4mosot commited on
Commit
efe0a42
1 Parent(s): 00f2606

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.30 +/- 20.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83d286ba60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83d286baf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83d286bb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83d286bc10>", "_build": "<function ActorCriticPolicy._build at 0x7f83d286bca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83d286bd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83d286bdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83d286be50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83d286bee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83d286bf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83d27ef040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83d2865de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670339951174634148, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrNtLztnF0+li0/PuIrVb4kBeo99ZPYvAAAAAAAAAAAIC9NPrffKD9OJVi+1WmVvlclIz1CDxK+AAAAAAAAAAD7f6u++/LpPiKYGj7wZaa+rMt1vV3JIT0AAAAAAAAAAGaGX70ysKo/Zmgov+YABr8WTko82v+VvQAAAAAAAAAAwLC/vdmipj6Vev49ZyKfvoZhPz1IW/c7AAAAAAAAAAD6NRe+hZfMPN6XOT4wSmC+alxcPbTOBTwAAAAAAAAAAAD72L3DRVO6M0nPutAdRLbcw547QsfwOQAAgD8AAAAAAAF9PUSpsD2xiwg9QcdFvm3QSz1LyFY8AAAAAAAAAADawy8+4yCzPu4BNr4X1oW+BvkQPbCb+LwAAAAAAAAAAABu0L1R94U+Gw0kPN29h779JPO8PESVPQAAAAAAAAAAuvIaviwhnz8Uwha/Fj7bvn42G77q02a+AAAAAAAAAACmG8i9dOm4PTuDyzz0t1e+6mvEvLwWMD0AAAAAAAAAAE0mcr09cX+7K4PEunfnjzw9CsY8LjR2vQAAgD8AAIA/AL8QPY/OU7q/Ngg28SDYMDn3BzpMUiK1AACAPwAAgD8N26I9g4g7vCLeTDz1whc9UAihPT48BLsAAIA/AAAAAGaU17z0qZ8+ee4LPbkqnL7PUGo76k+6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuycPCzV+bECUhpRSlIwBbJRNWAGMAXSUR0CVgW5mRNh3dX2UKGgGaAloD0MIlWWIY53DcECUhpRSlGgVTRcBaBZHQJWBiJ79hql1fZQoaAZoCWgPQwhoBYasbvZvQJSGlFKUaBVNEwFoFkdAlYJWfChvi3V9lChoBmgJaA9DCGZPApvzVW5AlIaUUpRoFU1dAWgWR0CVg9ijcmBwdX2UKGgGaAloD0MIg1DexxEQcUCUhpRSlGgVTUIBaBZHQJWD/0mMOwx1fZQoaAZoCWgPQwjO4sXCEGhtQJSGlFKUaBVNFgFoFkdAlYRIn8baRXV9lChoBmgJaA9DCPD3i9mSQHBAlIaUUpRoFU06AWgWR0CVhG1HvttzdX2UKGgGaAloD0MI2lVI+Qk/cECUhpRSlGgVTTYBaBZHQJWEeTibUgB1fZQoaAZoCWgPQwirs1pgDyZwQJSGlFKUaBVNQQFoFkdAlYR5Mtbs4XV9lChoBmgJaA9DCB+6oL5l8XFAlIaUUpRoFU1PAWgWR0CVhXr5ZbIMdX2UKGgGaAloD0MIMJ+sGK4EcUCUhpRSlGgVTSABaBZHQJWFpy2hIvt1fZQoaAZoCWgPQwhseHqlLBVwQJSGlFKUaBVNTwFoFkdAlYbLMC9ytHV9lChoBmgJaA9DCMxEEVK3EzVAlIaUUpRoFUvtaBZHQJWJBn8Kohp1fZQoaAZoCWgPQwhE/MOWnnRtQJSGlFKUaBVNCwFoFkdAlYktNnGsFXV9lChoBmgJaA9DCNNNYhCYrXBAlIaUUpRoFU0VAWgWR0CVilw9aEBbdX2UKGgGaAloD0MIrws/ON9KcUCUhpRSlGgVTX4BaBZHQJWKefoRqXZ1fZQoaAZoCWgPQwh39L9ci5xxQJSGlFKUaBVNCQFoFkdAlYteerdWQ3V9lChoBmgJaA9DCPMC7KNTF3FAlIaUUpRoFUvxaBZHQJWL2ITGo751fZQoaAZoCWgPQwj5hVeS/EJyQJSGlFKUaBVNMQFoFkdAlYwW0AtFrnV9lChoBmgJaA9DCElKehgatXFAlIaUUpRoFU0eAWgWR0CVjeRu0kWzdX2UKGgGaAloD0MIrptSXmtLcECUhpRSlGgVTSYBaBZHQJWOO7mMfih1fZQoaAZoCWgPQwjko8UZQ2FwQJSGlFKUaBVNLQFoFkdAlY5PS6UaAHV9lChoBmgJaA9DCGZK629JoHFAlIaUUpRoFU1HAWgWR0CVju/OdGy5dX2UKGgGaAloD0MIpfYi2g4wb0CUhpRSlGgVTTsBaBZHQJWO9FmWdEt1fZQoaAZoCWgPQwjSim8o/MFvQJSGlFKUaBVNGQFoFkdAlY8ogA6uGXV9lChoBmgJaA9DCDkpzHscv3BAlIaUUpRoFU0iAWgWR0CVjz9OARTTdX2UKGgGaAloD0MIraWAtD9+cUCUhpRSlGgVTSABaBZHQJWQjRSgoPV1fZQoaAZoCWgPQwgpBd1e0npwQJSGlFKUaBVNLAFoFkdAlZM1uJk5InV9lChoBmgJaA9DCCo5J/bQTihAlIaUUpRoFUvmaBZHQJWTuZUkv9N1fZQoaAZoCWgPQwhFEyhikT1yQJSGlFKUaBVL/mgWR0CVk+CjDbaidX2UKGgGaAloD0MI88mK4epNbkCUhpRSlGgVTSEBaBZHQJWUH3xnWat1fZQoaAZoCWgPQwhD4bN18NlxQJSGlFKUaBVNSwFoFkdAlZR9wWFewHV9lChoBmgJaA9DCBHF5A0wSm5AlIaUUpRoFU0/AWgWR0CVlUh5xBE8dX2UKGgGaAloD0MIvk7qyxI1cECUhpRSlGgVTSYBaBZHQJWVvhNucc51fZQoaAZoCWgPQwg3NjtSvV5wQJSGlFKUaBVNDgFoFkdAlZb4TCcf/3V9lChoBmgJaA9DCFHZsKYy+m1AlIaUUpRoFU0IAWgWR0CVl9Y150KadX2UKGgGaAloD0MI68n8o+/cckCUhpRSlGgVTTIBaBZHQJWYn7fpD/l1fZQoaAZoCWgPQwjwiArVzc5wQJSGlFKUaBVNGAFoFkdAlZixUWEbpHV9lChoBmgJaA9DCIld29vtXnJAlIaUUpRoFU0oAWgWR0CVmVEDQqqfdX2UKGgGaAloD0MIaqFkcmrIcECUhpRSlGgVTUgBaBZHQJWZaIuXeFd1fZQoaAZoCWgPQwgdd0oHq+twQJSGlFKUaBVNYAFoFkdAlZrJimVJMHV9lChoBmgJaA9DCLKbGf1oHHBAlIaUUpRoFU05AWgWR0CVm02jfvWpdX2UKGgGaAloD0MI1xh0QmiBb0CUhpRSlGgVTSwBaBZHQJWeRMwlByF1fZQoaAZoCWgPQwiSdw5laIZyQJSGlFKUaBVNPQFoFkdAlZ5lSGahH3V9lChoBmgJaA9DCPvMWZ8yCXFAlIaUUpRoFU0tAWgWR0CVnnwrlNlAdX2UKGgGaAloD0MI2nIuxVUjcECUhpRSlGgVTQ4BaBZHQJWe2BFuvU11fZQoaAZoCWgPQwhmahK84aRwQJSGlFKUaBVNKAFoFkdAlZ7yW/rSmnV9lChoBmgJaA9DCF4SZ0UUEHFAlIaUUpRoFU0VAWgWR0CVn5B8hLXddX2UKGgGaAloD0MIGVQbnIj4cECUhpRSlGgVTRgBaBZHQJW0ReRgZ0l1fZQoaAZoCWgPQwjhQbPrXkBvQJSGlFKUaBVNCQFoFkdAlbVVt8/lhnV9lChoBmgJaA9DCH7H8NiP7XBAlIaUUpRoFU2XAWgWR0CVtdjghr31dX2UKGgGaAloD0MI4ltYN56IckCUhpRSlGgVTSwBaBZHQJW2j4YaYNR1fZQoaAZoCWgPQwgr3PKRlAZxQJSGlFKUaBVNUgFoFkdAlbcL8R+SbHV9lChoBmgJaA9DCOF7f4N2DnBAlIaUUpRoFU0oAWgWR0CVtw+g13t8dX2UKGgGaAloD0MIw2fr4OBgZUCUhpRSlGgVTegDaBZHQJW3QypJf6Z1fZQoaAZoCWgPQwgTChFwSKNyQJSGlFKUaBVNPAFoFkdAlbe+scQyynV9lChoBmgJaA9DCHBcxk0NYD5AlIaUUpRoFUvfaBZHQJW5xu5z5oJ1fZQoaAZoCWgPQwg82GK3jz1wQJSGlFKUaBVNVAFoFkdAlboReTmnwXV9lChoBmgJaA9DCDZ2ieqtrUVAlIaUUpRoFUvxaBZHQJW6fctXgcd1fZQoaAZoCWgPQwhWRE30eShyQJSGlFKUaBVNVQFoFkdAlbqgOe8PF3V9lChoBmgJaA9DCJ4kXTP5zW9AlIaUUpRoFU0PAWgWR0CVuv8BMi8ndX2UKGgGaAloD0MIT5Za7/cScECUhpRSlGgVTS8BaBZHQJW76IJqqOt1fZQoaAZoCWgPQwg/cQD9vuZuQJSGlFKUaBVNLgFoFkdAlbwJjpcHGHV9lChoBmgJaA9DCNC0xMroaG1AlIaUUpRoFU1AAWgWR0CVvYEfkmx/dX2UKGgGaAloD0MIBb8NMV71b0CUhpRSlGgVTRYBaBZHQJW+ZuXNTtN1fZQoaAZoCWgPQwjKwWwCTJlwQJSGlFKUaBVNGQFoFkdAlcBhib2DhHV9lChoBmgJaA9DCJje/ly0GXNAlIaUUpRoFU0rAWgWR0CVwIAN5MURdX2UKGgGaAloD0MIbhXEQNcfbkCUhpRSlGgVTRkBaBZHQJXBW4d6syV1fZQoaAZoCWgPQwg83Xni+cpxQJSGlFKUaBVNWgFoFkdAlcGNfkWAPXV9lChoBmgJaA9DCLdELjgDHXJAlIaUUpRoFU01AWgWR0CVwcte2NNrdX2UKGgGaAloD0MIoBUYsro8ckCUhpRSlGgVTUEBaBZHQJXB9SpBHCp1fZQoaAZoCWgPQwjIQ9/dSqhxQJSGlFKUaBVNFQFoFkdAlcOFNHpbEHV9lChoBmgJaA9DCBiT/l4KXHJAlIaUUpRoFU3LAWgWR0CVw98nuy/sdX2UKGgGaAloD0MI/tKiPkk0cUCUhpRSlGgVTSABaBZHQJXE9as6q811fZQoaAZoCWgPQwiO6QlLPBVsQJSGlFKUaBVNEAFoFkdAlcV3+MqBmXV9lChoBmgJaA9DCNcxrri4M3BAlIaUUpRoFU1XAWgWR0CVxakAxSHedX2UKGgGaAloD0MIEr73N2g+cUCUhpRSlGgVTR4BaBZHQJXGFUYKpkx1fZQoaAZoCWgPQwhIpkOnZyxuQJSGlFKUaBVNaAFoFkdAlcbhx1gYxnV9lChoBmgJaA9DCKBtNevManBAlIaUUpRoFUvyaBZHQJXHCHSF49p1fZQoaAZoCWgPQwhq3JvfcKlyQJSGlFKUaBVNewFoFkdAlceYpH7P6nV9lChoBmgJaA9DCITwaOMIDm5AlIaUUpRoFU0gAWgWR0CVx6HaN+9bdX2UKGgGaAloD0MIZW6+Ed2TP0CUhpRSlGgVS9ZoFkdAlcimRV6u4nV9lChoBmgJaA9DCMzQeCKI501AlIaUUpRoFUvzaBZHQJXIxEDyOJd1fZQoaAZoCWgPQwjt0obDkr9xQJSGlFKUaBVNIgFoFkdAlcsbrcCYC3V9lChoBmgJaA9DCEa1iCgmx0VAlIaUUpRoFUvmaBZHQJXLmlTFVDN1fZQoaAZoCWgPQwj1oKAUrVpvQJSGlFKUaBVNOwFoFkdAlcyRd+ocaXV9lChoBmgJaA9DCOo8Kv7vpm1AlIaUUpRoFU1WAWgWR0CVzcjIaLn+dX2UKGgGaAloD0MIY9AJoYOKR0CUhpRSlGgVS+5oFkdAlc3IVRDTjXV9lChoBmgJaA9DCIaQ8/4/GW1AlIaUUpRoFU0jAWgWR0CVzwaTfR/mdX2UKGgGaAloD0MIO4pz1NG9cECUhpRSlGgVTSIBaBZHQJXPd+8XenB1fZQoaAZoCWgPQwh0toDQephPQJSGlFKUaBVL7mgWR0CV0ApnpSrHdX2UKGgGaAloD0MI8pTVdH1BcECUhpRSlGgVTSkBaBZHQJXQYEwFkhB1fZQoaAZoCWgPQwjXhopx/spyQJSGlFKUaBVNjQFoFkdAldF5pBX0XnV9lChoBmgJaA9DCLFPAMVI+m9AlIaUUpRoFU0xAWgWR0CV0cxFiKBNdX2UKGgGaAloD0MIIa0x6IQwSUCUhpRSlGgVS/hoFkdAldHcp5NXYHV9lChoBmgJaA9DCD7NyYtMSnFAlIaUUpRoFU1EAWgWR0CV0kDc/MW5dX2UKGgGaAloD0MIXr2KjI4BcUCUhpRSlGgVTQkBaBZHQJXSS/JvHcV1fZQoaAZoCWgPQwh7E0NycnhwQJSGlFKUaBVNPAFoFkdAldKxVU+9rXV9lChoBmgJaA9DCNqrj4e+X01AlIaUUpRoFUvkaBZHQJXVyR0U4711fZQoaAZoCWgPQwi0rPvHgh9yQJSGlFKUaBVNLAFoFkdAldZVeKKpDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca84bcf40b61e2c2a62c567bdde5fc470904e8053f84598c47cc3dcaac54a86b
3
+ size 147138
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83d286ba60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83d286baf0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83d286bb80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83d286bc10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f83d286bca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f83d286bd30>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83d286bdc0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f83d286be50>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83d286bee0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83d286bf70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83d27ef040>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f83d2865de0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670339951174634148,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrNtLztnF0+li0/PuIrVb4kBeo99ZPYvAAAAAAAAAAAIC9NPrffKD9OJVi+1WmVvlclIz1CDxK+AAAAAAAAAAD7f6u++/LpPiKYGj7wZaa+rMt1vV3JIT0AAAAAAAAAAGaGX70ysKo/Zmgov+YABr8WTko82v+VvQAAAAAAAAAAwLC/vdmipj6Vev49ZyKfvoZhPz1IW/c7AAAAAAAAAAD6NRe+hZfMPN6XOT4wSmC+alxcPbTOBTwAAAAAAAAAAAD72L3DRVO6M0nPutAdRLbcw547QsfwOQAAgD8AAAAAAAF9PUSpsD2xiwg9QcdFvm3QSz1LyFY8AAAAAAAAAADawy8+4yCzPu4BNr4X1oW+BvkQPbCb+LwAAAAAAAAAAABu0L1R94U+Gw0kPN29h779JPO8PESVPQAAAAAAAAAAuvIaviwhnz8Uwha/Fj7bvn42G77q02a+AAAAAAAAAACmG8i9dOm4PTuDyzz0t1e+6mvEvLwWMD0AAAAAAAAAAE0mcr09cX+7K4PEunfnjzw9CsY8LjR2vQAAgD8AAIA/AL8QPY/OU7q/Ngg28SDYMDn3BzpMUiK1AACAPwAAgD8N26I9g4g7vCLeTDz1whc9UAihPT48BLsAAIA/AAAAAGaU17z0qZ8+ee4LPbkqnL7PUGo76k+6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuycPCzV+bECUhpRSlIwBbJRNWAGMAXSUR0CVgW5mRNh3dX2UKGgGaAloD0MIlWWIY53DcECUhpRSlGgVTRcBaBZHQJWBiJ79hql1fZQoaAZoCWgPQwhoBYasbvZvQJSGlFKUaBVNEwFoFkdAlYJWfChvi3V9lChoBmgJaA9DCGZPApvzVW5AlIaUUpRoFU1dAWgWR0CVg9ijcmBwdX2UKGgGaAloD0MIg1DexxEQcUCUhpRSlGgVTUIBaBZHQJWD/0mMOwx1fZQoaAZoCWgPQwjO4sXCEGhtQJSGlFKUaBVNFgFoFkdAlYRIn8baRXV9lChoBmgJaA9DCPD3i9mSQHBAlIaUUpRoFU06AWgWR0CVhG1HvttzdX2UKGgGaAloD0MI2lVI+Qk/cECUhpRSlGgVTTYBaBZHQJWEeTibUgB1fZQoaAZoCWgPQwirs1pgDyZwQJSGlFKUaBVNQQFoFkdAlYR5Mtbs4XV9lChoBmgJaA9DCB+6oL5l8XFAlIaUUpRoFU1PAWgWR0CVhXr5ZbIMdX2UKGgGaAloD0MIMJ+sGK4EcUCUhpRSlGgVTSABaBZHQJWFpy2hIvt1fZQoaAZoCWgPQwhseHqlLBVwQJSGlFKUaBVNTwFoFkdAlYbLMC9ytHV9lChoBmgJaA9DCMxEEVK3EzVAlIaUUpRoFUvtaBZHQJWJBn8Kohp1fZQoaAZoCWgPQwhE/MOWnnRtQJSGlFKUaBVNCwFoFkdAlYktNnGsFXV9lChoBmgJaA9DCNNNYhCYrXBAlIaUUpRoFU0VAWgWR0CVilw9aEBbdX2UKGgGaAloD0MIrws/ON9KcUCUhpRSlGgVTX4BaBZHQJWKefoRqXZ1fZQoaAZoCWgPQwh39L9ci5xxQJSGlFKUaBVNCQFoFkdAlYteerdWQ3V9lChoBmgJaA9DCPMC7KNTF3FAlIaUUpRoFUvxaBZHQJWL2ITGo751fZQoaAZoCWgPQwj5hVeS/EJyQJSGlFKUaBVNMQFoFkdAlYwW0AtFrnV9lChoBmgJaA9DCElKehgatXFAlIaUUpRoFU0eAWgWR0CVjeRu0kWzdX2UKGgGaAloD0MIrptSXmtLcECUhpRSlGgVTSYBaBZHQJWOO7mMfih1fZQoaAZoCWgPQwjko8UZQ2FwQJSGlFKUaBVNLQFoFkdAlY5PS6UaAHV9lChoBmgJaA9DCGZK629JoHFAlIaUUpRoFU1HAWgWR0CVju/OdGy5dX2UKGgGaAloD0MIpfYi2g4wb0CUhpRSlGgVTTsBaBZHQJWO9FmWdEt1fZQoaAZoCWgPQwjSim8o/MFvQJSGlFKUaBVNGQFoFkdAlY8ogA6uGXV9lChoBmgJaA9DCDkpzHscv3BAlIaUUpRoFU0iAWgWR0CVjz9OARTTdX2UKGgGaAloD0MIraWAtD9+cUCUhpRSlGgVTSABaBZHQJWQjRSgoPV1fZQoaAZoCWgPQwgpBd1e0npwQJSGlFKUaBVNLAFoFkdAlZM1uJk5InV9lChoBmgJaA9DCCo5J/bQTihAlIaUUpRoFUvmaBZHQJWTuZUkv9N1fZQoaAZoCWgPQwhFEyhikT1yQJSGlFKUaBVL/mgWR0CVk+CjDbaidX2UKGgGaAloD0MI88mK4epNbkCUhpRSlGgVTSEBaBZHQJWUH3xnWat1fZQoaAZoCWgPQwhD4bN18NlxQJSGlFKUaBVNSwFoFkdAlZR9wWFewHV9lChoBmgJaA9DCBHF5A0wSm5AlIaUUpRoFU0/AWgWR0CVlUh5xBE8dX2UKGgGaAloD0MIvk7qyxI1cECUhpRSlGgVTSYBaBZHQJWVvhNucc51fZQoaAZoCWgPQwg3NjtSvV5wQJSGlFKUaBVNDgFoFkdAlZb4TCcf/3V9lChoBmgJaA9DCFHZsKYy+m1AlIaUUpRoFU0IAWgWR0CVl9Y150KadX2UKGgGaAloD0MI68n8o+/cckCUhpRSlGgVTTIBaBZHQJWYn7fpD/l1fZQoaAZoCWgPQwjwiArVzc5wQJSGlFKUaBVNGAFoFkdAlZixUWEbpHV9lChoBmgJaA9DCIld29vtXnJAlIaUUpRoFU0oAWgWR0CVmVEDQqqfdX2UKGgGaAloD0MIaqFkcmrIcECUhpRSlGgVTUgBaBZHQJWZaIuXeFd1fZQoaAZoCWgPQwgdd0oHq+twQJSGlFKUaBVNYAFoFkdAlZrJimVJMHV9lChoBmgJaA9DCLKbGf1oHHBAlIaUUpRoFU05AWgWR0CVm02jfvWpdX2UKGgGaAloD0MI1xh0QmiBb0CUhpRSlGgVTSwBaBZHQJWeRMwlByF1fZQoaAZoCWgPQwiSdw5laIZyQJSGlFKUaBVNPQFoFkdAlZ5lSGahH3V9lChoBmgJaA9DCPvMWZ8yCXFAlIaUUpRoFU0tAWgWR0CVnnwrlNlAdX2UKGgGaAloD0MI2nIuxVUjcECUhpRSlGgVTQ4BaBZHQJWe2BFuvU11fZQoaAZoCWgPQwhmahK84aRwQJSGlFKUaBVNKAFoFkdAlZ7yW/rSmnV9lChoBmgJaA9DCF4SZ0UUEHFAlIaUUpRoFU0VAWgWR0CVn5B8hLXddX2UKGgGaAloD0MIGVQbnIj4cECUhpRSlGgVTRgBaBZHQJW0ReRgZ0l1fZQoaAZoCWgPQwjhQbPrXkBvQJSGlFKUaBVNCQFoFkdAlbVVt8/lhnV9lChoBmgJaA9DCH7H8NiP7XBAlIaUUpRoFU2XAWgWR0CVtdjghr31dX2UKGgGaAloD0MI4ltYN56IckCUhpRSlGgVTSwBaBZHQJW2j4YaYNR1fZQoaAZoCWgPQwgr3PKRlAZxQJSGlFKUaBVNUgFoFkdAlbcL8R+SbHV9lChoBmgJaA9DCOF7f4N2DnBAlIaUUpRoFU0oAWgWR0CVtw+g13t8dX2UKGgGaAloD0MIw2fr4OBgZUCUhpRSlGgVTegDaBZHQJW3QypJf6Z1fZQoaAZoCWgPQwgTChFwSKNyQJSGlFKUaBVNPAFoFkdAlbe+scQyynV9lChoBmgJaA9DCHBcxk0NYD5AlIaUUpRoFUvfaBZHQJW5xu5z5oJ1fZQoaAZoCWgPQwg82GK3jz1wQJSGlFKUaBVNVAFoFkdAlboReTmnwXV9lChoBmgJaA9DCDZ2ieqtrUVAlIaUUpRoFUvxaBZHQJW6fctXgcd1fZQoaAZoCWgPQwhWRE30eShyQJSGlFKUaBVNVQFoFkdAlbqgOe8PF3V9lChoBmgJaA9DCJ4kXTP5zW9AlIaUUpRoFU0PAWgWR0CVuv8BMi8ndX2UKGgGaAloD0MIT5Za7/cScECUhpRSlGgVTS8BaBZHQJW76IJqqOt1fZQoaAZoCWgPQwg/cQD9vuZuQJSGlFKUaBVNLgFoFkdAlbwJjpcHGHV9lChoBmgJaA9DCNC0xMroaG1AlIaUUpRoFU1AAWgWR0CVvYEfkmx/dX2UKGgGaAloD0MIBb8NMV71b0CUhpRSlGgVTRYBaBZHQJW+ZuXNTtN1fZQoaAZoCWgPQwjKwWwCTJlwQJSGlFKUaBVNGQFoFkdAlcBhib2DhHV9lChoBmgJaA9DCJje/ly0GXNAlIaUUpRoFU0rAWgWR0CVwIAN5MURdX2UKGgGaAloD0MIbhXEQNcfbkCUhpRSlGgVTRkBaBZHQJXBW4d6syV1fZQoaAZoCWgPQwg83Xni+cpxQJSGlFKUaBVNWgFoFkdAlcGNfkWAPXV9lChoBmgJaA9DCLdELjgDHXJAlIaUUpRoFU