hg_demo / gradio_utils.py
88hours's picture
Upload folder using huggingface_hub
17934c8 verified
import gradio as gr
import io
import sys
import time
import dataclasses
from pathlib import Path
import os
from enum import auto, Enum
from typing import List, Tuple, Any
from utility import prediction_guard_llava_conv
import lancedb
from utility import load_json_file
from mm_rag.embeddings.bridgetower_embeddings import BridgeTowerEmbeddings
from mm_rag.vectorstores.multimodal_lancedb import MultimodalLanceDB
from mm_rag.MLM.client import PredictionGuardClient
from mm_rag.MLM.lvlm import LVLM
from PIL import Image
from langchain_core.runnables import RunnableParallel, RunnablePassthrough, RunnableLambda
from moviepy.video.io.VideoFileClip import VideoFileClip
from utility import prediction_guard_llava_conv, encode_image, Conversation, lvlm_inference_with_conversation
server_error_msg="**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
# function to split video at a timestamp
def split_video(video_path, timestamp_in_ms, output_video_path: str = "./shared_data/splitted_videos", output_video_name: str="video_tmp.mp4", play_before_sec: int=3, play_after_sec: int=3):
timestamp_in_sec = int(timestamp_in_ms / 1000)
# create output_video_name folder if not exist:
Path(output_video_path).mkdir(parents=True, exist_ok=True)
output_video = os.path.join(output_video_path, output_video_name)
with VideoFileClip(video_path) as video:
duration = video.duration
start_time = max(timestamp_in_sec - play_before_sec, 0)
end_time = min(timestamp_in_sec + play_after_sec, duration)
new = video.subclip(start_time, end_time)
new.write_videofile(output_video, audio_codec='aac')
return output_video
prompt_template = """The transcript associated with the image is '{transcript}'. {user_query}"""
# define default rag_chain
def get_default_rag_chain():
# declare host file
LANCEDB_HOST_FILE = "./shared_data/.lancedb"
# declare table name
TBL_NAME = "demo_tbl"
# initialize vectorstore
db = lancedb.connect(LANCEDB_HOST_FILE)
# initialize an BridgeTower embedder
embedder = BridgeTowerEmbeddings()
## Creating a LanceDB vector store
vectorstore = MultimodalLanceDB(uri=LANCEDB_HOST_FILE, embedding=embedder, table_name=TBL_NAME)
### creating a retriever for the vector store
retriever_module = vectorstore.as_retriever(search_type='similarity', search_kwargs={"k": 1})
# initialize a client as PredictionGuardClien
client = PredictionGuardClient()
# initialize LVLM with the given client
lvlm_inference_module = LVLM(client=client)
def prompt_processing(input):
# get the retrieved results and user's query
retrieved_results, user_query = input['retrieved_results'], input['user_query']
# get the first retrieved result by default
retrieved_result = retrieved_results[0]
# prompt_template = """The transcript associated with the image is '{transcript}'. {user_query}"""
# get all metadata of the retrieved video segment
metadata_retrieved_video_segment = retrieved_result.metadata['metadata']
# get the frame and the corresponding transcript, path to extracted frame, path to whole video, and time stamp of the retrieved video segment.
