sketch-model-3 / stable_diffusion_handler.py
zww
functional handler with gcs support
ba99fa4
raw
history blame
4.35 kB
import logging
from abc import ABC
import diffusers
import torch
from diffusers import StableDiffusionXLPipeline
from ts.torch_handler.base_handler import BaseHandler
import numpy as np
import base64
from io import BytesIO
from PIL import Image
import numpy as np
import uuid
from tempfile import TemporaryFile
from google.cloud import storage
logger = logging.getLogger(__name__)
logger.info("Diffusers version %s", diffusers.__version__)
class DiffusersHandler(BaseHandler, ABC):
"""
Diffusers handler class for text to image generation.
"""
def __init__(self):
self.initialized = False
def initialize(self, ctx):
"""In this initialize function, the Stable Diffusion model is loaded and
initialized here.
Args:
ctx (context): It is a JSON Object containing information
pertaining to the model artefacts parameters.
"""
logger.info("Loading diffusion model")
logger.info("I'm totally new and updated")
self.manifest = ctx.manifest
properties = ctx.system_properties
model_dir = properties.get("model_dir")
device_str = "cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() and properties.get("gpu_id") is not None else "cpu"
self.device = torch.device(device_str)
self.pipe = StableDiffusionXLPipeline.from_pretrained(
"./",
torch_dtype=torch.float16,
use_safetensors=True,
)
logger.info("moving model to device: %s", device_str)
self.pipe.to(self.device)
logger.info(self.device)
logger.info("Diffusion model from path %s loaded successfully", model_dir)
self.initialized = True
def preprocess(self, raw_requests):
"""Basic text preprocessing, of the user's prompt.
Args:
requests (str): The Input data in the form of text is passed on to the preprocess
function.
Returns:
list : The preprocess function returns a list of prompts.
"""
logger.info("Received requests: '%s'", raw_requests)
processed_request = {
"prompt": raw_requests[0]["prompt"],
"negative_prompt": raw_requests[0].get("negative_prompt"),
"width": raw_requests[0].get("width"),
"height": raw_requests[0].get("height"),
"num_inference_steps": raw_requests[0].get("num_inference_steps", 30),
"guidance_scale": raw_requests[0].get("guidance_scale", 7.5),
}
logger.info("Processed request: '%s'", processed_request)
return processed_request
def inference(self, request):
"""Generates the image relevant to the received text.
Args:
inputs (list): List of Text from the pre-process function is passed here
Returns:
list : It returns a list of the generate images for the input text
"""
# Handling inference for sequence_classification.
inferences = self.pipe(
**request
).images
logger.info("Generated image: '%s'", inferences)
return inferences
def postprocess(self, inference_outputs):
"""Post Process Function converts the generated image into Torchserve readable format.
Args:
inference_outputs (list): It contains the generated image of the input text.
Returns:
(list): Returns a list of the images.
"""
bucket_name = "outputs-storage-prod"
client = storage.Client()
bucket = client.get_bucket(bucket_name)
outputs = []
for image in inference_outputs:
image_name = str(uuid.uuid4())
blob = bucket.blob(image_name + '.png')
with TemporaryFile() as tmp:
image.save(tmp, format="png")
tmp.seek(0)
blob.upload_from_file(tmp, content_type='image/png')
# generate txt file with the image name and the prompt inside
# blob = bucket.blob(image_name + '.txt')
# blob.upload_from_string(self.prompt)
outputs.append('https://storage.googleapis.com/' + bucket_name + '/' + image_name + '.png')
return outputs