2ch's picture
Upload folder using huggingface_hub
0106545
raw
history blame
9.01 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Any, List, Tuple, Union
import torch
from torch.nn import functional as F
class Keypoints:
"""
Stores keypoint **annotation** data. GT Instances have a `gt_keypoints` property
containing the x,y location and visibility flag of each keypoint. This tensor has shape
(N, K, 3) where N is the number of instances and K is the number of keypoints per instance.
The visibility flag follows the COCO format and must be one of three integers:
* v=0: not labeled (in which case x=y=0)
* v=1: labeled but not visible
* v=2: labeled and visible
"""
def __init__(self, keypoints: Union[torch.Tensor, np.ndarray, List[List[float]]]):
"""
Arguments:
keypoints: A Tensor, numpy array, or list of the x, y, and visibility of each keypoint.
The shape should be (N, K, 3) where N is the number of
instances, and K is the number of keypoints per instance.
"""
device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device("cpu")
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device)
assert keypoints.dim() == 3 and keypoints.shape[2] == 3, keypoints.shape
self.tensor = keypoints
def __len__(self) -> int:
return self.tensor.size(0)
def to(self, *args: Any, **kwargs: Any) -> "Keypoints":
return type(self)(self.tensor.to(*args, **kwargs))
@property
def device(self) -> torch.device:
return self.tensor.device
def to_heatmap(self, boxes: torch.Tensor, heatmap_size: int) -> torch.Tensor:
"""
Convert keypoint annotations to a heatmap of one-hot labels for training,
as described in :paper:`Mask R-CNN`.
Arguments:
boxes: Nx4 tensor, the boxes to draw the keypoints to
Returns:
heatmaps:
A tensor of shape (N, K), each element is integer spatial label
in the range [0, heatmap_size**2 - 1] for each keypoint in the input.
valid:
A tensor of shape (N, K) containing whether each keypoint is in the roi or not.
"""
return _keypoints_to_heatmap(self.tensor, boxes, heatmap_size)
def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Keypoints":
"""
Create a new `Keypoints` by indexing on this `Keypoints`.
The following usage are allowed:
1. `new_kpts = kpts[3]`: return a `Keypoints` which contains only one instance.
2. `new_kpts = kpts[2:10]`: return a slice of key points.
3. `new_kpts = kpts[vector]`, where vector is a torch.ByteTensor
with `length = len(kpts)`. Nonzero elements in the vector will be selected.
Note that the returned Keypoints might share storage with this Keypoints,
subject to Pytorch's indexing semantics.
"""
if isinstance(item, int):
return Keypoints([self.tensor[item]])
return Keypoints(self.tensor[item])
def __repr__(self) -> str:
s = self.__class__.__name__ + "("
s += "num_instances={})".format(len(self.tensor))
return s
@staticmethod
def cat(keypoints_list: List["Keypoints"]) -> "Keypoints":
"""
Concatenates a list of Keypoints into a single Keypoints
Arguments:
keypoints_list (list[Keypoints])
Returns:
Keypoints: the concatenated Keypoints
"""
assert isinstance(keypoints_list, (list, tuple))
assert len(keypoints_list) > 0
assert all(isinstance(keypoints, Keypoints) for keypoints in keypoints_list)
cat_kpts = type(keypoints_list[0])(
torch.cat([kpts.tensor for kpts in keypoints_list], dim=0)
)
return cat_kpts
# TODO make this nicer, this is a direct translation from C2 (but removing the inner loop)
def _keypoints_to_heatmap(
keypoints: torch.Tensor, rois: torch.Tensor, heatmap_size: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Encode keypoint locations into a target heatmap for use in SoftmaxWithLoss across space.
Maps keypoints from the half-open interval [x1, x2) on continuous image coordinates to the
closed interval [0, heatmap_size - 1] on discrete image coordinates. We use the
continuous-discrete conversion from Heckbert 1990 ("What is the coordinate of a pixel?"):
d = floor(c) and c = d + 0.5, where d is a discrete coordinate and c is a continuous coordinate.
Arguments:
keypoints: tensor of keypoint locations in of shape (N, K, 3).
rois: Nx4 tensor of rois in xyxy format
heatmap_size: integer side length of square heatmap.
