|
import torch |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
def make_layers(block, no_relu_layers): |
|
layers = [] |
|
for layer_name, v in block.items(): |
|
if 'pool' in layer_name: |
|
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], |
|
padding=v[2]) |
|
layers.append((layer_name, layer)) |
|
else: |
|
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], |
|
kernel_size=v[2], stride=v[3], |
|
padding=v[4]) |
|
layers.append((layer_name, conv2d)) |
|
if layer_name not in no_relu_layers: |
|
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True))) |
|
|
|
return nn.Sequential(OrderedDict(layers)) |
|
|
|
class bodypose_model(nn.Module): |
|
def __init__(self): |
|
super(bodypose_model, self).__init__() |
|
|
|
|
|
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\ |
|
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\ |
|
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\ |
|
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] |
|
blocks = {} |
|
block0 = OrderedDict([ |
|
('conv1_1', [3, 64, 3, 1, 1]), |
|
('conv1_2', [64, 64, 3, 1, 1]), |
|
('pool1_stage1', [2, 2, 0]), |
|
('conv2_1', [64, 128, 3, 1, 1]), |
|
('conv2_2', [128, 128, 3, 1, 1]), |
|
('pool2_stage1', [2, 2, 0]), |
|
('conv3_1', [128, 256, 3, 1, 1]), |
|
('conv3_2', [256, 256, 3, 1, 1]), |
|
('conv3_3', [256, 256, 3, 1, 1]), |
|
('conv3_4', [256, 256, 3, 1, 1]), |
|
('pool3_stage1', [2, 2, 0]), |
|
('conv4_1', [256, 512, 3, 1, 1]), |
|
('conv4_2', [512, 512, 3, 1, 1]), |
|
('conv4_3_CPM', [512, 256, 3, 1, 1]), |
|
('conv4_4_CPM', [256, 128, 3, 1, 1]) |
|
]) |
|
|
|
|
|
|
|
block1_1 = OrderedDict([ |
|
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), |
|
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), |
|
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), |
|
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), |
|
('conv5_5_CPM_L1', [512, 38, 1, 1, 0]) |
|
]) |
|
|
|
block1_2 = OrderedDict([ |
|
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), |
|
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), |
|
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), |
|
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), |
|
('conv5_5_CPM_L2', [512, 19, 1, 1, 0]) |
|
]) |
|
blocks['block1_1'] = block1_1 |
|
blocks['block1_2'] = block1_2 |
|
|
|
self.model0 = make_layers(block0, no_relu_layers) |
|
|
|
|
|
for i in range(2, 7): |
|
blocks['block%d_1' % i] = OrderedDict([ |
|
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), |
|
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), |
|
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), |
|
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), |
|
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), |
|
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), |
|
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) |
|
]) |
|
|
|
blocks['block%d_2' % i] = OrderedDict([ |
|
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), |
|
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), |
|
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), |
|
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), |
|
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), |
|
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), |
|
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) |
|
]) |
|
|
|
for k in blocks.keys(): |
|
blocks[k] = make_layers(blocks[k], no_relu_layers) |
|
|
|
self.model1_1 = blocks['block1_1'] |
|
self.model2_1 = blocks['block2_1'] |
|
self.model3_1 = blocks['block3_1'] |
|
self.model4_1 = blocks['block4_1'] |
|
self.model5_1 = blocks['block5_1'] |
|
