Byte-lingua-code / deep_visual_analysis.py
2ira's picture
offline_compression_graph_code
72c0672 verified
import json
import argparse
import os
from collections import Counter
import math
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from difflib import SequenceMatcher
from tqdm import tqdm
# --- Global plotting style (publication-friendly) ---
sns.set_theme(style="whitegrid", context="paper")
plt.rcParams.update({
"figure.dpi": 300,
"savefig.dpi": 300,
"font.size": 11,
"axes.titlesize": 12,
"axes.labelsize": 11,
# ==== 新增:统一使用 serif 字体,和论文保持一致 ====
"font.family": "serif",
# 数学公式用 Computer Modern 风格,和 LaTeX 比较接近
"mathtext.fontset": "cm",
"axes.unicode_minus": False,
})
# --- Core Analysis Helper Functions ---
def get_longest_common_prefix(str_list: list[str]) -> str:
"""Calculates the longest common prefix for a list of strings."""
if not str_list:
return ""
prefix = str_list[0]
for s in str_list[1:]:
while not s.startswith(prefix):
prefix = prefix[:-1]
if not prefix:
return ""
return prefix
def get_character_entropy(s: str) -> float:
"""Calculates the Shannon entropy for a string."""
if not s:
return 0.0
counts = Counter(s)
total_len = len(s)
entropy = 0.0
for count in counts.values():
p = count / total_len
entropy -= p * math.log2(p)
return entropy
def build_case_record(case: dict, tag: str | None = None) -> dict:
"""Create a lightweight JSON-friendly summary of a collision case."""
record = {
"num_raw_variants": case["num_raw_variants"],
"raw_chunk_variants_preview": [v[:80] for v in case.get("raw_chunk_variants", [])], # Show first 80 chars for preview
"analysis_plus": case.get("analysis_plus", {}),
}
if tag is not None:
record["tag"] = tag
return record
# --- Main Analysis Function ---
def analyze_collision_report(report_path: str, output_dir: str, max_chars_for_diff: int = 256):
if not os.path.exists(report_path):
print(f"❌ Error: Report file not found at '{report_path}'")
return
print(f"🔍 Reading report file: {report_path}")
with open(report_path, "r", encoding="utf-8") as f:
all_collisions = json.load(f)
if not all_collisions:
print("🎉 No collisions found in the report. Nothing to analyze.")
return
print(f"Report contains {len(all_collisions)} colliding token sequences.")
os.makedirs(output_dir, exist_ok=True)
# --- 1. Enrich Data with Advanced Metrics ---
print("\n--- 1. Enriching data with LCP and entropy statistics ---")
enriched_collisions = []
for collision in tqdm(all_collisions, desc="Analyzing content features"):
variants = collision["raw_chunk_variants"]
lcp = get_longest_common_prefix(variants)
avg_len = np.mean([len(v) for v in variants]) if variants else 0
lcp_ratio = len(lcp) / avg_len if avg_len > 0 else 0.0
lengths = [len(v) for v in variants]
entropies = [get_character_entropy(v) for v in variants]
collision["analysis_plus"] = {
"lcp_ratio": float(lcp_ratio),
"length_stats": {
"min": int(min(lengths)),
"max": int(max(lengths)),
"mean": float(np.mean(lengths)),
"std": float(np.std(lengths)),
},
"entropy_stats": {
"min": float(min(entropies)),
"max": float(max(entropies)),
"mean": float(np.mean(entropies)),
},
}
enriched_collisions.append(collision)
# Precompute some global lists
num_variants_list = [c["num_raw_variants"] for c in enriched_collisions]
lcp_ratios = [c["analysis_plus"]["lcp_ratio"] for c in enriched_collisions]
entropy_means = [c["analysis_plus"]["entropy_stats"]["mean"] for c in enriched_collisions]
# --- 2. In-depth Case Study & Output Generation ---
print("\n--- 2. Selecting representative collision cases and generating text-based previews ---")
# Collisions with max / min scale
max_collision_case = max(enriched_collisions, key=lambda c: c["num_raw_variants"])
min_collision_case = min(enriched_collisions, key=lambda c: c["num_raw_variants"])
# Collisions with highest / lowest LCP ratio
high_lcp_case = max(enriched_collisions, key=lambda c: c["analysis_plus"]["lcp_ratio"])
low_lcp_case = min(enriched_collisions, key=lambda c: c["analysis_plus"]["lcp_ratio"])
analysis_summary = {
"total_colliding_sequences": len(all_collisions),
"representative_cases": {
"max_collision": build_case_record(max_collision_case, "Maximum collision scale"),
"min_collision": build_case_record(min_collision_case, "Minimum collision scale"),
"high_lcp": build_case_record(high_lcp_case, "Highest LCP ratio"),
"low_lcp": build_case_record(low_lcp_case, "Lowest LCP ratio"),
}
}
# Save the summary JSON file
summary_report_path = os.path.join(output_dir, "final_analysis_summary.json")
with open(summary_report_path, "w", encoding="utf-8") as f:
json.dump(analysis_summary, f, indent=2, ensure_ascii=False)
print(f"\n💾 Final structured analysis summary saved to: {summary_report_path}")
print("\n--- 2. Aggregate visualization of collision patterns ---")
# 10.1 Collision scale distribution (Figure: 1_collision_scale.{png,pdf})
print("Plotting collision scale histogram (Figure 10.1)...")