transcript = metadata_retrieved_video_segment['transcript']
frame_path = metadata_retrieved_video_segment['extracted_frame_path']
return {
'prompt': prompt_template.format(transcript=transcript, user_query=user_query),
'image' : frame_path,
'metadata' : metadata_retrieved_video_segment,
}
# initialize prompt processing module as a Langchain RunnableLambda of function prompt_processing
prompt_processing_module = RunnableLambda(prompt_processing)
# the output of this new chain will be a dictionary
mm_rag_chain_with_retrieved_image = (
RunnableParallel({"retrieved_results": retriever_module ,
"user_query": RunnablePassthrough()})
| prompt_processing_module
| RunnableParallel({'final_text_output': lvlm_inference_module,
'input_to_lvlm' : RunnablePassthrough()})
)
return mm_rag_chain_with_retrieved_image
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
@dataclasses.dataclass
class GradioInstance:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "\n"
sep2: str = None
version: str = "Unknown"
path_to_img: str = None
video_title: str = None
path_to_video: str = None
caption: str = None
mm_rag_chain: Any = None
skip_next: bool = False
def _template_caption(self):
out = ""
if self.caption is not None:
out = f"The caption associated with the image is '{self.caption}'. "
return out
def get_prompt_for_rag(self):
messages = self.messages
assert len(messages) == 2, "length of current conversation should be 2"
assert messages[1][1] is None, "the first response message of current conversation should be None"
ret = messages[0][1]
return ret
def get_conversation_for_lvlm(self):
pg_conv = prediction_guard_llava_conv.copy()
image_path = self.path_to_img
b64_img = encode_image(image_path)
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if msg is None:
break
if i == 0:
pg_conv.append_message(prediction_guard_llava_conv.roles[0], [msg, b64_img])
elif i == len(self.messages[self.offset:]) - 2:
pg_conv.append_message(role, [prompt_template.format(transcript=self.caption, user_query=msg)])
else:
pg_conv.append_message(role, [msg])
return pg_conv
def append_message(self, role, message):
self.messages.append([role, message])
def get_images(self, return_pil=False):
images = []
if self.path_to_img is not None:
path_to_image = self.path_to_img
images.append(path_to_image)
return images
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
msg, image, image_process_mode = msg
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
msg = img_str + msg.replace('<image>', '').strip()
ret.append([msg, None])
else:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return GradioInstance(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version,
mm_rag_chain=self.mm_rag_chain,
)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"path_to_img": self.path_to_img,
"video_title" : self.video_title,
"path_to_video": self.path_to_video,
"caption" : self.caption,
}
def get_path_to_subvideos(self):
if self.video_title is not None and self.path_to_img is not None:
info = video_helper_map[self.video_title]
path = info['path']
prefix = info['prefix']
vid_index = self.path_to_img.split('/')[-1]
vid_index = vid_index.split('_')[-1]
vid_index = vid_index.replace('.jpg', '')
ret = f"{prefix}{vid_index}.mp4"
ret = os.path.join(path, ret)
return ret
elif self.path_to_video is not None:
return self.path_to_video
return None
def get_gradio_instance(mm_rag_chain=None):
if mm_rag_chain is None:
mm_rag_chain = get_default_rag_chain()
instance = GradioInstance(
system="",
roles=prediction_guard_llava_conv.roles,
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="\n",
path_to_img=None,
video_title=None,
caption=None,
mm_rag_chain=mm_rag_chain,
)
return instance
gr.set_static_paths(paths=["./assets/"])
theme = gr.themes.Base(
primary_hue=gr.themes.Color(
c100="#dbeafe", c200="#bfdbfe", c300="#93c5fd", c400="#60a5fa", c50="#eff6ff", c500="#0054ae", c600="#00377c", c700="#00377c", c800="#1e40af", c900="#1e3a8a", c950="#0a0c2b"),
secondary_hue=gr.themes.Color(
c100="#dbeafe", c200="#bfdbfe", c300="#93c5fd", c400="#60a5fa", c50="#eff6ff", c500="#0054ae", c600="#0054ae", c700="#0054ae", c800="#1e40af", c900="#1e3a8a", c950="#1d3660"),
).set(
body_background_fill_dark='*primary_950',
body_text_color_dark='*neutral_300',
border_color_accent='*primary_700',
border_color_accent_dark='*neutral_800',
block_background_fill_dark='*primary_950',
block_border_width='2px',
block_border_width_dark='2px',
button_primary_background_fill_dark='*primary_500',
button_primary_border_color_dark='*primary_500'
)
css='''
@font-face {
font-family: IntelOne;
src: url("/file=./assets/intelone-bodytext-font-family-regular.ttf");
}
.gradio-container {background-color: #0a0c2b}
table {
border-collapse: collapse;
border: none;
}
'''