self.model6_1 = blocks['block6_1'] |
|
|
|
self.model1_2 = blocks['block1_2'] |
|
self.model2_2 = blocks['block2_2'] |
|
self.model3_2 = blocks['block3_2'] |
|
self.model4_2 = blocks['block4_2'] |
|
self.model5_2 = blocks['block5_2'] |
|
self.model6_2 = blocks['block6_2'] |
|
|
|
|
|
def forward(self, x): |
|
|
|
out1 = self.model0(x) |
|
|
|
out1_1 = self.model1_1(out1) |
|
out1_2 = self.model1_2(out1) |
|
out2 = torch.cat([out1_1, out1_2, out1], 1) |
|
|
|
out2_1 = self.model2_1(out2) |
|
out2_2 = self.model2_2(out2) |
|
out3 = torch.cat([out2_1, out2_2, out1], 1) |
|
|
|
out3_1 = self.model3_1(out3) |
|
out3_2 = self.model3_2(out3) |
|
out4 = torch.cat([out3_1, out3_2, out1], 1) |
|
|
|
out4_1 = self.model4_1(out4) |
|
out4_2 = self.model4_2(out4) |
|
out5 = torch.cat([out4_1, out4_2, out1], 1) |
|
|
|
out5_1 = self.model5_1(out5) |
|
out5_2 = self.model5_2(out5) |
|
out6 = torch.cat([out5_1, out5_2, out1], 1) |
|
|
|
out6_1 = self.model6_1(out6) |
|
out6_2 = self.model6_2(out6) |
|
|
|
return out6_1, out6_2 |
|
|
|
class handpose_model(nn.Module): |
|
def __init__(self): |
|
super(handpose_model, self).__init__() |
|
|
|
|
|
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\ |
|
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6'] |
|
|
|
block1_0 = OrderedDict([ |
|
('conv1_1', [3, 64, 3, 1, 1]), |
|
('conv1_2', [64, 64, 3, 1, 1]), |
|
('pool1_stage1', [2, 2, 0]), |
|
('conv2_1', [64, 128, 3, 1, 1]), |
|
('conv2_2', [128, 128, 3, 1, 1]), |
|
('pool2_stage1', [2, 2, 0]), |
|
('conv3_1', [128, 256, 3, 1, 1]), |
|
('conv3_2', [256, 256, 3, 1, 1]), |
|
('conv3_3', [256, 256, 3, 1, 1]), |
|
('conv3_4', [256, 256, 3, 1, 1]), |
|
('pool3_stage1', [2, 2, 0]), |
|
('conv4_1', [256, 512, 3, 1, 1]), |
|
('conv4_2', [512, 512, 3, 1, 1]), |
|
('conv4_3', [512, 512, 3, 1, 1]), |
|
('conv4_4', [512, 512, 3, 1, 1]), |
|
('conv5_1', [512, 512, 3, 1, 1]), |
|
('conv5_2', [512, 512, 3, 1, 1]), |
|
('conv5_3_CPM', [512, 128, 3, 1, 1]) |
|
]) |
|
|
|
block1_1 = OrderedDict([ |
|
('conv6_1_CPM', [128, 512, 1, 1, 0]), |
|
('conv6_2_CPM', [512, 22, 1, 1, 0]) |
|
]) |
|
|
|
blocks = {} |
|
blocks['block1_0'] = block1_0 |
|
blocks['block1_1'] = block1_1 |
|
|
|
|
|
for i in range(2, 7): |
|
blocks['block%d' % i] = OrderedDict([ |
|
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), |
|
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), |
|
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), |
|
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), |
|
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), |
|
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), |
|
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) |
|
]) |
|
|
|
for k in blocks.keys(): |
|
blocks[k] = make_layers(blocks[k], no_relu_layers) |
|
|
|
self.model1_0 = blocks['block1_0'] |
|
self.model1_1 = blocks['block1_1'] |
|
self.model2 = blocks['block2'] |
|
self.model3 = blocks['block3'] |
|
self.model4 = blocks['block4'] |
|
self.model5 = blocks['block5'] |
|
self.model6 = blocks['block6'] |
|
|
|
def forward(self, x): |
|
out1_0 = self.model1_0(x) |
|
out1_1 = self.model1_1(out1_0) |
|
concat_stage2 = torch.cat([out1_1, out1_0], 1) |
|
out_stage2 = self.model2(concat_stage2) |
|
concat_stage3 = torch.cat([out_stage2, out1_0], 1) |
|
out_stage3 = self.model3(concat_stage3) |
|
concat_stage4 = torch.cat([out_stage3, out1_0], 1) |
|
out_stage4 = self.model4(concat_stage4) |
|
concat_stage5 = torch.cat([out_stage4, out1_0], 1) |
|
out_stage5 = self.model5(concat_stage5) |
|
concat_stage6 = torch.cat([out_stage5, out1_0], 1) |
|
out_stage6 = self.model6(concat_stage6) |
|
return out_stage6 |
|
|
|
|