fig1, ax1 = plt.subplots(figsize=(6.2, 4.0))
max_count = max(num_variants_list)
bins = np.arange(1.5, max_count + 1.5, 1)
sns.histplot(
num_variants_list,
bins=bins,
discrete=True,
shrink=0.8,
ax=ax1,
)
ax1.set_yscale("log")
# ax1.set_title("Collision scale distribution")
ax1.set_xlabel("Raw chunks per compressed segment")
ax1.set_ylabel("Compressed segments (log scale)")
ax1.grid(True, which="both", linestyle="--", alpha=0.5)
fig1.tight_layout()
save_figure(fig1, output_dir, "1_collision_scale")
# 10.2 LCP ratio distribution (Figure: 2_lcp_ratio.{png,pdf})
print("Plotting LCP ratio histogram (Figure 10.2)...")
fig2, ax2 = plt.subplots(figsize=(6.2, 4.0))
sns.histplot(
lcp_ratios,
bins=50,
binrange=(0.0, 1.0),
kde=False,
ax=ax2,
)
# ax2.set_title("Distribution of LCP ratio")
ax2.set_xlabel("LCP ratio")
ax2.set_ylabel("Compressed symbols")
ax2.set_xlim(0.0, 1.0)
ax2.grid(True, which="both", linestyle="--", alpha=0.5)
fig2.tight_layout()
save_figure(fig2, output_dir, "2_lcp_ratio")
# 10.3 2D density: LCP ratio vs mean character entropy (Figure: 3_lcp_vs_entropy.{png,pdf})
if len(lcp_ratios) > 1:
print("Plotting 2D density of LCP ratio vs entropy (Figure 10.3)...")
fig3, ax3 = plt.subplots(figsize=(6.2, 4.2))
# Use a smooth 2D KDE density plot
sns.kdeplot(
x=lcp_ratios,
y=entropy_means,
fill=True,
thresh=0.01,
levels=40,
cmap="mako",
ax=ax3,
)
ax3.set_title("Joint density of LCP ratio and character entropy")
ax3.set_xlabel("LCP ratio")
ax3.set_ylabel("Mean character entropy")
ax3.set_xlim(0.0, 1.0)
ax3.grid(True, which="both", linestyle="--", alpha=0.4)
fig3.tight_layout()
save_figure(fig3, output_dir, "3_lcp_vs_entropy")
else:
print("Not enough points to plot 2D KDE, skipping Figure 10.3.")
# Optional: Edit distance related plots (can be convenient for appendix)
# They are numbered starting from 4_*** to avoid conflicts with 10.1–10.3.
try:
print("Plotting auxiliary edit-distance based figures (optional)...")
avg_distances = [c["levenshtein_analysis"]["average_distance"] for c in enriched_collisions]
# Edit distance vs LCP ratio
fig4, ax4 = plt.subplots(figsize=(6.0, 4.0))
scatter = ax4.scatter(
avg_distances,
lcp_ratios,
c=num_variants_list,
cmap="viridis",
alpha=0.6,
s=np.log1p(num_variants_list) * 18,
)
cbar = fig4.colorbar(scatter, ax=ax4)
cbar.set_label("Number of raw variants")
ax4.set_title("Average Levenshtein distance vs LCP ratio")
ax4.set_xlabel("Average Levenshtein distance")
ax4.set_ylabel("LCP ratio")
ax4.grid(True, linestyle="--", alpha=0.4)
fig4.tight_layout()
save_figure(fig4, output_dir, "4_distance_vs_lcp_scatter")
# Length std dev vs mean entropy
len_stds = [c["analysis_plus"]["length_stats"]["std"] for c in enriched_collisions]
fig5, ax5 = plt.subplots(figsize=(6.0, 4.0))
scatter2 = ax5.scatter(
len_stds,
entropy_means,
c=lcp_ratios,
cmap="plasma",
alpha=0.7,
s=np.log1p(num_variants_list) * 18,
)
cbar2 = fig5.colorbar(scatter2, ax=ax5)
cbar2.set_label("LCP ratio")
ax5.set_title("Length std. deviation vs mean character entropy")
ax5.set_xlabel("Std. deviation of raw chunk length")
ax5.set_ylabel("Mean character entropy")
ax5.set_xscale("log")
ax5.grid(True, which="both", linestyle="--", alpha=0.4)
fig5.tight_layout()
save_figure(fig5, output_dir, "5_length_std_vs_entropy_scatter")
except KeyError:
print("Some entries do not contain 'levenshtein_analysis'; skipping auxiliary edit-distance plots.")
print("\n✅ All analyses complete! Please check the output directory for the summary JSON.")
def save_figure(fig, output_dir: str, filename: str):
"""
Save a Matplotlib figure as both PNG and PDF with a common base filename.
"""
base = os.path.join(output_dir, filename)
for ext in ("png", "pdf"):
fig.savefig(f"{base}.{ext}", bbox_inches="tight")
plt.close(fig)
print(f"📁 Saved figure: {base}.png / .pdf")
# --- Main Entry ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Perform an in-depth, multi-dimensional, and visual analysis of a token collision report.",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"report_json",
type=str,
help="Path to the token_sequence_collision_report.json file generated by the main analyzer.",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
default="final_deep_analysis",
help="Output directory to store all analysis plots and summaries.",
)
args = parser.parse_args()
analyze_collision_report(args.report_json, args.output_dir)
## analysis_output_token_collision/token_collision_report.json -> write all the compressed byte and corressponding raw bytes
"""
python deep_visual_analysis.py analysis_output_token_collision/token_collision_report.json
pip install numpy matplotlib seaborn tqdm
"""