655 | 0.28 | 17500 | 0.5894 |
|
58 |
+
| 0.5807 | 0.32 | 20000 | 0.5894 |
|
59 |
+
| 0.5763 | 0.36 | 22500 | 0.5894 |
|
60 |
+
| 0.5804 | 0.4 | 25000 | 0.5894 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.35.2
|
66 |
+
- Pytorch 2.1.0+cu121
|
67 |
+
- Datasets 2.16.1
|
68 |
+
- Tokenizers 0.15.1
|