|
|
|
import logging |
|
import os |
|
import pickle |
|
from urllib.parse import parse_qs, urlparse |
|
import torch |
|
from fvcore.common.checkpoint import Checkpointer |
|
from torch.nn.parallel import DistributedDataParallel |
|
|
|
import annotator.oneformer.detectron2.utils.comm as comm |
|
from annotator.oneformer.detectron2.utils.file_io import PathManager |
|
|
|
from .c2_model_loading import align_and_update_state_dicts |
|
|
|
|
|
class DetectionCheckpointer(Checkpointer): |
|
""" |
|
Same as :class:`Checkpointer`, but is able to: |
|
1. handle models in detectron & detectron2 model zoo, and apply conversions for legacy models. |
|
2. correctly load checkpoints that are only available on the master worker |
|
""" |
|
|
|
def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables): |
|
is_main_process = comm.is_main_process() |
|
super().__init__( |
|
model, |
|
save_dir, |
|
save_to_disk=is_main_process if save_to_disk is None else save_to_disk, |
|
**checkpointables, |
|
) |
|
self.path_manager = PathManager |
|
self._parsed_url_during_load = None |
|
|
|
def load(self, path, *args, **kwargs): |
|
assert self._parsed_url_during_load is None |
|
need_sync = False |
|
logger = logging.getLogger(__name__) |
|
logger.info("[DetectionCheckpointer] Loading from {} ...".format(path)) |
|
|
|
if path and isinstance(self.model, DistributedDataParallel): |
|
path = self.path_manager.get_local_path(path) |
|
has_file = os.path.isfile(path) |
|
all_has_file = comm.all_gather(has_file) |
|
if not all_has_file[0]: |
|
raise OSError(f"File {path} not found on main worker.") |
|
if not all(all_has_file): |
|
logger.warning( |
|
f"Not all workers can read checkpoint {path}. " |
|
"Training may fail to fully resume." |
|
) |
|
|
|
|
|
need_sync = True |
|
if not has_file: |
|
path = None |
|
|
|
if path: |
|
parsed_url = urlparse(path) |
|
self._parsed_url_during_load = parsed_url |
|
path = parsed_url._replace(query="").geturl() |
|
path = self.path_manager.get_local_path(path) |
|
|
|
self.logger.setLevel('CRITICAL') |
|
ret = super().load(path, *args, **kwargs) |
|
|
|
if need_sync: |
|
logger.info("Broadcasting model states from main worker ...") |
|
self.model._sync_params_and_buffers() |
|
self._parsed_url_during_load = None |
|
return ret |
|
|
|
def _load_file(self, filename): |
|
if filename.endswith(".pkl"): |
|
with PathManager.open(filename, "rb") as f: |
|
data = pickle.load(f, encoding="latin1") |
|
if "model" in data and "__author__" in data: |
|
|
|
self.logger.info("Reading a file from '{}'".format(data["__author__"])) |
|
return data |
|
else: |
|
|
|
if "blobs" in data: |
|
|
|
data = data["blobs"] |
|
data = {k: v for k, v in data.items() if not k.endswith("_momentum")} |
|
return {"model": data, "__author__": "Caffe2", "matching_heuristics": True} |
|
elif filename.endswith(".pyth"): |
|
|
|
with PathManager.open(filename, "rb") as f: |
|
data = torch.load(f) |
|
assert ( |
|
"model_state" in data |
|
), f"Cannot load .pyth file {filename}; pycls checkpoints must contain 'model_state'." |
|
model_state = { |
|
k: v |
|
for k, v in data["model_state"].items() |
|
if not k.endswith("num_batches_tracked") |
|
} |
|
return {"model": model_state, "__author__": "pycls", "matching_heuristics": True} |
|
|
|
loaded = self._torch_load(filename) |
|
if "model" not in loaded: |
|
loaded = {"model": loaded} |
|
assert self._parsed_url_during_load is not None, "`_load_file` must be called inside `load`" |
|
parsed_url = self._parsed_url_during_load |
|
queries = parse_qs(parsed_url.query) |
|
if queries.pop("matching_heuristics", "False") == ["True"]: |
|
loaded["matching_heuristics"] = True |
|
if len(queries) > 0: |
|
raise ValueError( |
|
f"Unsupported query remaining: f{queries}, orginal filename: {parsed_url.geturl()}" |
|
) |
|
return loaded |
|
|
|
def _torch_load(self, f): |
|
return super()._load_file(f) |
|
|
|
def _load_model(self, checkpoint): |
|
if checkpoint.get("matching_heuristics", False): |
|
self._convert_ndarray_to_tensor(checkpoint["model"]) |
|
|
|
checkpoint["model"] = align_and_update_state_dicts( |
|
self.model.state_dict(), |
|
checkpoint["model"], |
|
c2_conversion=checkpoint.get("__author__", None) == "Caffe2", |
|
) |
|
|
|
incompatible = super()._load_model(checkpoint) |
|
|
|
model_buffers = dict(self.model.named_buffers(recurse=False)) |
|
for k in ["pixel_mean", "pixel_std"]: |
|
|
|
|
|
|
|
if k in model_buffers: |
|
try: |
|
incompatible.missing_keys.remove(k) |
|
except ValueError: |
|
pass |
|
for k in incompatible.unexpected_keys[:]: |
|
|
|
|
|
if "anchor_generator.cell_anchors" in k: |
|
incompatible.unexpected_keys.remove(k) |
|
return incompatible |
|
|