|
import math |
|
import numpy as np |
|
import matplotlib |
|
import cv2 |
|
from typing import List, Tuple, Union, Optional |
|
|
|
from .body import BodyResult, Keypoint |
|
|
|
eps = 0.01 |
|
|
|
|
|
def smart_resize(x, s): |
|
Ht, Wt = s |
|
if x.ndim == 2: |
|
Ho, Wo = x.shape |
|
Co = 1 |
|
else: |
|
Ho, Wo, Co = x.shape |
|
if Co == 3 or Co == 1: |
|
k = float(Ht + Wt) / float(Ho + Wo) |
|
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) |
|
else: |
|
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) |
|
|
|
|
|
def smart_resize_k(x, fx, fy): |
|
if x.ndim == 2: |
|
Ho, Wo = x.shape |
|
Co = 1 |
|
else: |
|
Ho, Wo, Co = x.shape |
|
Ht, Wt = Ho * fy, Wo * fx |
|
if Co == 3 or Co == 1: |
|
k = float(Ht + Wt) / float(Ho + Wo) |
|
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) |
|
else: |
|
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) |
|
|
|
|
|
def padRightDownCorner(img, stride, padValue): |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
|
|
pad = 4 * [None] |
|
pad[0] = 0 |
|
pad[1] = 0 |
|
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) |
|
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) |
|
|
|
img_padded = img |
|
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) |
|
img_padded = np.concatenate((pad_up, img_padded), axis=0) |
|
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) |
|
img_padded = np.concatenate((pad_left, img_padded), axis=1) |
|
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) |
|
img_padded = np.concatenate((img_padded, pad_down), axis=0) |
|
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) |
|
img_padded = np.concatenate((img_padded, pad_right), axis=1) |
|
|
|
return img_padded, pad |
|
|
|
|
|
def transfer(model, model_weights): |
|
transfered_model_weights = {} |
|
for weights_name in model.state_dict().keys(): |
|
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] |
|
return transfered_model_weights |
|
|
|
|
|
def is_normalized(keypoints: List[Optional[Keypoint]]) -> bool: |
|
point_normalized = [ |
|
0 <= abs(k.x) <= 1 and 0 <= abs(k.y) <= 1 |
|
for k in keypoints |
|
if k is not None |
|
] |
|
if not point_normalized: |
|
return False |
|
return all(point_normalized) |
|
|
|
|
|
def draw_bodypose(canvas: np.ndarray, keypoints: List[Keypoint]) -> np.ndarray: |
|
""" |
|
Draw keypoints and limbs representing body pose on a given canvas. |
|
|
|
Args: |
|
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the body pose. |
|
keypoints (List[Keypoint]): A list of Keypoint objects representing the body keypoints to be drawn. |
|
|
|
Returns: |
|
np.ndarray: A 3D numpy array representing the modified canvas with the drawn body pose. |
|
|
|
Note: |
|
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1. |
|
""" |
|
if not is_normalized(keypoints): |
|
H, W = 1.0, 1.0 |
|
else: |
|
H, W, _ = canvas.shape |
|
|
|
stickwidth = 4 |
|
|
|
limbSeq = [ |
|
[2, 3], [2, 6], [3, 4], [4, 5], |
|
[6, 7], [7, 8], [2, 9], [9, 10], |
|
[10, 11], [2, 12], [12, 13], [13, 14], |
|
[2, 1], [1, 15], [15, 17], [1, 16], |
|
[16, 18], |
|
] |
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ |
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ |
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] |
|
|
|
for (k1_index, k2_index), color in zip(limbSeq, colors): |
|
keypoint1 = keypoints[k1_index - 1] |
|
keypoint2 = keypoints[k2_index - 1] |
|
|
|
if keypoint1 is None or keypoint2 is None: |
|
continue |
|
|
|
Y = np.array([keypoint1.x, keypoint2.x]) * float(W) |
|
X = np.array([keypoint1.y, keypoint2.y]) * float(H) |
|
mX = np.mean(X) |
|
mY = np.mean(Y) |
|
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) |
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) |
|
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color]) |
|
|
|