Returns:
heatmaps: A tensor of shape (N, K) containing an integer spatial label
in the range [0, heatmap_size**2 - 1] for each keypoint in the input.
valid: A tensor of shape (N, K) containing whether each keypoint is in
the roi or not.
"""
if rois.numel() == 0:
return rois.new().long(), rois.new().long()
offset_x = rois[:, 0]
offset_y = rois[:, 1]
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
offset_x = offset_x[:, None]
offset_y = offset_y[:, None]
scale_x = scale_x[:, None]
scale_y = scale_y[:, None]
x = keypoints[..., 0]
y = keypoints[..., 1]
x_boundary_inds = x == rois[:, 2][:, None]
y_boundary_inds = y == rois[:, 3][:, None]
x = (x - offset_x) * scale_x
x = x.floor().long()
y = (y - offset_y) * scale_y
y = y.floor().long()
x[x_boundary_inds] = heatmap_size - 1
y[y_boundary_inds] = heatmap_size - 1
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
vis = keypoints[..., 2] > 0
valid = (valid_loc & vis).long()
lin_ind = y * heatmap_size + x
heatmaps = lin_ind * valid
return heatmaps, valid
@torch.jit.script_if_tracing
def heatmaps_to_keypoints(maps: torch.Tensor, rois: torch.Tensor) -> torch.Tensor:
"""
Extract predicted keypoint locations from heatmaps.
Args:
maps (Tensor): (#ROIs, #keypoints, POOL_H, POOL_W). The predicted heatmap of logits for
each ROI and each keypoint.
rois (Tensor): (#ROIs, 4). The box of each ROI.
Returns:
Tensor of shape (#ROIs, #keypoints, 4) with the last dimension corresponding to
(x, y, logit, score) for each keypoint.
When converting discrete pixel indices in an NxN image to a continuous keypoint coordinate,
we maintain consistency with :meth:`Keypoints.to_heatmap` by using the conversion from
Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a continuous coordinate.
"""
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = (rois[:, 2] - rois[:, 0]).clamp(min=1)
heights = (rois[:, 3] - rois[:, 1]).clamp(min=1)
widths_ceil = widths.ceil()
heights_ceil = heights.ceil()
num_rois, num_keypoints = maps.shape[:2]
xy_preds = maps.new_zeros(rois.shape[0], num_keypoints, 4)
width_corrections = widths / widths_ceil
height_corrections = heights / heights_ceil
keypoints_idx = torch.arange(num_keypoints, device=maps.device)
for i in range(num_rois):
outsize = (int(heights_ceil[i]), int(widths_ceil[i]))
roi_map = F.interpolate(maps[[i]], size=outsize, mode="bicubic", align_corners=False)
# Although semantically equivalent, `reshape` is used instead of `squeeze` due
# to limitation during ONNX export of `squeeze` in scripting mode
roi_map = roi_map.reshape(roi_map.shape[1:]) # keypoints x H x W
# softmax over the spatial region
max_score, _ = roi_map.view(num_keypoints, -1).max(1)
max_score = max_score.view(num_keypoints, 1, 1)
tmp_full_resolution = (roi_map - max_score).exp_()
tmp_pool_resolution = (maps[i] - max_score).exp_()
# Produce scores over the region H x W, but normalize with POOL_H x POOL_W,
# so that the scores of objects of different absolute sizes will be more comparable
roi_map_scores = tmp_full_resolution / tmp_pool_resolution.sum((1, 2), keepdim=True)
w = roi_map.shape[2]
pos = roi_map.view(num_keypoints, -1).argmax(1)
x_int = pos % w
y_int = (pos - x_int) // w
assert (
roi_map_scores[keypoints_idx, y_int, x_int]
== roi_map_scores.view(num_keypoints, -1).max(1)[0]
).all()
x = (x_int.float() + 0.5) * width_corrections[i]
y = (y_int.float() + 0.5) * height_corrections[i]
xy_preds[i, :, 0] = x + offset_x[i]
xy_preds[i, :, 1] = y + offset_y[i]
xy_preds[i, :, 2] = roi_map[keypoints_idx, y_int, x_int]
xy_preds[i, :, 3] = roi_map_scores[keypoints_idx, y_int, x_int]
return xy_preds