litecnn-pure-cpp / extract_weights.py
2c6829's picture
Upload extract_weights.py with huggingface_hub
9835abb verified
#!/usr/bin/env python3
"""
PyTorch ์ฒดํฌํฌ์ธํŠธ์—์„œ ๊ฐ€์ค‘์น˜๋ฅผ ์ถ”์ถœํ•˜์—ฌ binary ํ˜•์‹์œผ๋กœ ์ €์žฅ
"""
import torch
import numpy as np
import struct
import sys
from pathlib import Path
def extract_weights(checkpoint_path, output_path):
"""์ฒดํฌํฌ์ธํŠธ์—์„œ ๊ฐ€์ค‘์น˜ ์ถ”์ถœ"""
print(f"Loading checkpoint: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location='cpu')
# state_dict ์ถ”์ถœ
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
elif 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
print(f"Found {len(state_dict)} parameters")
# Binary ํŒŒ์ผ๋กœ ์ €์žฅ
with open(output_path, 'wb') as f:
# ๋งค์ง ๋„˜๋ฒ„์™€ ๋ฒ„์ „ ์ •๋ณด
f.write(b'LCNN') # Magic number
f.write(struct.pack('I', 1)) # Version
# ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐœ์ˆ˜
f.write(struct.pack('I', len(state_dict)))
for name, param in state_dict.items():
print(f" {name}: {param.shape}")
# ํŒŒ๋ผ๋ฏธํ„ฐ ์ด๋ฆ„ (์ตœ๋Œ€ 256 bytes)
name_bytes = name.encode('utf-8')[:256]
f.write(struct.pack('I', len(name_bytes)))
f.write(name_bytes)
# ํ…์„œ ๋ฐ์ดํ„ฐ
data = param.cpu().numpy().astype(np.float32)
# Shape ์ •๋ณด
ndim = len(data.shape)
f.write(struct.pack('I', ndim))
for dim in data.shape:
f.write(struct.pack('I', dim))
# ๋ฐ์ดํ„ฐ (C-contiguous order)
data_flat = data.flatten('C')
f.write(struct.pack(f'{len(data_flat)}f', *data_flat))
print(f"\nWeights saved to: {output_path}")
print(f"File size: {Path(output_path).stat().st_size / 1024 / 1024:.2f} MB")
if __name__ == '__main__':
checkpoint_path = sys.argv[1] if len(sys.argv) > 1 else '~/mycnn/checkpoints/LiteCNNPro_best.pth'
output_path = sys.argv[2] if len(sys.argv) > 2 else './model_weights.bin'
checkpoint_path = Path(checkpoint_path).expanduser()
extract_weights(checkpoint_path, output_path)