for keypoint, color in zip(keypoints, colors): |
|
if keypoint is None: |
|
continue |
|
|
|
x, y = keypoint.x, keypoint.y |
|
x = int(x * W) |
|
y = int(y * H) |
|
cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1) |
|
|
|
return canvas |
|
|
|
|
|
def draw_handpose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray: |
|
""" |
|
Draw keypoints and connections representing hand pose on a given canvas. |
|
|
|
Args: |
|
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the hand pose. |
|
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the hand keypoints to be drawn |
|
or None if no keypoints are present. |
|
|
|
Returns: |
|
np.ndarray: A 3D numpy array representing the modified canvas with the drawn hand pose. |
|
|
|
Note: |
|
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1. |
|
""" |
|
if not keypoints: |
|
return canvas |
|
|
|
if not is_normalized(keypoints): |
|
H, W = 1.0, 1.0 |
|
else: |
|
H, W, _ = canvas.shape |
|
|
|
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ |
|
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] |
|
|
|
for ie, (e1, e2) in enumerate(edges): |
|
k1 = keypoints[e1] |
|
k2 = keypoints[e2] |
|
if k1 is None or k2 is None: |
|
continue |
|
|
|
x1 = int(k1.x * W) |
|
y1 = int(k1.y * H) |
|
x2 = int(k2.x * W) |
|
y2 = int(k2.y * H) |
|
if x1 > eps and y1 > eps and x2 > eps and y2 > eps: |
|
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) |
|
|
|
for keypoint in keypoints: |
|
if keypoint is None: |
|
continue |
|
|
|
x, y = keypoint.x, keypoint.y |
|
x = int(x * W) |
|
y = int(y * H) |
|
if x > eps and y > eps: |
|
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) |
|
return canvas |
|
|
|
|
|
def draw_facepose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray: |
|
""" |
|
Draw keypoints representing face pose on a given canvas. |
|
|
|
Args: |
|
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the face pose. |
|
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the face keypoints to be drawn |
|
or None if no keypoints are present. |
|
|
|
Returns: |
|
np.ndarray: A 3D numpy array representing the modified canvas with the drawn face pose. |
|
|
|
Note: |
|
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1. |
|
""" |
|
if not keypoints: |
|
return canvas |
|
|
|
if not is_normalized(keypoints): |
|
H, W = 1.0, 1.0 |
|
else: |
|
H, W, _ = canvas.shape |
|
|
|
for keypoint in keypoints: |
|
if keypoint is None: |
|
continue |
|
|
|
x, y = keypoint.x, keypoint.y |
|
x = int(x * W) |
|
y = int(y * H) |
|
if x > eps and y > eps: |
|
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) |
|
return canvas |
|
|
|
|
|
|
|
|
|
def handDetect(body: BodyResult, oriImg) -> List[Tuple[int, int, int, bool]]: |
|
""" |
|
Detect hands in the input body pose keypoints and calculate the bounding box for each hand. |
|
|
|
Args: |
|
body (BodyResult): A BodyResult object containing the detected body pose keypoints. |
|
oriImg (numpy.ndarray): A 3D numpy array representing the original input image. |
|
|
|
Returns: |
|
List[Tuple[int, int, int, bool]]: A list of tuples, each containing the coordinates (x, y) of the top-left |
|
corner of the bounding box, the width (height) of the bounding box, and |
|
a boolean flag indicating whether the hand is a left hand (True) or a |
|
right hand (False). |
|
|
|
Notes: |
|
- The width and height of the bounding boxes are equal since the network requires squared input. |
|
- The minimum bounding box size is 20 pixels. |
|
""" |
|
ratioWristElbow = 0.33 |
|
detect_result = [] |
|
image_height, image_width = oriImg.shape[0:2] |
|
|
|
keypoints = body.keypoints |
|
|
|
|
|
left_shoulder = keypoints[5] |
|
left_elbow = keypoints[6] |
|
left_wrist = keypoints[7] |
|
right_shoulder = keypoints[2] |
|
right_elbow = keypoints[3] |
|
right_wrist = keypoints[4] |
|
|
|
|
|
