LUNARLANDER / config.json
KGSAGAR's picture
FIRST_RL_Model_Lunarlander
345f2a6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e25fdbc9990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e25fdbc9a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e25fdbc9ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e25fdbc9b40>", "_build": "<function ActorCriticPolicy._build at 0x7e25fdbc9bd0>", "forward": "<function ActorCriticPolicy.forward at 0x7e25fdbc9c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e25fdbc9cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e25fdbc9d80>", "_predict": "<function ActorCriticPolicy._predict at 0x7e25fdbc9e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e25fdbc9ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e25fdbc9f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e25fdbc9fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e25fdbbecc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 200704, "_total_timesteps": 200000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692171113081532687, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM0k0T3Isoq83wK9PBGyejwyFe+95XBKPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5XPttygf6MAWyUS/CMAXSUR0CWFCE1EVnFdX2UKGgGR0Bxvpog3cYZaAdNJgFoCEdAlhWx9oexOnV9lChoBkdAS4/CfpUxVWgHS8NoCEdAlha9nGsFMnV9lChoBkdAcEJYeDFqBWgHS+1oCEdAlh2UxIre7HV9lChoBkdAKo1SflIVd2gHS9hoCEdAlh7AAIY3vXV9lChoBkdAbmotwJgLJGgHTQIBaAhHQJYgSOsDGLl1fZQoaAZHQGDL3izcAR1oB03oA2gIR0CWJePwuuifdX2UKGgGR0Bxplb9qDbraAdL9WgIR0CWJ2Ty8SPEdX2UKGgGR0BEp/NZ/0/XaAdNBwFoCEdAljBa8lHBlHV9lChoBkdAbR6OinHeamgHS+5oCEdAljItaUzKtHV9lChoBkdAZmXJsfq5b2gHTYsCaAhHQJY3rqhUR4B1fZQoaAZHQHAohaPjn3doB0vraAhHQJY5kNDtw711fZQoaAZHQG35fbCaZx9oB0v0aAhHQJY7oUO/cnF1fZQoaAZHQAZlOXVsk6doB0vXaAhHQJY9czO5avB1fZQoaAZHQF4P1L8JlatoB03oA2gIR0CWSMlFMIu5dX2UKGgGR8ASqwHJLdvbaAdL5mgIR0CWSh4ubqhUdX2UKGgGR0BuSBNucc2jaAdL+GgIR0CWS3mL9/BndX2UKGgGR0BsDa8WbgCPaAdNCAFoCEdAlkzmm+Cbt3V9lChoBkdAckjsaKk2xmgHS9hoCEdAlk4I7eVLSXV9lChoBkdAcIdRp1zQu2gHS9toCEdAlk850r9VFXV9lChoBkdAcFvN+LFXJmgHS+NoCEdAllXQdwNsnHV9lChoBkdAYv0Mx46fa2gHTegDaAhHQJZbb6P8yet1fZQoaAZHQHE8YNmUW2xoB0vxaAhHQJZcucmShal1fZQoaAZHQHF7KwQlKK5oB0v1aAhHQJZeI0FbFCN1fZQoaAZHQG87drwe/6BoB00kAWgIR0CWX725hBqsdX2UKGgGR0BBgcgIQe3haAdLxGgIR0CWYMqy4Wk8dX2UKGgGR0Bx2h34bjtHaAdL92gIR0CWaBXhwVCYdX2UKGgGR0BxR+Ieo1k2aAdNEQFoCEdAlmodNnGsFXV9lChoBkdAaKAdp7CzkmgHTdUBaAhHQJZtr3ueBhB1fZQoaAZHQG7gzfJmukloB00QAWgIR0CWb+42jwhGdX2UKGgGR0BtpSYb83uNaAdL9mgIR0CWcgKx9oexdX2UKGgGR0BwDrrrxAjZaAdL/mgIR0CWdCxp+MIedX2UKGgGR0BszwvDgqEwaAdNEwFoCEdAlnZ8DKYAsHV9lChoBkfAPFY9X9zfamgHS91oCEdAln6GbCrLhnV9lChoBkdAcLV9roGIK2gHTRoBaAhHQJaAGnm7rcF1fZQoaAZHP+98tPHktEpoB0vLaAhHQJaBPHq/ub91fZQoaAZHQHFGy3kPtlZoB00EAWgIR0CWgqffoA4odX2UKGgGR0Bv2zqMWGh3aAdL7mgIR0CWg/eJHiFTdX2UKGgGR0BwZD7aZhKEaAdNEAFoCEdAloV3lbNbDHV9lChoBkdAAc1Z1V5rxmgHS+1oCEdAlobcHjZL7HV9lChoBkdAcRBNcGC7LGgHTTABaAhHQJaIlNUOuq51fZQoaAZHQG5m4VIqbz9oB00IAWgIR0CWj7A4n4O+dX2UKGgGR0AmhH6Mzdk8aAdL0GgIR0CWkNj9n9NvdX2UKGgGR0BwTUNCqp97aAdL5GgIR0CWkhO9FnZkdX2UKGgGR0BzDwVqN6w/aAdL/GgIR0CWk3sANoaldX2UKGgGR0Bvz0AtFrmAaAdL+2gIR0CWlOMnJDE4dX2UKGgGR0BHGmelKsdUaAdL0mgIR0CWlg6bvw3HdX2UKGgGR0ByO9iVjZtfaAdL9WgIR0CWl2hFVktmdX2UKGgGR0Bs2MF6iTMaaAdNCQFoCEdAlpjYOx0MgHV9lChoBkdAcNJMGorFwWgHTRgBaAhHQJaf45p8F6l1fZQoaAZHQHFhIvnKW9loB00DAWgIR0CWoWHQyAQQdX2UKGgGR0BtJveWOZLJaAdNAgFoCEdAlqMyZa3ZwnV9lChoBkdAG8M9KVY6n2gHS8poCEdAlqTSONo8IXV9lChoBkdAcIP4x1xKhGgHTTUBaAhHQJanHWsijcp1fZQoaAZHQHI/iPZIxxloB0v9aAhHQJapAjnmq5t1fZQoaAZHQG9XsewLVnVoB0voaAhHQJaqz+85CF91fZQoaAZHQHBiLwvxpcpoB0vtaAhHQJasxiMHbAV1fZQoaAZHQHMYkyDZlFtoB01KA2gIR0CWupEFW4mUdX2UKGgGR0BwSRHFxXGPaAdNEAFoCEdAlrwSBTXJ5nV9lChoBkdAcCkFXq7iAGgHTRwBaAhHQJa9pGx2SuB1fZQoaAZHQHNtK3iJfploB00eAWgIR0CWv0nDR+jNdX2UKGgGR0ByP84ZMtbtaAdL/WgIR0CWwLdC3PRidX2UKGgGR0A3dRxcVxjsaAdL02gIR0CWwdm5UcXFdX2UKGgGR0Bur4re67NCaAdNEAFoCEdAlsjN1MdtEXV9lChoBkdAcGmIeHSF5GgHTekBaAhHQJbLhntfG+91fZQoaAZHQG44jX4CZF5oB00wAWgIR0CWzUj94u9OdX2UKGgGR0ByEYQbuMMraAdNGgNoCEdAltGcsDnvD3V9lChoBkdAcZskbgjyF2gHTRYBaAhHQJbTLqIJqqR1fZQoaAZHQG7P9RR/EwZoB00QAWgIR0CW2fmz0HyFdX2UKGgGR0ByHX49HMEBaAdNHQFoCEdAltuPbXYlIHV9lChoBkdAcNstXPqs2mgHTRgBaAhHQJbdHq2SdOJ1fZQoaAZHQHAKxqfvnbJoB0v8aAhHQJbee+36Q/51fZQoaAZHQHL4c/MW43FoB00fAWgIR0CW4Fz7/GVBdX2UKGgGR8AJFwaR6nivaAdL1mgIR0CW4gvV3EAHdX2UKGgGR0BxTv4Ju2qlaAdNFwFoCEdAluQMO9WZJHV9lChoBkdAW4uwwCbMHWgHTegDaAhHQJb0Q8hcJMR1fZQoaAZHQGkneWWyC4BoB028A2gIR0CW+cZSNwR5dX2UKGgGR0BxqI5zYEntaAdNDgFoCEdAlvs/ozN2T3V9lChoBkdAcNZCWNWEK2gHS/RoCEdAlwMhV2iconV9lChoBkdAbsNzND+irWgHTXEBaAhHQJcF1H+ZPVN1fZQoaAZHQG0Opv5xiodoB0v1aAhHQJcHvpGFzuF1fZQoaAZHQG9W0Zm7J4loB01DAWgIR0CXCokeZG8VdX2UKGgGR0ByFP7P6be/aAdNGgFoCEdAlwzp7CzkZXV9lChoBkdAb6zv7WNFSmgHTQIBaAhHQJcPAU0vXbx1fZQoaAZHQG338GLUCq9oB00MAWgIR0CXEU7QswtbdX2UKGgGR0Bw/BNZeRgaaAdNEQFoCEdAlxkHEhq0t3V9lChoBkdAcGTKjBVMmGgHTREBaAhHQJcai2E0zj51fZQoaAZHQG5JpqASWZ9oB0vtaAhHQJcb93u/k/91fZQoaAZHQG9MmUOd5IJoB0vtaAhHQJcd3WkJrtV1fZQoaAZHQHEnCgCfYjBoB00gAWgIR0CXIDooNNJwdX2UKGgGR0BuOwydnTRZaAdNNAFoCEdAlyJmUKRdQnV9lChoBkdAcL1qM3qA0GgHTQoBaAhHQJckeCdz4lB1fZQoaAZHQG9njEFW4mVoB0vvaAhHQJcmjVy3kPt1fZQoaAZHQHC2t2xIJ7doB00cAWgIR0CXMMgOSW7fdX2UKGgGR0BwQDgiu+yraAdL72gIR0CXMhJlJ6IFdX2UKGgGR0BwLYyLyc0+aAdNJgFoCEdAlzPHaN+9anV9lChoBke/639kz41xbWgHS8toCEdAlzUBoM8YAXV9lChoBkdAcXG2G7Bfr2gHS/9oCEdAlzZ+n62v0XV9lChoBkdAcKItoi9qUWgHTTMBaAhHQJc4OueSSvF1fZQoaAZHQHBdKGQCCBhoB0vpaAhHQJc5hgy/KyR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2940, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}