Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 236.84 +/- 21.38
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f42a4a0be60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42a4a0bef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42a4a0bf80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42a4a12050>", "_build": "<function ActorCriticPolicy._build at 0x7f42a4a120e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f42a4a12170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42a4a12200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f42a4a12290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42a4a12320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42a4a123b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42a4a12440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f42a4a51bd0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655539568.1124816, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmpkruFzPQrqMEKE673rctCy+frusa7q5AACAPwAAgD+A4jQ94Wycuv5BKjj8Hhczr5yWuiNsRLcAAIA/AACAP5q1Bb0oDIO8U/2lvJWdED27heQ9BhvivQAAgD8AAIA/TcsIvQpWPLvDeWC8sDdPPB1tlDxIyDS9AACAPwAAgD8zqqu9X5+CPCgbYz7NNsq9WJwHPXIcqj0AAAAAAAAAAPOXj773KZQ/bWoIv8uzzL4KJH2+Pv3/vQAAAAAAAAAAQKaxvaN1eT/vig6+JhSXvhCEob3W9oE9AAAAAAAAAAAzTdE85JSvPrbpEb79p16+yAkavdbnfL0AAAAAAAAAAAb6nL7L/rI/LhIxvwJMwr4W9VC+cvBzvgAAAAAAAAAAgkC8vkdSMT+1c4M98x1tvsefLL5XE5U9AAAAAAAAAADzyKQ+2NYNP8Jzhb57wIy+Cr+1PR0TlzwAAAAAAAAAAABgY7pqMZE/dhWavUklnr69n3g9YMWevAAAAAAAAAAAesg+vtO/Bj+GwRw+FHMrvpjUcb0m7CA9AAAAAAAAAADNRlI9qfxPPh6wTD5uznK+7UK9PY6HOT0AAAAAAAAAACblRT73HGM/luPSPcs+hb5xqvs9zsOduwAAAAAAAAAAAAR7vpRS2z6ps6Q+nrkyvusrIzzYspM9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc4V3uYiZckCUhpRSlIwBbJRNVgGMAXSUR0Cj/9krf+CLdX2UKGgGaAloD0MI4ezWMpnKbECUhpRSlGgVTVcBaBZHQKQAaQ9RrJt1fZQoaAZoCWgPQwhwJqYLceBxQJSGlFKUaBVNMwFoFkdApACQRTS9d3V9lChoBmgJaA9DCHy1ozhHw29AlIaUUpRoFU0UAmgWR0CkAQjPv8ZUdX2UKGgGaAloD0MInUtxVdlecUCUhpRSlGgVTT0BaBZHQKQBM4//vOR1fZQoaAZoCWgPQwioGOdvAtxwQJSGlFKUaBVNTgFoFkdApAI9ruYx+XV9lChoBmgJaA9DCPH2IARkQW9AlIaUUpRoFU1NAWgWR0CkAlZxrBTGdX2UKGgGaAloD0MIowbTMPz3bkCUhpRSlGgVTVIBaBZHQKQChqZ+hGp1fZQoaAZoCWgPQwiBsb6