has_left = all(keypoint is not None for keypoint in (left_shoulder, left_elbow, left_wrist)) |
|
has_right = all(keypoint is not None for keypoint in (right_shoulder, right_elbow, right_wrist)) |
|
if not (has_left or has_right): |
|
return [] |
|
|
|
hands = [] |
|
|
|
if has_left: |
|
hands.append([ |
|
left_shoulder.x, left_shoulder.y, |
|
left_elbow.x, left_elbow.y, |
|
left_wrist.x, left_wrist.y, |
|
True |
|
]) |
|
|
|
if has_right: |
|
hands.append([ |
|
right_shoulder.x, right_shoulder.y, |
|
right_elbow.x, right_elbow.y, |
|
right_wrist.x, right_wrist.y, |
|
False |
|
]) |
|
|
|
for x1, y1, x2, y2, x3, y3, is_left in hands: |
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x3 + ratioWristElbow * (x3 - x2) |
|
y = y3 + ratioWristElbow * (y3 - y2) |
|
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) |
|
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) |
|
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) |
|
|
|
|
|
|
|
x -= width / 2 |
|
y -= width / 2 |
|
|
|
if x < 0: x = 0 |
|
if y < 0: y = 0 |
|
width1 = width |
|
width2 = width |
|
if x + width > image_width: width1 = image_width - x |
|
if y + width > image_height: width2 = image_height - y |
|
width = min(width1, width2) |
|
|
|
if width >= 20: |
|
detect_result.append((int(x), int(y), int(width), is_left)) |
|
|
|
''' |
|
return value: [[x, y, w, True if left hand else False]]. |
|
width=height since the network require squared input. |
|
x, y is the coordinate of top left |
|
''' |
|
return detect_result |
|
|
|
|
|
|
|
def faceDetect(body: BodyResult, oriImg) -> Union[Tuple[int, int, int], None]: |
|
""" |
|
Detect the face in the input body pose keypoints and calculate the bounding box for the face. |
|
|
|
Args: |
|
body (BodyResult): A BodyResult object containing the detected body pose keypoints. |
|
oriImg (numpy.ndarray): A 3D numpy array representing the original input image. |
|
|
|
Returns: |
|
Tuple[int, int, int] | None: A tuple containing the coordinates (x, y) of the top-left corner of the |
|
bounding box and the width (height) of the bounding box, or None if the |
|
face is not detected or the bounding box width is less than 20 pixels. |
|
|
|
Notes: |
|
- The width and height of the bounding box are equal. |
|
- The minimum bounding box size is 20 pixels. |
|
""" |
|
|
|
image_height, image_width = oriImg.shape[0:2] |
|
|
|
keypoints = body.keypoints |
|
head = keypoints[0] |
|
left_eye = keypoints[14] |
|
right_eye = keypoints[15] |
|
left_ear = keypoints[16] |
|
right_ear = keypoints[17] |
|
|
|
if head is None or all(keypoint is None for keypoint in (left_eye, right_eye, left_ear, right_ear)): |
|
return None |
|
|
|
width = 0.0 |
|
x0, y0 = head.x, head.y |
|
|
|
if left_eye is not None: |
|
x1, y1 = left_eye.x, left_eye.y |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 3.0) |
|
|
|
if right_eye is not None: |
|
x1, y1 = right_eye.x, right_eye.y |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 3.0) |
|
|
|
if left_ear is not None: |
|
x1, y1 = left_ear.x, left_ear.y |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 1.5) |
|
|
|
if right_ear is not None: |
|
x1, y1 = right_ear.x, right_ear.y |
|
d = max(abs(x0 - x1), abs(y0 - y1)) |
|
width = max(width, d * 1.5) |
|
|
|
x, y = x0, y0 |
|
|
|
x -= width |
|
y -= width |
|
|
|
if x < 0: |
|
x = 0 |
|
|
|
if y < 0: |
|
y = 0 |
|
|
|
width1 = width * 2 |
|
width2 = width * 2 |
|
|
|
if x + width > image_width: |
|
width1 = image_width - x |
|
|
|
if y + width > image_height: |
|
width2 = image_height - y |
|
|
|
width = min(width1, width2) |
|
|
|
if width >= 20: |
|
return int(x), int(y), int(width) |
|
else: |
|
return None |
|
|
|
|
|
|
|
def npmax(array): |
|
arrayindex = array.argmax(1) |
|
arrayvalue = array.max(1) |
|
i = arrayvalue.argmax() |
|
j = arrayindex[i] |
|
return i, j |