84basi commited on
Commit
c0dcdcd
β€’
1 Parent(s): 4b91b4c

add readme

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md CHANGED
@@ -20,3 +20,140 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ # How to Use
25
+
26
+ ```python
27
+ !pip uninstall unsloth -y
28
+ !pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
29
+ !pip install --upgrade torch
30
+ !pip install --upgrade xformers
31
+ !pip install ipywidgets --upgrade
32
+
33
+ import torch
34
+ if torch.cuda.get_device_capability()[0] >= 8:
35
+ !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
36
+
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
38
+ from unsloth import FastLanguageModel
39
+ import torch
40
+ max_seq_length = 512
41
+ dtype = None
42
+ load_in_4bit = True
43
+
44
+ model_id = "llm-jp/llm-jp-3-13b"
45
+ new_model_id = "llm-jp-3-13b-finetune-2"
46
+ model, tokenizer = FastLanguageModel.from_pretrained(
47
+ model_name=model_id,
48
+ dtype=dtype,
49
+ load_in_4bit=load_in_4bit,
50
+ trust_remote_code=True,
51
+ )
52
+
53
+ model = FastLanguageModel.get_peft_model(
54
+ model,
55
+ r = 32,
56
+ target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
57
+ "gate_proj", "up_proj", "down_proj",],
58
+ lora_alpha = 32,
59
+ lora_dropout = 0.05,
60
+ bias = "none",
61
+ use_gradient_checkpointing = "unsloth",
62
+ random_state = 3407,
63
+ use_rslora = False,
64
+ loftq_config = None,
65
+ max_seq_length = max_seq_length,
66
+ )
67
+
68
+ HF_TOKEN = "" #@param {type:"string"}
69
+
70
+ from datasets import load_dataset
71
+ dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-2.1.json")
72
+
73
+ prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
74
+ {}
75
+ ### ε›žη­”
76
+ {}"""
77
+
78
+
79
+ """
80
+ formatting_prompts_func: ε„γƒ‡γƒΌγ‚Ώγ‚’γƒ—γƒ­γƒ³γƒ—γƒˆγ«εˆγ‚γ›γŸε½’εΌγ«εˆγ‚γ›γ‚‹
81
+ """
82
+ EOS_TOKEN = tokenizer.eos_token
83
+ def formatting_prompts_func(examples):
84
+ input = examples["text"]
85
+ output = examples["output"]
86
+ text = prompt.format(input, output) + EOS_TOKEN
87
+ return { "formatted_text" : text, }
88
+ pass
89
+
90
+ dataset = dataset.map(
91
+ formatting_prompts_func,
92
+ num_proc= 4,
93
+ )
94
+
95
+ from trl import SFTTrainer
96
+ from transformers import TrainingArguments
97
+ from unsloth import is_bfloat16_supported
98
+
99
+ trainer = SFTTrainer(
100
+ model = model,
101
+ tokenizer = tokenizer,
102
+ train_dataset=dataset["train"],
103
+ max_seq_length = max_seq_length,
104
+ dataset_text_field="formatted_text",
105
+ packing = False,
106
+ args = TrainingArguments(
107
+ per_device_train_batch_size = 2,
108
+ gradient_accumulation_steps = 4,
109
+ num_train_epochs = 1,
110
+ logging_steps = 10,
111
+ warmup_steps = 10,
112
+ save_steps=100,
113
+ save_total_limit=2,
114
+ max_steps=-1,
115
+ learning_rate = 2e-4,
116
+ fp16 = not is_bfloat16_supported(),
117
+ bf16 = is_bfloat16_supported(),
118
+ group_by_length=True,
119
+ seed = 3407,
120
+ output_dir = "outputs",
121
+ report_to = "none",
122
+ ),
123
+ )
124
+
125
+ trainer_stats = trainer.train()
126
+
127
+ import json
128
+ datasets = []
129
+ with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
130
+ item = ""
131
+ for line in f:
132
+ line = line.strip()
133
+ item += line
134
+ if item.endswith("}"):
135
+ datasets.append(json.loads(item))
136
+ item = ""
137
+
138
+ from tqdm import tqdm
139
+
140
+ FastLanguageModel.for_inference(model)
141
+
142
+ results = []
143
+ for dt in tqdm(datasets):
144
+ input = dt["input"]
145
+
146
+ prompt = f"""### ζŒ‡η€Ί\n{input}\n### ε›žη­”\n"""
147
+
148
+ inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
149
+
150
+ outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
151
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### ε›žη­”')[-1]
152
+
153
+ results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
154
+
155
+ with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
156
+ for result in results:
157
+ json.dump(result, f, ensure_ascii=False)
158
+ f.write('\n')
159
+ ```