BySNHQJSGlFKUaBVN6ANoFkdApALayprDZXV9lChoBmgJaA9DCCI4LuMmDHJAlIaUUpRoFU1DAWgWR0CkAt9PUKAsdX2UKGgGaAloD0MI1JtR85XwcECUhpRSlGgVTdYBaBZHQKQDBMN+b3J1fZQoaAZoCWgPQwjT9NkBl3pwQJSGlFKUaBVNQgFoFkdApAOAXbdrPHV9lChoBmgJaA9DCL1TAfc8EXFAlIaUUpRoFU0zAWgWR0CkDiSNGViXdX2UKGgGaAloD0MII/PIH0xRcUCUhpRSlGgVTVYBaBZHQKQOibUgB911fZQoaAZoCWgPQwja4hqfyUBtQJSGlFKUaBVNKwFoFkdApA7U3IdU83V9lChoBmgJaA9DCIU/w5s1/3FAlIaUUpRoFU0mAWgWR0CkD2wO4G2UdX2UKGgGaAloD0MIL7/TZMa0ckCUhpRSlGgVTaYBaBZHQKQPt6HCXQd1fZQoaAZoCWgPQwh+x/DYz7JQQJSGlFKUaBVNAAFoFkdApBCCkEcKgXV9lChoBmgJaA9DCHui68LPfXBAlIaUUpRoFU2GAWgWR0CkEKuFQEZBdX2UKGgGaAloD0MI/kemQ6dUcECUhpRSlGgVTTgBaBZHQKQQ1WluWKN1fZQoaAZoCWgPQwjMYIxIVERyQJSGlFKUaBVNTAFoFkdApBFhh8Yyf3V9lChoBmgJaA9DCL/09uei2m5AlIaUUpRoFU1dA2gWR0CkEWkytV7ydX2UKGgGaAloD0MIRgiPNk4ScUCUhpRSlGgVTTwBaBZHQKQRb2AXl8x1fZQoaAZoCWgPQwj8VuvEZQdxQJSGlFKUaBVNmwFoFkdApBF2Hvc8DHV9lChoBmgJaA9DCPYn8bmTknBAlIaUUpRoFU1zAWgWR0CkEcV14gRsdX2UKGgGaAloD0MIdFyN7MobbkCUhpRSlGgVTS4BaBZHQKQR4u7HyVh1fZQoaAZoCWgPQwiI1R9hGMJwQJSGlFKUaBVNXAFoFkdApBHtyBClanV9lChoBmgJaA9DCLr5RnRPzm1AlIaUUpRoFU1LAWgWR0CkE8DcEeQudX2UKGgGaAloD0MIAfkSKriUb0CUhpRSlGgVTTEBaBZHQKQT+U5+6RR1fZQoaAZoCWgPQwhcA1slGBxxQJSGlFKUaBVNXQFoFkdApBR3vphWo3V9lChoBmgJaA9DCDlE3JxKu2tAlIaUUpRoFU0nAWgWR0CkFKrdepn6dX2UKGgGaAloD0MIiqvKvqv/b0CUhpRSlGgVTVMBaBZHQKQVKQPI4l11fZQoaAZoCWgPQwjOjH403DdxQJSGlFKUaBVNFgFoFkdApBU6u4gA63V9lChoBmgJaA9DCBCSBUxgB25AlIaUUpRoFU07AWgWR0CkFbmH58BudX2UKGgGaAloD0MImtL6W0J6cECUhpRSlGgVTR4BaBZHQKQWCyuZCv51fZQoaAZoCWgPQwjeA3Rfzt9tQJSGlFKUaBVNNAFoFkdApBZ9PepGWnV9lChoBmgJaA9DCGJLj6b6R3BAlIaUUpRoFU1WAWgWR0CkFoL9l2/0dX2UKGgGaAloD0MIOzYC8bouPUCUhpRSlGgVTRUBaBZHQKQWhWjoIOZ1fZQoaAZoCWgPQwjieD4DakFuQJSGlFKUaBVNMQFoFkdApBbHWSU1RHV9lChoBmgJaA9DCGnjiLV4wW9AlIaUUpRoFU1KAWgWR0CkFtBU70WedX2UKGgGaAloD0MImS1ZFeGZbkCUhpRSlGgVTXUBaBZHQKQXfUI9kjJ1fZQoaAZoCWgPQwinlNdK6EZRQJSGlFKUaBVL4GgWR0CkF7SOaOPvdX2UKGgGaAloD0MI2hznNmFya0CUhpRSlGgVTRIBaBZHQKQZTh2GIsR1fZQoaAZoCWgPQwjhmGVPArRuQJSGlFKUaBVNNgFoFkdApBnV7pmmL3V9lChoBmgJaA9DCKfLYmJzhm1AlIaUUpRoFU3kAWgWR0CkGgrEk0JodX2UKGgGaAloD0MI1UFeDyaFUECUhpRSlGgVS95oFkdApBpwWrOqvXV9lChoBmgJaA9DCD5BYrt7z1xAlIaUUpRoFU3oA2gWR0CkGooXj2i+dX2UKGgGaAloD0MIAYi7etWScECUhpRSlGgVTZEBaBZHQKQa6SU1Q691fZQoaAZoCWgPQwg/yLJgYsFvQJSGlFKUaBVNRAFoFkdApBrzgGbCrXV9lChoBmgJaA9DCOnzUUZcJ25AlIaUUpRoFU03AWgWR0CkG6a5oXbedX2UKGgGaAloD0MI1lQWhR1OcUCUhpRSlGgVTWwBaBZHQKQbw3IdU851fZQoaAZoCWgPQwiorKbriWFtQJSGlFKUaBVNNQFoFkdApBxoTsY2sXV9lChoBmgJaA9DCJDY7h6gDHBAlIaUUpRoFU16AWgWR0CkHIrvkRzzdX2UKGgGaAloD0MIURGnk2wdbkCUhpRSlGgVTUABaBZHQKQcpSSeRPp1fZQoaAZoCWgPQwjEB3b8l4FxQJSGlFKUaBVNOgFoFkdApB1InQY1pHV9lChoBmgJaA9DCLgFS3UBcHJAlIaUUpRoFU3mAWgWR0CkKG7qQiiZdX2UKGgGaAloD0MIYqHWNG84cECUhpRSlGgVTT8BaBZHQKQpDjTa0yB1fZQoaAZoCWgPQwi8AtGTMpVuQJSGlFKUaBVNRAFoFkdApCllXYDkl3V9lChoBmgJaA9DCAH8U6rE2mxAlIaUUpRoFU0gAWgWR0CkKYuRs/IKdX2UKGgGaAloD0MIBoNr7ujRbkCUhpRSlGgVTW4BaBZHQKQpjJgb6xh1fZQoaAZoCWgPQwhauKzCpu1wQJSGlFKUaBVNPAFoFkdApCmwG2TgVHV9lChoBmgJaA9DCMYYWMextnFAlIaUUpRoFU0tAWgWR0CkKb8pCrtFdX2UKGgGaAloD0MIy4P0FLnbakCUhpRSlGgVTUABaBZHQKQq6Wykbgl1fZQoaAZoCWgPQwg2lUVhlzxyQJSGlFKUaBVNPwFoFkdApCvd0PpY93V9lChoBmgJaA9DCKSmXUwz93BAlIaUUpRoFU1XAWgWR0CkLDaqjrRjdX2UKGgGaAloD0MI5pKq7SYwcECUhpRSlGgVTYoBaBZHQKQsQgwGnoB1fZQoaAZoCWgPQwjcEOM1r7ZuQJSGlFKUaBVNZwFoFkdApCxb/Q0GeXV9lChoBmgJaA9DCK9BX3o7l3JAlIaUUpRoFU2/AmgWR0CkLJ7hFVkudX2UKGgGaAloD0MIEeSghBl/bUCUhpRSlGgVTS8BaBZHQKQuCpKjBVN1fZQoaAZoCWgPQwjwTj49NjRtQJSGlFKUaBVNoQFoFkdApC4q+i8Fp3V9lChoBmgJaA9DCJeL+E7MM3JAlIaUUpRoFU1iAmgWR0CkLtXxnWaudX2UKGgGaAloD0MIYk7QJodPbECUhpRSlGgVTXQBaBZHQKQwwtdRiw11fZQoaAZoCWgPQwg8UKc8OoZwQJSGlFKUaBVNYQNoFkdApDFqqMm4RXV9lChoBmgJaA9DCACo4sbtKXJAlIaUUpRoFU2YAWgWR0CkMY7JW/8EdX2UKGgGaAloD0MIXcR3YhZccUCUhpRSlGgVTa4BaBZHQKQxuZNwiq11fZQoaAZoCWgPQwi7m6c6JDtwQJSGlFKUaBVNwwFoFkdApDHddkauOnV9lChoBmgJaA9DCC8012mkIm5AlIaUUpRoFU3BAWgWR0CkMk8QyylfdX2UKGgGaAloD0MIHEEqxQ7nbUCUhpRSlGgVTSgBaBZHQKQymWBSUC91fZQoaAZoCWgPQwgKhnMNM/RwQJSGlFKUaBVNYQFoFkdApDNBPwd8zHV9lChoBmgJaA9DCIAnLVyWLXBAlIaUUpRoFU19AWgWR0CkM3UJv5xjdX2UKGgGaAloD0MI2PD0SlnUcUCUhpRSlGgVTcoBaBZHQKQ0CU1Q66t1fZQoaAZoCWgPQwhwJNBg04VuQJSGlFKUaBVNkwFoFkdApDRnB1s+FHV9lChoBmgJaA9DCCmy1lBqbW5AlIaUUpRoFU0rAWgWR0CkNGmI9C/odX2UKGgGaAloD0MIb9kh/uEVcECUhpRSlGgVTR0BaBZHQKQ04mE4//x1fZQoaAZoCWgPQwhgBI2ZRGZtQJSGlFKUaBVNXQFoFkdApDVamO2iL3V9lChoBmgJaA9DCJ1LcVUZtXJAlIaUUpRoFU3ZAWgWR0CkNXSZKFqSdX2UKGgGaAloD0