01AWgWR0CVwcte2NNrdX2UKGgGaAloD0MIoBUYsro8ckCUhpRSlGgVTUEBaBZHQJXB9SpBHCp1fZQoaAZoCWgPQwjIQ9/dSqhxQJSGlFKUaBVNFQFoFkdAlcOFNHpbEHV9lChoBmgJaA9DCBiT/l4KXHJAlIaUUpRoFU3LAWgWR0CVw98nuy/sdX2UKGgGaAloD0MI/tKiPkk0cUCUhpRSlGgVTSABaBZHQJXE9as6q811fZQoaAZoCWgPQwiO6QlLPBVsQJSGlFKUaBVNEAFoFkdAlcV3+MqBmXV9lChoBmgJaA9DCNcxrri4M3BAlIaUUpRoFU1XAWgWR0CVxakAxSHedX2UKGgGaAloD0MIEr73N2g+cUCUhpRSlGgVTR4BaBZHQJXGFUYKpkx1fZQoaAZoCWgPQwhIpkOnZyxuQJSGlFKUaBVNaAFoFkdAlcbhx1gYxnV9lChoBmgJaA9DCKBtNevManBAlIaUUpRoFUvyaBZHQJXHCHSF49p1fZQoaAZoCWgPQwhq3JvfcKlyQJSGlFKUaBVNewFoFkdAlceYpH7P6nV9lChoBmgJaA9DCITwaOMIDm5AlIaUUpRoFU0gAWgWR0CVx6HaN+9bdX2UKGgGaAloD0MIZW6+Ed2TP0CUhpRSlGgVS9ZoFkdAlcimRV6u4nV9lChoBmgJaA9DCMzQeCKI501AlIaUUpRoFUvzaBZHQJXIxEDyOJd1fZQoaAZoCWgPQwjt0obDkr9xQJSGlFKUaBVNIgFoFkdAlcsbrcCYC3V9lChoBmgJaA9DCEa1iCgmx0VAlIaUUpRoFUvmaBZHQJXLmlTFVDN1fZQoaAZoCWgPQwj1oKAUrVpvQJSGlFKUaBVNOwFoFkdAlcyRd+ocaXV9lChoBmgJaA9DCOo8Kv7vpm1AlIaUUpRoFU1WAWgWR0CVzcjIaLn+dX2UKGgGaAloD0MIY9AJoYOKR0CUhpRSlGgVS+5oFkdAlc3IVRDTjXV9lChoBmgJaA9DCIaQ8/4/GW1AlIaUUpRoFU0jAWgWR0CVzwaTfR/mdX2UKGgGaAloD0MIO4pz1NG9cECUhpRSlGgVTSIBaBZHQJXPd+8XenB1fZQoaAZoCWgPQwh0toDQephPQJSGlFKUaBVL7mgWR0CV0ApnpSrHdX2UKGgGaAloD0MI8pTVdH1BcECUhpRSlGgVTSkBaBZHQJXQYEwFkhB1fZQoaAZoCWgPQwjXhopx/spyQJSGlFKUaBVNjQFoFkdAldF5pBX0XnV9lChoBmgJaA9DCLFPAMVI+m9AlIaUUpRoFU0xAWgWR0CV0cxFiKBNdX2UKGgGaAloD0MIIa0x6IQwSUCUhpRSlGgVS/hoFkdAldHcp5NXYHV9lChoBmgJaA9DCD7NyYtMSnFAlIaUUpRoFU1EAWgWR0CV0kDc/MW5dX2UKGgGaAloD0MIXr2KjI4BcUCUhpRSlGgVTQkBaBZHQJXSS/JvHcV1fZQoaAZoCWgPQwh7E0NycnhwQJSGlFKUaBVNPAFoFkdAldKxVU+9rXV9lChoBmgJaA9DCNqrj4e+X01AlIaUUpRoFUvkaBZHQJXVyR0U4711fZQoaAZoCWgPQwi0rPvHgh9yQJSGlFKUaBVNLAFoFkdAldZVeKKpDXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be45c5b52b39e1fa6fbed96f996081daefc6613068bce62fd92522af085c6094
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0863cd976f9e09d8492b5c8d81aea541e2ba689f1d27f8cd849f7a74d1d4c48e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (213 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.29838823050324, "std_reward": 20.504171971921778, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T15:45:17.279803"}