Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.30 +/- 20.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83d286ba60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83d286baf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83d286bb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83d286bc10>", "_build": "<function ActorCriticPolicy._build at 0x7f83d286bca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83d286bd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83d286bdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83d286be50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83d286bee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83d286bf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83d27ef040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83d2865de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670339951174634148, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrNtLztnF0+li0/PuIrVb4kBeo99ZPYvAAAAAAAAAAAIC9NPrffKD9OJVi+1WmVvlclIz1CDxK+AAAAAAAAAAD7f6u++/LpPiKYGj7wZaa+rMt1vV3JIT0AAAAAAAAAAGaGX70ysKo/Zmgov+YABr8WTko82v+VvQAAAAAAAAAAwLC/vdmipj6Vev49ZyKfvoZhPz1IW/c7AAAAAAAAAAD6NRe+hZfMPN6XOT4wSmC+alxcPbTOBTwAAAAAAAAAAAD72L3DRVO6M0nPutAdRLbcw547QsfwOQAAgD8AAAAAAAF9PUSpsD2xiwg9QcdFvm3QSz1LyFY8AAAAAAAAAADawy8+4yCzPu4BNr4X1oW+BvkQPbCb+LwAAAAAAAAAAABu0L1R94U+Gw0kPN29h779JPO8PESVPQAAAAAAAAAAuvIaviwhnz8Uwha/Fj7bvn42G77q02a+AAAAAAAAAACmG8i9dOm4PTuDyzz0t1e+6mvEvLwWMD0AAAAAAAAAAE0mcr09cX+7K4PEunfnjzw9CsY8LjR2vQAAgD8AAIA/AL8QPY/OU7q/Ngg28SDYMDn3BzpMUiK1AACAPwAAgD8N26I9g4g7vCLeTDz1whc9UAihPT48BLsAAIA/AAAAAGaU17z0qZ8+ee4LPbkqnL7PUGo76k+6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuycPCzV+bECUhpRSlIwBbJRNWAGMAXSUR0CVgW5mRNh3dX2UKGgGaAloD0MIlWWIY53DcECUhpRSlGgVTRcBaBZHQJWBiJ79hql1fZQoaAZoCWgPQwhoBYasbvZvQJSGlFKUaBVNEwFoFkdAlYJWfChvi3V9lChoBmgJaA9DCGZPApvzVW5AlIaUUpRoFU1dAWgWR0CVg9ijcmBwdX2UKGgGaAloD0MIg1DexxEQcUCUhpRSlGgVTUIBaBZHQJWD/0mMOwx1fZQoaAZoCWgPQwjO4sXCEGhtQJSGlFKUaBVNFgFoFkdAlYRIn8baRXV9lChoBmgJaA9DCPD3i9mSQHBAlIaUUpRoFU06AWgWR0CVhG1HvttzdX2UKGgGaAloD0MI2lVI+Qk/cECUhpRSlGgVTTYBaBZHQJWEeTibUgB1fZQoaAZoCWgPQwirs1pgDyZwQJSGlFKUaBVNQQFoFkdAlYR5Mtbs4XV9lChoBmgJaA9DCB+6oL5l8XFAlIaUUpRoFU1PAWgWR0CVhXr5ZbIMdX2UKGgGaAloD0MIMJ+sGK4EcUCUhpRSlGgVTSABaBZHQJWFpy2hIvt1fZQoaAZoCWgPQwhseHqlLBVwQJSGlFKUaBVNTwFoFkdAlYbLMC9ytHV9lChoBmgJaA9DCMxEEVK3EzVAlIaUUpRoFUvtaBZHQJWJBn8Kohp1fZQoaAZoCWgPQwhE/MOWnnRtQJSGlFKUaBVNCwFoFkdAlYktNnGsFXV9lChoBmgJaA9DCNNNYhCYrXBAlIaUUpRoFU0VAWgWR0CVilw9aEBbdX2UKGgGaAloD0MIrws/ON9KcUCUhpRSlGgVTX4BaBZHQJWKefoRqXZ1fZQoaAZoCWgPQwh39L9ci5xxQJSGlFKUaBVNCQFoFkdAlYteerdWQ3V9lChoBmgJaA9DCPMC7KNTF3FAlIaUUpRoFUvxaBZHQJWL2ITGo751fZQoaAZoCWgPQwj5hVeS/EJyQJSGlFKUaBVNMQFoFkdAlYwW0AtFrnV9lChoBmgJaA9DCElKehgatXFAlIaUUpRoFU0eAWgWR0CVjeRu0kWzdX2UKGgGaAloD0MIrptSXmtLcECUhpRSlGgVTSYBaBZHQJWOO7mMfih1fZQoaAZoCWgPQwjko8UZQ2FwQJSGlFKUaBVNLQFoFkdAlY5PS6UaAHV9lChoBmgJaA9DCGZK629JoHFAlIaUUpRoFU1HAWgWR0CVju/OdGy5dX2UKGgGaAloD0MIpfYi2g4wb0CUhpRSlGgVTTsBaBZHQJWO9FmWdEt1fZQoaAZoCWgPQwjSim8o/MFvQJSGlFKUaBVNGQFoFkdAlY8ogA6uGXV9lChoBmgJaA9DCDkpzHscv3BAlIaUUpRoFU0iAWgWR0CVjz9OARTTdX2UKGgGaAloD0MIraWAtD9+cUCUhpRSlGgVTSABaBZHQJWQjRSgoPV1fZQoaAZoCWgPQwgpBd1e0npwQJSGlFKUaBVNLAFoFkdAlZM1uJk5InV9lChoBmgJaA9DCCo5J/bQTihAlIaUUpRoFUvmaBZHQJWTuZUkv9N1fZQoaAZoCWgPQwhFEyhikT1yQJSGlFKUaBVL/mgWR0CVk+CjDbaidX2UKGgGaAloD0MI88mK4epNbkCUhpRSlGgVTSEBaBZHQJWUH3xnWat1fZQoaAZoCWgPQwhD4bN18NlxQJSGlFKUaBVNSwFoFkdAlZR9wWFewHV9lChoBmgJaA9DCBHF5A0wSm5AlIaUUpRoFU0/AWgWR0CVlUh5xBE8dX2UKGgGaAloD0MIvk7qyxI1cECUhpRSlGgVTSYBaBZHQJWVvhNucc51fZQoaAZoCWgPQwg3NjtSvV5wQJSGlFKUaBVNDgFoFkdAlZb4TCcf/3V9lChoBmgJaA9DCFHZsKYy+m1AlIaUUpRoFU0IAWgWR0CVl9Y150KadX2UKGgGaAloD0MI68n8o+/cckCUhpRSlGgVTTIBaBZHQJWYn7fpD/l1fZQoaAZoCWgPQwjwiArVzc5wQJSGlFKUaBVNGAFoFkdAlZixUWEbpHV9lChoBmgJaA9DCIld29vtXnJAlIaUUpRoFU0oAWgWR0CVmVEDQqqfdX2UKGgGaAloD0MIaqFkcmrIcECUhpRSlGgVTUgBaBZHQJWZaIuXeFd1fZQoaAZoCWgPQwgdd0oHq+twQJSGlFKUaBVNYAFoFkdAlZrJimVJMHV9lChoBmgJaA9DCLKbGf1oHHBAlIaUUpRoFU05AWgWR0CVm02jfvWpdX2UKGgGaAloD0MI1xh0QmiBb0CUhpRSlGgVTSwBaBZHQJWeRMwlByF1fZQoaAZoCWgPQwiSdw5laIZyQJSGlFKUaBVNPQFoFkdAlZ5lSGahH3V9lChoBmgJaA9DCPvMWZ8yCXFAlIaUUpRoFU0tAWgWR0CVnnwrlNlAdX2UKGgGaAloD0MI2nIuxVUjcECUhpRSlGgVTQ4BaBZHQJWe2BFuvU11fZQoaAZoCWgPQwhmahK84aRwQJSGlFKUaBVNKAFoFkdAlZ7yW/rSmnV9lChoBmgJaA9DCF4SZ0UUEHFAlIaUUpRoFU0VAWgWR0CVn5B8hLXddX2UKGgGaAloD0MIGVQbnIj4cECUhpRSlGgVTRgBaBZHQJW0ReRgZ0l1fZQoaAZoCWgPQwjhQbPrXkBvQJSGlFKUaBVNCQFoFkdAlbVVt8/lhnV9lChoBmgJaA9DCH7H8NiP7XBAlIaUUpRoFU2XAWgWR0CVtdjghr31dX2UKGgGaAloD0MI4ltYN56IckCUhpRSlGgVTSwBaBZHQJW2j4YaYNR1fZQoaAZoCWgPQwgr3PKRlAZxQJSGlFKUaBVNUgFoFkdAlbcL8R+SbHV9lChoBmgJaA9DCOF7f4N2DnBAlIaUUpRoFU0oAWgWR0CVtw+g13t8dX2UKGgGaAloD0MIw2fr4OBgZUCUhpRSlGgVTegDaBZHQJW3QypJf6Z1fZQoaAZoCWgPQwgTChFwSKNyQJSGlFKUaBVNPAFoFkdAlbe+scQyynV9lChoBmgJaA9DCHBcxk0NYD5AlIaUUpRoFUvfaBZHQJW5xu5z5oJ1fZQoaAZoCWgPQwg82GK3jz1wQJSGlFKUaBVNVAFoFkdAlboReTmnwXV9lChoBmgJaA9DCDZ2ieqtrUVAlIaUUpRoFUvxaBZHQJW6fctXgcd1fZQoaAZoCWgPQwhWRE30eShyQJSGlFKUaBVNVQFoFkdAlbqgOe8PF3V9lChoBmgJaA9DCJ4kXTP5zW9AlIaUUpRoFU0PAWgWR0CVuv8BMi8ndX2UKGgGaAloD0MIT5Za7/cScECUhpRSlGgVTS8BaBZHQJW76IJqqOt1fZQoaAZoCWgPQwg/cQD9vuZuQJSGlFKUaBVNLgFoFkdAlbwJjpcHGHV9lChoBmgJaA9DCNC0xMroaG1AlIaUUpRoFU1AAWgWR0CVvYEfkmx/dX2UKGgGaAloD0MIBb8NMV71b0CUhpRSlGgVTRYBaBZHQJW+ZuXNTtN1fZQoaAZoCWgPQwjKwWwCTJlwQJSGlFKUaBVNGQFoFkdAlcBhib2DhHV9lChoBmgJaA9DCJje/ly0GXNAlIaUUpRoFU0rAWgWR0CVwIAN5MURdX2UKGgGaAloD0MIbhXEQNcfbkCUhpRSlGgVTRkBaBZHQJXBW4d6syV1fZQoaAZoCWgPQwg83Xni+cpxQJSGlFKUaBVNWgFoFkdAlcGNfkWAPXV9lChoBmgJaA9DCLdELjgDHXJAlIaUUpRoFU01AWgWR0CVwcte2NNrdX2UKGgGaAloD0MIoBUYsro8ckCUhpRSlGgVTUEBaBZHQJXB9SpBHCp1fZQoaAZoCWgPQwjIQ9/dSqhxQJSGlFKUaBVNFQFoFkdAlcOFNHpbEHV9lChoBmgJaA9DCBiT/l4KXHJAlIaUUpRoFU3LAWgWR0CVw98nuy/sdX2UKGgGaAloD0MI/tKiPkk0cUCUhpRSlGgVTSABaBZHQJXE9as6q811fZQoaAZoCWgPQwiO6QlLPBVsQJSGlFKUaBVNEAFoFkdAlcV3+MqBmXV9lChoBmgJaA9DCNcxrri4M3BAlIaUUpRoFU1XAWgWR0CVxakAxSHedX2UKGgGaAloD0MIEr73N2g+cUCUhpRSlGgVTR4BaBZHQJXGFUYKpkx1fZQoaAZoCWgPQwhIpkOnZyxuQJSGlFKUaBVNaAFoFkdAlcbhx1gYxnV9lChoBmgJaA9DCKBtNevManBAlIaUUpRoFUvyaBZHQJXHCHSF49p1fZQoaAZoCWgPQwhq3JvfcKlyQJSGlFKUaBVNewFoFkdAlceYpH7P6nV9lChoBmgJaA9DCITwaOMIDm5AlIaUUpRoFU0gAWgWR0CVx6HaN+9bdX2UKGgGaAloD0MIZW6+Ed2TP0CUhpRSlGgVS9ZoFkdAlcimRV6u4nV9lChoBmgJaA9DCMzQeCKI501AlIaUUpRoFUvzaBZHQJXIxEDyOJd1fZQoaAZoCWgPQwjt0obDkr9xQJSGlFKUaBVNIgFoFkdAlcsbrcCYC3V9lChoBmgJaA9DCEa1iCgmx0VAlIaUUpRoFUvmaBZHQJXLmlTFVDN1fZQoaAZoCWgPQwj1oKAUrVpvQJSGlFKUaBVNOwFoFkdAlcyRd+ocaXV9lChoBmgJaA9DCOo8Kv7vpm1AlIaUUpRoFU1WAWgWR0CVzcjIaLn+dX2UKGgGaAloD0MIY9AJoYOKR0CUhpRSlGgVS+5oFkdAlc3IVRDTjXV9lChoBmgJaA9DCIaQ8/4/GW1AlIaUUpRoFU0jAWgWR0CVzwaTfR/mdX2UKGgGaAloD0MIO4pz1NG9cECUhpRSlGgVTSIBaBZHQJXPd+8XenB1fZQoaAZoCWgPQwh0toDQephPQJSGlFKUaBVL7mgWR0CV0ApnpSrHdX2UKGgGaAloD0MI8pTVdH1BcECUhpRSlGgVTSkBaBZHQJXQYEwFkhB1fZQoaAZoCWgPQwjXhopx/spyQJSGlFKUaBVNjQFoFkdAldF5pBX0XnV9lChoBmgJaA9DCLFPAMVI+m9AlIaUUpRoFU0xAWgWR0CV0cxFiKBNdX2UKGgGaAloD0MIIa0x6IQwSUCUhpRSlGgVS/hoFkdAldHcp5NXYHV9lChoBmgJaA9DCD7NyYtMSnFAlIaUUpRoFU1EAWgWR0CV0kDc/MW5dX2UKGgGaAloD0MIXr2KjI4BcUCUhpRSlGgVTQkBaBZHQJXSS/JvHcV1fZQoaAZoCWgPQwh7E0NycnhwQJSGlFKUaBVNPAFoFkdAldKxVU+9rXV9lChoBmgJaA9DCNqrj4e+X01AlIaUUpRoFUvkaBZHQJXVyR0U4711fZQoaAZoCWgPQwi0rPvHgh9yQJSGlFKUaBVNLAFoFkdAldZVeKKpDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca84bcf40b61e2c2a62c567bdde5fc470904e8053f84598c47cc3dcaac54a86b
|
3 |
+
size 147138
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f83d286ba60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83d286baf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83d286bb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83d286bc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f83d286bca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f83d286bd30>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83d286bdc0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f83d286be50>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83d286bee0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83d286bf70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83d27ef040>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f83d2865de0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670339951174634148,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrNtLztnF0+li0/PuIrVb4kBeo99ZPYvAAAAAAAAAAAIC9NPrffKD9OJVi+1WmVvlclIz1CDxK+AAAAAAAAAAD7f6u++/LpPiKYGj7wZaa+rMt1vV3JIT0AAAAAAAAAAGaGX70ysKo/Zmgov+YABr8WTko82v+VvQAAAAAAAAAAwLC/vdmipj6Vev49ZyKfvoZhPz1IW/c7AAAAAAAAAAD6NRe+hZfMPN6XOT4wSmC+alxcPbTOBTwAAAAAAAAAAAD72L3DRVO6M0nPutAdRLbcw547QsfwOQAAgD8AAAAAAAF9PUSpsD2xiwg9QcdFvm3QSz1LyFY8AAAAAAAAAADawy8+4yCzPu4BNr4X1oW+BvkQPbCb+LwAAAAAAAAAAABu0L1R94U+Gw0kPN29h779JPO8PESVPQAAAAAAAAAAuvIaviwhnz8Uwha/Fj7bvn42G77q02a+AAAAAAAAAACmG8i9dOm4PTuDyzz0t1e+6mvEvLwWMD0AAAAAAAAAAE0mcr09cX+7K4PEunfnjzw9CsY8LjR2vQAAgD8AAIA/AL8QPY/OU7q/Ngg28SDYMDn3BzpMUiK1AACAPwAAgD8N26I9g4g7vCLeTDz1whc9UAihPT48BLsAAIA/AAAAAGaU17z0qZ8+ee4LPbkqnL7PUGo76k+6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuycPCzV+bECUhpRSlIwBbJRNWAGMAXSUR0CVgW5mRNh3dX2UKGgGaAloD0MIlWWIY53DcECUhpRSlGgVTRcBaBZHQJWBiJ79hql1fZQoaAZoCWgPQwhoBYasbvZvQJSGlFKUaBVNEwFoFkdAlYJWfChvi3V9lChoBmgJaA9DCGZPApvzVW5AlIaUUpRoFU1dAWgWR0CVg9ijcmBwdX2UKGgGaAloD0MIg1DexxEQcUCUhpRSlGgVTUIBaBZHQJWD/0mMOwx1fZQoaAZoCWgPQwjO4sXCEGhtQJSGlFKUaBVNFgFoFkdAlYRIn8baRXV9lChoBmgJaA9DCPD3i9mSQHBAlIaUUpRoFU06AWgWR0CVhG1HvttzdX2UKGgGaAloD0MI2lVI+Qk/cECUhpRSlGgVTTYBaBZHQJWEeTibUgB1fZQoaAZoCWgPQwirs1pgDyZwQJSGlFKUaBVNQQFoFkdAlYR5Mtbs4XV9lChoBmgJaA9DCB+6oL5l8XFAlIaUUpRoFU1PAWgWR0CVhXr5ZbIMdX2UKGgGaAloD0MIMJ+sGK4EcUCUhpRSlGgVTSABaBZHQJWFpy2hIvt1fZQoaAZoCWgPQwhseHqlLBVwQJSGlFKUaBVNTwFoFkdAlYbLMC9ytHV9lChoBmgJaA9DCMxEEVK3EzVAlIaUUpRoFUvtaBZHQJWJBn8Kohp1fZQoaAZoCWgPQwhE/MOWnnRtQJSGlFKUaBVNCwFoFkdAlYktNnGsFXV9lChoBmgJaA9DCNNNYhCYrXBAlIaUUpRoFU0VAWgWR0CVilw9aEBbdX2UKGgGaAloD0MIrws/ON9KcUCUhpRSlGgVTX4BaBZHQJWKefoRqXZ1fZQoaAZoCWgPQwh39L9ci5xxQJSGlFKUaBVNCQFoFkdAlYteerdWQ3V9lChoBmgJaA9DCPMC7KNTF3FAlIaUUpRoFUvxaBZHQJWL2ITGo751fZQoaAZoCWgPQwj5hVeS/EJyQJSGlFKUaBVNMQFoFkdAlYwW0AtFrnV9lChoBmgJaA9DCElKehgatXFAlIaUUpRoFU0eAWgWR0CVjeRu0kWzdX2UKGgGaAloD0MIrptSXmtLcECUhpRSlGgVTSYBaBZHQJWOO7mMfih1fZQoaAZoCWgPQwjko8UZQ2FwQJSGlFKUaBVNLQFoFkdAlY5PS6UaAHV9lChoBmgJaA9DCGZK629JoHFAlIaUUpRoFU1HAWgWR0CVju/OdGy5dX2UKGgGaAloD0MIpfYi2g4wb0CUhpRSlGgVTTsBaBZHQJWO9FmWdEt1fZQoaAZoCWgPQwjSim8o/MFvQJSGlFKUaBVNGQFoFkdAlY8ogA6uGXV9lChoBmgJaA9DCDkpzHscv3BAlIaUUpRoFU0iAWgWR0CVjz9OARTTdX2UKGgGaAloD0MIraWAtD9+cUCUhpRSlGgVTSABaBZHQJWQjRSgoPV1fZQoaAZoCWgPQwgpBd1e0npwQJSGlFKUaBVNLAFoFkdAlZM1uJk5InV9lChoBmgJaA9DCCo5J/bQTihAlIaUUpRoFUvmaBZHQJWTuZUkv9N1fZQoaAZoCWgPQwhFEyhikT1yQJSGlFKUaBVL/mgWR0CVk+CjDbaidX2UKGgGaAloD0MI88mK4epNbkCUhpRSlGgVTSEBaBZHQJWUH3xnWat1fZQoaAZoCWgPQwhD4bN18NlxQJSGlFKUaBVNSwFoFkdAlZR9wWFewHV9lChoBmgJaA9DCBHF5A0wSm5AlIaUUpRoFU0/AWgWR0CVlUh5xBE8dX2UKGgGaAloD0MIvk7qyxI1cECUhpRSlGgVTSYBaBZHQJWVvhNucc51fZQoaAZoCWgPQwg3NjtSvV5wQJSGlFKUaBVNDgFoFkdAlZb4TCcf/3V9lChoBmgJaA9DCFHZsKYy+m1AlIaUUpRoFU0IAWgWR0CVl9Y150KadX2UKGgGaAloD0MI68n8o+/cckCUhpRSlGgVTTIBaBZHQJWYn7fpD/l1fZQoaAZoCWgPQwjwiArVzc5wQJSGlFKUaBVNGAFoFkdAlZixUWEbpHV9lChoBmgJaA9DCIld29vtXnJAlIaUUpRoFU0oAWgWR0CVmVEDQqqfdX2UKGgGaAloD0MIaqFkcmrIcECUhpRSlGgVTUgBaBZHQJWZaIuXeFd1fZQoaAZoCWgPQwgdd0oHq+twQJSGlFKUaBVNYAFoFkdAlZrJimVJMHV9lChoBmgJaA9DCLKbGf1oHHBAlIaUUpRoFU05AWgWR0CVm02jfvWpdX2UKGgGaAloD0MI1xh0QmiBb0CUhpRSlGgVTSwBaBZHQJWeRMwlByF1fZQoaAZoCWgPQwiSdw5laIZyQJSGlFKUaBVNPQFoFkdAlZ5lSGahH3V9lChoBmgJaA9DCPvMWZ8yCXFAlIaUUpRoFU0tAWgWR0CVnnwrlNlAdX2UKGgGaAloD0MI2nIuxVUjcECUhpRSlGgVTQ4BaBZHQJWe2BFuvU11fZQoaAZoCWgPQwhmahK84aRwQJSGlFKUaBVNKAFoFkdAlZ7yW/rSmnV9lChoBmgJaA9DCF4SZ0UUEHFAlIaUUpRoFU0VAWgWR0CVn5B8hLXddX2UKGgGaAloD0MIGVQbnIj4cECUhpRSlGgVTRgBaBZHQJW0ReRgZ0l1fZQoaAZoCWgPQwjhQbPrXkBvQJSGlFKUaBVNCQFoFkdAlbVVt8/lhnV9lChoBmgJaA9DCH7H8NiP7XBAlIaUUpRoFU2XAWgWR0CVtdjghr31dX2UKGgGaAloD0MI4ltYN56IckCUhpRSlGgVTSwBaBZHQJW2j4YaYNR1fZQoaAZoCWgPQwgr3PKRlAZxQJSGlFKUaBVNUgFoFkdAlbcL8R+SbHV9lChoBmgJaA9DCOF7f4N2DnBAlIaUUpRoFU0oAWgWR0CVtw+g13t8dX2UKGgGaAloD0MIw2fr4OBgZUCUhpRSlGgVTegDaBZHQJW3QypJf6Z1fZQoaAZoCWgPQwgTChFwSKNyQJSGlFKUaBVNPAFoFkdAlbe+scQyynV9lChoBmgJaA9DCHBcxk0NYD5AlIaUUpRoFUvfaBZHQJW5xu5z5oJ1fZQoaAZoCWgPQwg82GK3jz1wQJSGlFKUaBVNVAFoFkdAlboReTmnwXV9lChoBmgJaA9DCDZ2ieqtrUVAlIaUUpRoFUvxaBZHQJW6fctXgcd1fZQoaAZoCWgPQwhWRE30eShyQJSGlFKUaBVNVQFoFkdAlbqgOe8PF3V9lChoBmgJaA9DCJ4kXTP5zW9AlIaUUpRoFU0PAWgWR0CVuv8BMi8ndX2UKGgGaAloD0MIT5Za7/cScECUhpRSlGgVTS8BaBZHQJW76IJqqOt1fZQoaAZoCWgPQwg/cQD9vuZuQJSGlFKUaBVNLgFoFkdAlbwJjpcHGHV9lChoBmgJaA9DCNC0xMroaG1AlIaUUpRoFU1AAWgWR0CVvYEfkmx/dX2UKGgGaAloD0MIBb8NMV71b0CUhpRSlGgVTRYBaBZHQJW+ZuXNTtN1fZQoaAZoCWgPQwjKwWwCTJlwQJSGlFKUaBVNGQFoFkdAlcBhib2DhHV9lChoBmgJaA9DCJje/ly0GXNAlIaUUpRoFU0rAWgWR0CVwIAN5MURdX2UKGgGaAloD0MIbhXEQNcfbkCUhpRSlGgVTRkBaBZHQJXBW4d6syV1fZQoaAZoCWgPQwg83Xni+cpxQJSGlFKUaBVNWgFoFkdAlcGNfkWAPXV9lChoBmgJaA9DCLdELjgDHXJAlIaUUpRoFU01AWgWR0CVwcte2NNrdX2UKGgGaAloD0MIoBUYsro8ckCUhpRSlGgVTUEBaBZHQJXB9SpBHCp1fZQoaAZoCWgPQwjIQ9/dSqhxQJSGlFKUaBVNFQFoFkdAlcOFNHpbEHV9lChoBmgJaA9DCBiT/l4KXHJAlIaUUpRoFU3LAWgWR0CVw98nuy/sdX2UKGgGaAloD0MI/tKiPkk0cUCUhpRSlGgVTSABaBZHQJXE9as6q811fZQoaAZoCWgPQwiO6QlLPBVsQJSGlFKUaBVNEAFoFkdAlcV3+MqBmXV9lChoBmgJaA9DCNcxrri4M3BAlIaUUpRoFU1XAWgWR0CVxakAxSHedX2UKGgGaAloD0MIEr73N2g+cUCUhpRSlGgVTR4BaBZHQJXGFUYKpkx1fZQoaAZoCWgPQwhIpkOnZyxuQJSGlFKUaBVNaAFoFkdAlcbhx1gYxnV9lChoBmgJaA9DCKBtNevManBAlIaUUpRoFUvyaBZHQJXHCHSF49p1fZQoaAZoCWgPQwhq3JvfcKlyQJSGlFKUaBVNewFoFkdAlceYpH7P6nV9lChoBmgJaA9DCITwaOMIDm5AlIaUUpRoFU0gAWgWR0CVx6HaN+9bdX2UKGgGaAloD0MIZW6+Ed2TP0CUhpRSlGgVS9ZoFkdAlcimRV6u4nV9lChoBmgJaA9DCMzQeCKI501AlIaUUpRoFUvzaBZHQJXIxEDyOJd1fZQoaAZoCWgPQwjt0obDkr9xQJSGlFKUaBVNIgFoFkdAlcsbrcCYC3V9lChoBmgJaA9DCEa1iCgmx0VAlIaUUpRoFUvmaBZHQJXLmlTFVDN1fZQoaAZoCWgPQwj1oKAUrVpvQJSGlFKUaBVNOwFoFkdAlcyRd+ocaXV9lChoBmgJaA9DCOo8Kv7vpm1AlIaUUpRoFU1WAWgWR0CVzcjIaLn+dX2UKGgGaAloD0MIY9AJoYOKR0CUhpRSlGgVS+5oFkdAlc3IVRDTjXV9lChoBmgJaA9DCIaQ8/4/GW1AlIaUUpRoFU0jAWgWR0CVzwaTfR/mdX2UKGgGaAloD0MIO4pz1NG9cECUhpRSlGgVTSIBaBZHQJXPd+8XenB1fZQoaAZoCWgPQwh0toDQephPQJSGlFKUaBVL7mgWR0CV0ApnpSrHdX2UKGgGaAloD0MI8pTVdH1BcECUhpRSlGgVTSkBaBZHQJXQYEwFkhB1fZQoaAZoCWgPQwjXhopx/spyQJSGlFKUaBVNjQFoFkdAldF5pBX0XnV9lChoBmgJaA9DCLFPAMVI+m9AlIaUUpRoFU0xAWgWR0CV0cxFiKBNdX2UKGgGaAloD0MIIa0x6IQwSUCUhpRSlGgVS/hoFkdAldHcp5NXYHV9lChoBmgJaA9DCD7NyYtMSnFAlIaUUpRoFU1EAWgWR0CV0kDc/MW5dX2UKGgGaAloD0MIXr2KjI4BcUCUhpRSlGgVTQkBaBZHQJXSS/JvHcV1fZQoaAZoCWgPQwh7E0NycnhwQJSGlFKUaBVNPAFoFkdAldKxVU+9rXV9lChoBmgJaA9DCNqrj4e+X01AlIaUUpRoFUvkaBZHQJXVyR0U4711fZQoaAZoCWgPQwi0rPvHgh9yQJSGlFKUaBVNLAFoFkdAldZVeKKpDXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be45c5b52b39e1fa6fbed96f996081daefc6613068bce62fd92522af085c6094
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0863cd976f9e09d8492b5c8d81aea541e2ba689f1d27f8cd849f7a74d1d4c48e
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (213 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.29838823050324, "std_reward": 20.504171971921778, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T15:45:17.279803"}
|