MIxYzw9qD9bUCUhpRSlGgVTckCaBZHQKQ3E5kK/mF1fZQoaAZoCWgPQwi0OGOYU3txQJSGlFKUaBVNKgFoFkdApDc6+8Gs3nV9lChoBmgJaA9DCNi4/l1fFHJAlIaUUpRoFU0mAWgWR0CkN0K64Ds/dX2UKGgGaAloD0MITmA6rdtIcECUhpRSlGgVTV4BaBZHQKQ3cp6QeV91fZQoaAZoCWgPQwh1AwXeyRtGQJSGlFKUaBVL7GgWR0CkOHtnwob5dX2UKGgGaAloD0MIbtqM09CwcUCUhpRSlGgVTV4BaBZHQKQ5ARjjJdV1fZQoaAZoCWgPQwitUQ/R6EhyQJSGlFKUaBVNRAFoFkdApDlXhybQTnV9lChoBmgJaA9DCCZw624et29AlIaUUpRoFU1SAWgWR0CkOW3hOxjbdX2UKGgGaAloD0MI7BNAMbINcECUhpRSlGgVTcsBaBZHQKQ6LymQ8wJ1fZQoaAZoCWgPQwjSU+QQsdxwQJSGlFKUaBVN5QFoFkdApDriErXlKnV9lChoBmgJaA9DCF2LFqCttXJAlIaUUpRoFU3UAWgWR0CkOzuOjqOcdX2UKGgGaAloD0MIn8ppT8mTcUCUhpRSlGgVTTUBaBZHQKQ7S8pTdcl1fZQoaAZoCWgPQwgzUu+pXDZwQJSGlFKUaBVNOgFoFkdApDuD+irT6XV9lChoBmgJaA9DCGSw4lRrdWxAlIaUUpRoFU2OAWgWR0CkO4h5X2dvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f7ba56a92e5153e1d311a6bb822d3b8fea9e8e2fb66983735f24461f10cd5ef
|
3 |
+
size 144154
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f42a4a0be60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42a4a0bef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42a4a0bf80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42a4a12050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f42a4a120e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f42a4a12170>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42a4a12200>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f42a4a12290>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42a4a12320>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42a4a123b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42a4a12440>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f42a4a51bd0>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655539568.1124816,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmpkruFzPQrqMEKE673rctCy+frusa7q5AACAPwAAgD+A4jQ94Wycuv5BKjj8Hhczr5yWuiNsRLcAAIA/AACAP5q1Bb0oDIO8U/2lvJWdED27heQ9BhvivQAAgD8AAIA/TcsIvQpWPLvDeWC8sDdPPB1tlDxIyDS9AACAPwAAgD8zqqu9X5+CPCgbYz7NNsq9WJwHPXIcqj0AAAAAAAAAAPOXj773KZQ/bWoIv8uzzL4KJH2+Pv3/vQAAAAAAAAAAQKaxvaN1eT/vig6+JhSXvhCEob3W9oE9AAAAAAAAAAAzTdE85JSvPrbpEb79p16+yAkavdbnfL0AAAAAAAAAAAb6nL7L/rI/