2ch's picture
Upload folder using huggingface_hub
0106545
raw
history blame
5.29 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import nn
from torch.autograd import Function
from torch.nn.modules.utils import _pair
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['dynamic_voxelize_forward', 'hard_voxelize_forward'])
class _Voxelization(Function):
@staticmethod
def forward(ctx,
points,
voxel_size,
coors_range,
max_points=35,
max_voxels=20000):
"""Convert kitti points(N, >=3) to voxels.
Args:
points (torch.Tensor): [N, ndim]. Points[:, :3] contain xyz points
and points[:, 3:] contain other information like reflectivity.
voxel_size (tuple or float): The size of voxel with the shape of
[3].
coors_range (tuple or float): The coordinate range of voxel with
the shape of [6].
max_points (int, optional): maximum points contained in a voxel. if
max_points=-1, it means using dynamic_voxelize. Default: 35.
max_voxels (int, optional): maximum voxels this function create.
for second, 20000 is a good choice. Users should shuffle points
before call this function because max_voxels may drop points.
Default: 20000.
Returns:
voxels_out (torch.Tensor): Output voxels with the shape of [M,
max_points, ndim]. Only contain points and returned when
max_points != -1.
coors_out (torch.Tensor): Output coordinates with the shape of
[M, 3].
num_points_per_voxel_out (torch.Tensor): Num points per voxel with
the shape of [M]. Only returned when max_points != -1.
"""
if max_points == -1 or max_voxels == -1:
coors = points.new_zeros(size=(points.size(0), 3), dtype=torch.int)
ext_module.dynamic_voxelize_forward(points, coors, voxel_size,
coors_range, 3)
return coors
else:
voxels = points.new_zeros(
size=(max_voxels, max_points, points.size(1)))
coors = points.new_zeros(size=(max_voxels, 3), dtype=torch.int)
num_points_per_voxel = points.new_zeros(
size=(max_voxels, ), dtype=torch.int)
voxel_num = ext_module.hard_voxelize_forward(
points, voxels, coors, num_points_per_voxel, voxel_size,
coors_range, max_points, max_voxels, 3)
# select the valid voxels
voxels_out = voxels[:voxel_num]
coors_out = coors[:voxel_num]
num_points_per_voxel_out = num_points_per_voxel[:voxel_num]
return voxels_out, coors_out, num_points_per_voxel_out
voxelization = _Voxelization.apply
class Voxelization(nn.Module):
"""Convert kitti points(N, >=3) to voxels.
Please refer to `PVCNN <https://arxiv.org/abs/1907.03739>`_ for more
details.
Args:
voxel_size (tuple or float): The size of voxel with the shape of [3].
point_cloud_range (tuple or float): The coordinate range of voxel with
the shape of [6].
max_num_points (int): maximum points contained in a voxel. if
max_points=-1, it means using dynamic_voxelize.
max_voxels (int, optional): maximum voxels this function create.
for second, 20000 is a good choice. Users should shuffle points
before call this function because max_voxels may drop points.
Default: 20000.
"""
def __init__(self,
voxel_size,
point_cloud_range,
max_num_points,
max_voxels=20000):
super().__init__()
self.voxel_size = voxel_size
self.point_cloud_range = point_cloud_range
self.max_num_points = max_num_points
if isinstance(max_voxels, tuple):
self.max_voxels = max_voxels
else:
self.max_voxels = _pair(max_voxels)
point_cloud_range = torch.tensor(
point_cloud_range, dtype=torch.float32)
voxel_size = torch.tensor(voxel_size, dtype=torch.float32)
grid_size = (point_cloud_range[3:] -
point_cloud_range[:3]) / voxel_size
grid_size = torch.round(grid_size).long()
input_feat_shape = grid_size[:2]
self.grid_size = grid_size
# the origin shape is as [x-len, y-len, z-len]
# [w, h, d] -> [d, h, w]
self.pcd_shape = [*input_feat_shape, 1][::-1]
def forward(self, input):
if self.training:
max_voxels = self.max_voxels[0]
else:
max_voxels = self.max_voxels[1]
return voxelization(input, self.voxel_size, self.point_cloud_range,
self.max_num_points, max_voxels)
def __repr__(self):
s = self.__class__.__name__ + '('
s += 'voxel_size=' + str(self.voxel_size)
s += ', point_cloud_range=' + str(self.point_cloud_range)
s += ', max_num_points=' + str(self.max_num_points)
s += ', max_voxels=' + str(self.max_voxels)
s += ')'
return s