## <td style="border-bottom:0"><img src="file/assets/DCAI_logo.png" height="300" width="300"></td>
# html_title = '''
# <table style="bordercolor=#0a0c2b; border=0">
# <tr style="height:150px; border:0">
# <td style="border:0"><img src="/file=../assets/intel-labs.png" height="100" width="100"></td>
# <td style="vertical-align:bottom; border:0">
# <p style="font-size:xx-large;font-family:IntelOne, Georgia, sans-serif;color: white;">
# Multimodal RAG:
# <br>
# Chat with Videos
# </p>
# </td>
# <td style="border:0"><img src="/file=../assets/gaudi.png" width="100" height="100"></td>
# <td style="border:0"><img src="/file=../assets/IDC7.png" width="300" height="350"></td>
# <td style="border:0"><img src="/file=../assets/prediction_guard3.png" width="120" height="120"></td>
# </tr>
# </table>
# '''
html_title = '''
<table style="bordercolor=#0a0c2b; border=0">
<tr style="height:150px; border:0">
<td style="border:0"><img src="/file=./assets/header.png"></td>
</tr>
</table>
'''
#<td style="border:0"><img src="/file=../assets/xeon.png" width="100" height="100"></td>
dropdown_list = [
"What is the name of one of the astronauts?",
"An astronaut's spacewalk",
"What does the astronaut say?",
]
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
def clear_history(state, request: gr.Request):
state = get_gradio_instance(state.mm_rag_chain)
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 1
def add_text(state, text, request: gr.Request):
if len(text) <= 0 :
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 1
text = text[:1536] # Hard cut-off
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 1
def http_bot(
state, request: gr.Request
):
start_tstamp = time.time()
if state.skip_next:
# This generate call is skipped due to invalid inputs
path_to_sub_videos = state.get_path_to_subvideos()
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (no_change_btn,) * 1
return
if len(state.messages) == state.offset + 2:
# First round of conversation
new_state = get_gradio_instance(state.mm_rag_chain)
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
all_images = state.get_images(return_pil=False)
# Make requests
is_very_first_query = True
if len(all_images) == 0:
# first query need to do RAG
# Construct prompt
prompt_or_conversation = state.get_prompt_for_rag()
else:
# subsequence queries, no need to do Retrieval
is_very_first_query = False
prompt_or_conversation = state.get_conversation_for_lvlm()
if is_very_first_query:
executor = state.mm_rag_chain
else:
executor = lvlm_inference_with_conversation
state.messages[-1][-1] = "▌"
path_to_sub_videos = state.get_path_to_subvideos()
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (disable_btn,) * 1
try:
if is_very_first_query:
# get response by invoke executor chain
response = executor.invoke(prompt_or_conversation)
message = response['final_text_output']
if 'metadata' in response['input_to_lvlm']:
metadata = response['input_to_lvlm']['metadata']
if (state.path_to_img is None
and 'input_to_lvlm' in response
and 'image' in response['input_to_lvlm']
):
state.path_to_img = response['input_to_lvlm']['image']
if state.path_to_video is None and 'video_path' in metadata:
video_path = metadata['video_path']
mid_time_ms = metadata['mid_time_ms']
splited_video_path = split_video(video_path, mid_time_ms)
state.path_to_video = splited_video_path
if state.caption is None and 'transcript' in metadata:
state.caption = metadata['transcript']
else:
raise ValueError("Response's format is changed")
else:
# get the response message by directly call PredictionGuardAPI
message = executor(prompt_or_conversation)
except Exception as e:
print(e)
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(), None) + (
enable_btn,
)
return
state.messages[-1][-1] = message
path_to_sub_videos = state.get_path_to_subvideos()
# path_to_image = state.path_to_img
# caption = state.caption
# # print(path_to_sub_videos)
# # print(path_to_image)
# # print('caption: ', caption)
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (enable_btn,) * 1
finish_tstamp = time.time()
return
def get_demo(rag_chain=None):
if rag_chain is None:
rag_chain = get_default_rag_chain()
with gr.Blocks(theme=theme, css=css) as demo:
# gr.Markdown(description)
instance = get_gradio_instance(rag_chain)
state = gr.State(instance)
demo.load(
None,
None,
js="""
() => {
const params = new URLSearchParams(window.location.search);
if (!params.has('__theme')) {
params.set('__theme', 'dark');
window.location.search = params.toString();
}
}""",
)
gr.HTML(value=html_title)
with gr.Row():
with gr.Column(scale=4):
video = gr.Video(height=512, width=512, elem_id="video", interactive=False )
with gr.Column(scale=7):
chatbot = gr.Chatbot(
elem_id="chatbot", label="Multimodal RAG Chatbot", height=512,
)
with gr.Row():
with gr.Column(scale=8):
# textbox.render()
textbox = gr.Dropdown(
dropdown_list,
allow_custom_value=True,
# show_label=False,
# container=False,
label="Query",
info="Enter your query here or choose a sample from the dropdown list!"
)
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=True
)
with gr.Row(elem_id="buttons") as button_row:
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
btn_list = [clear_btn]
clear_btn.click(
clear_history, [state], [state, chatbot, textbox, video] + btn_list
)
submit_btn.click(
add_text,
[state, textbox],
[state, chatbot, textbox,] + btn_list,
).then(
http_bot,
[state],
[state, chatbot, video] + btn_list,
)
return demo