LhIxvwJMwr4W9VC+cvBzvgAAAAAAAAAAgkC8vkdSMT+1c4M98x1tvsefLL5XE5U9AAAAAAAAAADzyKQ+2NYNP8Jzhb57wIy+Cr+1PR0TlzwAAAAAAAAAAABgY7pqMZE/dhWavUklnr69n3g9YMWevAAAAAAAAAAAesg+vtO/Bj+GwRw+FHMrvpjUcb0m7CA9AAAAAAAAAADNRlI9qfxPPh6wTD5uznK+7UK9PY6HOT0AAAAAAAAAACblRT73HGM/luPSPcs+hb5xqvs9zsOduwAAAAAAAAAAAAR7vpRS2z6ps6Q+nrkyvusrIzzYspM9AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc4V3uYiZckCUhpRSlIwBbJRNVgGMAXSUR0Cj/9krf+CLdX2UKGgGaAloD0MI4ezWMpnKbECUhpRSlGgVTVcBaBZHQKQAaQ9RrJt1fZQoaAZoCWgPQwhwJqYLceBxQJSGlFKUaBVNMwFoFkdApACQRTS9d3V9lChoBmgJaA9DCHy1ozhHw29AlIaUUpRoFU0UAmgWR0CkAQjPv8ZUdX2UKGgGaAloD0MInUtxVdlecUCUhpRSlGgVTT0BaBZHQKQBM4//vOR1fZQoaAZoCWgPQwioGOdvAtxwQJSGlFKUaBVNTgFoFkdApAI9ruYx+XV9lChoBmgJaA9DCPH2IARkQW9AlIaUUpRoFU1NAWgWR0CkAlZxrBTGdX2UKGgGaAloD0MIowbTMPz3bkCUhpRSlGgVTVIBaBZHQKQChqZ+hGp1fZQoaAZoCWgPQwiBsb6BySNHQJSGlFKUaBVN6ANoFkdApALayprDZXV9lChoBmgJaA9DCCI4LuMmDHJAlIaUUpRoFU1DAWgWR0CkAt9PUKAsdX2UKGgGaAloD0MI1JtR85XwcECUhpRSlGgVTdYBaBZHQKQDBMN+b3J1fZQoaAZoCWgPQwjT9NkBl3pwQJSGlFKUaBVNQgFoFkdApAOAXbdrPHV9lChoBmgJaA9DCL1TAfc8EXFAlIaUUpRoFU0zAWgWR0CkDiSNGViXdX2UKGgGaAloD0MII/PIH0xRcUCUhpRSlGgVTVYBaBZHQKQOibUgB911fZQoaAZoCWgPQwja4hqfyUBtQJSGlFKUaBVNKwFoFkdApA7U3IdU83V9lChoBmgJaA9DCIU/w5s1/3FAlIaUUpRoFU0mAWgWR0CkD2wO4G2UdX2UKGgGaAloD0MIL7/TZMa0ckCUhpRSlGgVTaYBaBZHQKQPt6HCXQd1fZQoaAZoCWgPQwh+x/DYz7JQQJSGlFKUaBVNAAFoFkdApBCCkEcKgXV9lChoBmgJaA9DCHui68LPfXBAlIaUUpRoFU2GAWgWR0CkEKuFQEZBdX2UKGgGaAloD0MI/kemQ6dUcECUhpRSlGgVTTgBaBZHQKQQ1WluWKN1fZQoaAZoCWgPQwjMYIxIVERyQJSGlFKUaBVNTAFoFkdApBFhh8Yyf3V9lChoBmgJaA9DCL/09uei2m5AlIaUUpRoFU1dA2gWR0CkEWkytV7ydX2UKGgGaAloD0MIRgiPNk4ScUCUhpRSlGgVTTwBaBZHQKQRb2AXl8x1fZQoaAZoCWgPQwj8VuvEZQdxQJSGlFKUaBVNmwFoFkdApBF2Hvc8DHV9lChoBmgJaA9DCPYn8bmTknBAlIaUUpRoFU1zAWgWR0CkEcV14gRsdX2UKGgGaAloD0MIdFyN7MobbkCUhpRSlGgVTS4BaBZHQKQR4u7HyVh1fZQoaAZoCWgPQwiI1R9hGMJwQJSGlFKUaBVNXAFoFkdApBHtyBClanV9lChoBmgJaA9DCLr5RnRPzm1AlIaUUpRoFU1LAWgWR0CkE8DcEeQudX2UKGgGaAloD0MIAfkSKriUb0CUhpRSlGgVTTEBaBZHQKQT+U5+6RR1fZQoaAZoCWgPQwhcA1slGBxxQJSGlFKUaBVNXQFoFkdApBR3vphWo3V9lChoBmgJaA9DCDlE3JxKu2tAlIaUUpRoFU0nAWgWR0CkFKrdepn6dX2UKGgGaAloD0MIiqvKvqv/b0CUhpRSlGgVTVMBaBZHQKQVKQPI4l11fZQoaAZoCWgPQwjOjH403DdxQJSGlFKUaBVNFgFoFkdApBU6u4gA63V9lChoBmgJaA9DCBCSBUxgB25AlIaUUpRoFU07AWgWR0CkFbmH58BudX2UKGgGaAloD0MImtL6W0J6cECUhpRSlGgVTR4BaBZHQKQWCyuZCv51fZQoaAZoCWgPQwjeA3Rfzt9tQJSGlFKUaBVNNAFoFkdApBZ9PepGWnV9lChoBmgJaA9DCGJLj6b6R3BAlIaUUpRoFU1WAWgWR0CkFoL9l2/0dX2UKGgGaAloD0MIOzYC8bouPUCUhpRSlGgVTRUBaBZHQKQWhWjoIOZ1fZQoaAZoCWgPQwjieD4DakFuQJSGlFKUaBVNMQFoFkdApBbHWSU1RHV9lChoBmgJaA9DCGnjiLV4wW9AlIaUUpRoFU1KAWgWR0CkFtBU70WedX2UKGgGaAloD0MImS1ZFeGZbkCUhpRSlGgVTXUBaBZHQKQXfUI9kjJ1fZQoaAZoCWgPQwinlNdK6EZRQJSGlFKUaBVL4GgWR0CkF7SOaOPvdX2UKGgGaAloD0MI2hznNmFya0CUhpRSlGgVTRIBaBZHQKQZTh2GIsR1fZQoaAZoCWgPQwjhmGVPArRuQJSGlFKUaBVNNgFoFkdApBnV7pmmL3V9lChoBmgJaA9DCKfLYmJzhm1AlIaUUpRoFU3kAWgWR0CkGgrEk0JodX2UKGgGaAloD0MI1UFeDyaFUECUhpRSlGgVS95oFkdApBpwWrOqvXV9lChoBmgJaA9DCD5BYrt7z1xAlIaUUpRoFU3oA2gWR0CkGooXj2i+dX2UKGgGaAloD0MIAYi7etWScECUhpRSlGgVTZEBaBZHQKQa6SU1Q691fZQoaAZoCWgPQwg/yLJgYsFvQJSGlFKUaBVNRAFoFkdApBrzgGbCrXV9lChoBmgJaA9DCOnzUUZcJ25AlIaUUpRoFU03AWgWR0CkG6a5oXbedX2UKGgGaAloD0MI1lQWhR1OcUCUhpRSlGgVTWwBaBZHQKQbw3IdU851fZQoaAZoCWgPQwiorKbriWFtQJSGlFKUaBVNNQFoFkdApBxoTsY2sXV9lChoBmgJaA9DCJDY7h6gDHBAlIaUUpRoFU16AWgWR0CkHIrvkRzzdX2UKGgGaAloD0MIURGnk2wdbkCUhpRSlGgVTUABaBZHQKQcpSSeRPp1fZQoaAZoCWgPQwjEB3b8l4FxQJSGlFKUaBVNOgFoFkdApB1InQY1pHV9lChoBmgJaA9DCLgFS3UBcHJAlIaUUpRoFU3mAWgWR0CkKG7qQiiZdX2UKGgGaAloD0MIYqHWNG84cECUhpRSlGgVTT8BaBZHQKQpDjTa0yB1fZQoaAZoCWgPQwi8AtGTMpVuQJSGlFKUaBVNRAFoFkdApCllXYDkl3V9lChoBmgJaA9DCAH8U6rE2mxAlIaUUpRoFU0gAWgWR0CkKYuRs/IKdX2UKGgGaAloD0MIBoNr7ujRbkCUhpRSlGgVTW4BaBZHQKQpjJgb6xh1fZQoaAZoCWgPQwhauKzCpu1wQJSGlFKUaBVNPAFoFkdApCmwG2TgVHV9lChoBmgJaA9DCMYYWMextnFAlIaUUpRoFU0tAWgWR0CkKb8pCrtFdX2UKGgGaAloD0MIy4P0FLnbakCUhpRSlGgVTUABaBZHQKQq6Wykbgl1fZQoaAZoCWgPQwg2lUVhlzxyQJSGlFKUaBVNPwFoFkdApCvd0PpY93V9lChoBmgJaA9DCKSmXUwz93BAlIaUUpRoFU1XAWgWR0CkLDaqjrRjdX2UKGgGaAloD0MI5pKq7SYwcECUhpRSlGgVTYoBaBZHQKQsQgwGnoB1fZQoaAZoCWgPQwjcEOM1r7ZuQJSGlFKUaBVNZwFoFkdApCxb/Q0GeXV9lChoBmgJaA9DCK9BX3o7l3JAlIaUUpRoFU2/AmgWR0CkLJ7hFVkudX2UKGgGaAloD0MIEeSghBl/bUCUhpRSlGgVTS8BaBZHQKQuCpKjBVN1fZQoaAZoCWgPQwjwTj49NjRtQJSGlFKUaBVNoQFoFkdApC4q+i8Fp3V9lChoBmgJaA9DCJeL+E7MM3JAlIaUUpRoFU1iAmgWR0CkLtXxnWaudX2UKGgGaAloD0MIYk7QJodPbECUhpRSlGgVTXQBaBZHQKQwwtdRiw11fZQoaAZoCWgPQwg8UKc8OoZwQJSGlFKUaBVNYQNoFkdApDFqqMm4RXV9lChoBmgJaA9DCACo4sbtKXJAlIaUUpRoFU2YAWgWR0CkMY7JW/8EdX2UKGgGaAloD0MIXcR3YhZccUCUhpRSlGgVTa4BaBZHQKQxuZNwiq11fZQoaAZoCWgPQwi7m6c6JDtwQJSGlFKUaBVNwwFoFkdApDHddkauOnV9lChoBmgJaA9DCC8012mkIm5AlIaUUpRoFU3BAWgWR0CkMk8QyylfdX2UKGgGaAloD0MIHEEqxQ7nbUCUhpRSlGgVTSgBaBZHQKQymWBSUC91fZQoaAZoCWgPQwgKhnMNM/RwQJSGlFKUaBVNYQFoFkdApDNBPwd8zHV9lChoBmgJaA9DCIAnLVyWLXBAlIaUUpRoFU19AWgWR0CkM3UJv5xjdX2UKGgGaAloD0MI2PD0SlnUcUCUhpRSlGgVTcoBaBZHQKQ0CU1Q66t1fZQoaAZoCWgPQwhwJNBg04VuQJSGlFKUaBVNkwFoFkdApDRnB1s+FHV9lChoBmgJaA9DCCmy1lBqbW5AlIaUUpRoFU0rAWgWR0CkNGmI9C/odX2UKGgGaAloD0MIb9kh/uEVcECUhpRSlGgVTR0BaBZHQKQ04mE4//x1fZQoaAZoCWgPQwhgBI2ZRGZtQJSGlFKUaBVNXQFoFkdApDVamO2iL3V9lChoBmgJaA9DCJ1LcVUZtXJAlIaUUpRoFU3ZAWgWR0CkNXSZKFqSdX2UKGgGaAloD0MIxYzw9qD9bUCUhpRSlGgVTckCaBZHQKQ3E5kK/mF1fZQoaAZoCWgPQwi0OGOYU3txQJSGlFKUaBVNKgFoFkdApDc6+8Gs3nV9lChoBmgJaA9DCNi4/l1fFHJAlIaUUpRoFU0mAWgWR0CkN0K64Ds/dX2UKGgGaAloD0MITmA6rdtIcECUhpRSlGgVTV4BaBZHQKQ3cp6QeV91fZQoaAZoCWgPQwh1AwXeyRtGQJSGlFKUaBVL7GgWR0CkOHtnwob5dX2UKGgGaAloD0MIbtqM09CwcUCUhpRSlGgVTV4BaBZHQKQ5ARjjJdV1fZQoaAZoCWgPQwitUQ/R6EhyQJSGlFKUaBVNRAFoFkdApDlXhybQTnV9lChoBmgJaA9DCCZw624et29AlIaUUpRoFU1SAWgWR0CkOW3hOxjbdX2UKGgGaAloD0MI7BNAMbINcECUhpRSlGgVTcsBaBZHQKQ6LymQ8wJ1fZQoaAZoCWgPQwjSU+QQsdxwQJSGlFKUaBVN5QFoFkdApDriErXlKnV9lChoBmgJaA9DCF2LFqCttXJAlIaUUpRoFU3UAWgWR0CkOzuOjqOcdX2UKGgGaAloD0MIn8ppT8mTcUCUhpRSlGgVTTUBaBZHQKQ7S8pTdcl1fZQoaAZoCWgPQwgzUu+pXDZwQJSGlFKUaBVNOgFoFkdApDuD+irT6XV9lChoBmgJaA9DCGSw4lRrdWxAlIaUUpRoFU2OAWgWR0CkO4h5X2dvdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:983008f96ed2fd2a49d906816408e67908f97925e111a40f579caa83233c632d
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d39abdad399eb74d9ae964ea7b61ce79dc83e6018009ce951539de28825c8ee
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e7b09778cd4a2de3cb98b6bed7a0dd10f860548bfea07e473b16d79d62fbc9b
|
3 |
+
size 199775
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 236.84180527550865, "std_reward": 21.379262301641994, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-18T08:50:15.623467"}
|