a2c-PandaReachDense-v2 / config.json
1aurent's picture
OH NO ! gSDE TERMINATOR IS COMING FOR ME !
6cda5a6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7facef2cf9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7facef2c7cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689167923094900945, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAA2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/A2a0PuCjFzqxUhE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAKk6VP10/Wb7hcYO/MJRBv2t0fL2f3z4/tCizPpyRjj/p1jq95u39vWuCxD5y3Ms/w2J5P4rayj6dTrU/rbRzv6nbGL6Ehcc/U2GQP5Z7wr/gA0W/aMB+v3JDPb97QdC/qm22v4jS4L6DWxo/ho5UPadhHL8pzUU+6OHAPy/ldD8ZlSY/7ZLEvpOAxL8bIJa/hem7P4TBxr4gcoi//3iMP0ldyb86fyw/t7Fev8oRYL9MAYm/zdCfv7lpy75M1lA/lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAAADZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDsDZrQ+4KMXOrFSET+aCfG6QVcMui+UmDuUaA5LEEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]\n [0.3523408 0.00057846 0.567668 ]]", "desired_goal": "[[ 1.1664479 -0.21215577 -1.0269128 ]\n [-0.7561674 -0.06163446 0.7455997 ]\n [ 0.34991992 1.1138186 -0.04561511]\n [-0.12398891 0.3838075 1.592665 ]\n [ 0.97416323 0.39619857 1.4164616 ]\n [-0.95197564 -0.14927544 1.5587621 ]\n [ 1.1279701 -1.5193965 -0.7695904 ]\n [-0.9951234 -0.7393104 -1.6269983 ]\n [-1.4252217 -0.43910623 0.60295886]\n [ 0.05189373 -0.61086506 0.19316544]\n [ 1.5068941 0.95662206 0.65071255]\n [-0.38393345 -1.5351738 -1.1728548 ]\n [ 1.468064 -0.38819516 -1.0659828 ]\n [ 1.0974425 -1.5731593 0.6738163 ]\n [-0.8698992 -0.87527144 -1.0703521 ]\n [-1.2485596 -0.39729097 0.8157699 ]]", "observation": "[[ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]\n [ 3.5234079e-01 5.7846121e-04 5.6766802e-01 -1.8389702e-03\n -5.3535780e-04 4.6563367e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wMAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAA/D7uvZk81bxhow4+Z7YTvsQjhr2Sa4k+ZamQvQS4sz1gnmc+OMPUvamnGD4N424+tzGJPcjUEr5Tnuk86PCDvL5k3ruDvGA9PKYYvQfv1T0uiE4+dStAPRmzHT1F6BA9EZmxvZTslbtLpiw83YYsPdmO270rlyM+gK0fPMS+sL1Lpzg+kRTyPXBlhj1H8yw+2WYVPmYIij0SN+M8p2AhvakkqL2iieo9TP1KPf/6tb3RxJg+SlcKvgsE/z3BWU0+lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LEEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11633107 -0.02602987 0.13929512]\n [-0.1442505 -0.06549791 0.26839882]\n [-0.07063559 0.08775333 0.22619009]\n [-0.10388798 0.14907707 0.233288 ]\n [ 0.06698935 -0.14338982 0.02851788]\n [-0.01610608 -0.00678691 0.05486728]\n [-0.03726791 0.10445981 0.20169136]\n [ 0.04691644 0.03850088 0.03537776]\n [-0.08671773 -0.00457532 0.01053769]\n [ 0.0421208 -0.10720605 0.15975635]\n [ 0.00974596 -0.08630136 0.18032567]\n [ 0.11820329 0.06562316 0.16889678]\n [ 0.14590015 0.06739883 0.02773622]\n [-0.03939882 -0.08210117 0.11452033]\n [ 0.04955797 -0.08885764 0.2983766 ]\n [-0.1350986 0.12451943 0.2005377 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6lkQyvt4+7+UhpRSlIwBbJRLMowBdJRHQKA0LwJgLJF1fZQoaAZoCWgPQwgtIorJG2D6v5SGlFKUaBVLMmgWR0CgM/J/PPcBdX2UKGgGaAloD0MI5/7qcd+q+7+UhpRSlGgVSzJoFkdAoDOrUXpGF3V9lChoBmgJaA9DCI523PC7Kfy/lIaUUpRoFUsyaBZHQKAzbPmgam51fZQoaAZoCWgPQwgyIHu9+2P4v5SGlFKUaBVLMmgWR0CgOm22PT5PdX2UKGgGaAloD0MIBd80fXZA+L+UhpRSlGgVSzJoFkdAoDo4l4TsY3V9lChoBmgJaA9DCLRVSWQfJPe/lIaUUpRoFUsyaBZHQKA5+8L8aXN1fZQoaAZoCWgPQwgO2xZlNkj4v5SGlFKUaBVLMmgWR0CgOb+tCAtndX2UKGgGaAloD0MIl3FTA81nAMCUhpRSlGgVSzJoFkdAoDl9j3Ehq3V9lChoBmgJaA9DCDZXzXNEPvq/lIaUUpRoFUsyaBZHQKA5PpSJj2B1fZQoaAZoCWgPQwhi9UcYBiz3v5SGlFKUaBVLMmgWR0CgOP0+TvAodX2UKGgGaAloD0MIWoEhq1v9/b+UhpRSlGgVSzJoFkdAoDiy9/SYxHV9lChoBmgJaA9DCPOOU3QkV/y/lIaUUpRoFUsyaBZHQKA4dE0iyIJ1fZQoaAZoCWgPQwiFsvD1ta75v5SGlFKUaBVLMmgWR0CgODXfyf+TdX2UKGgGaAloD0MIHSJuTiVD/L+UhpRSlGgVSzJoFkdAoDf3kzXSSnV9lChoBmgJaA9DCMbAOo4fygDAlIaUUpRoFUsyaBZHQKA3ulSjxkN1fZQoaAZoCWgPQwjY1eQpq+n6v5SGlFKUaBVLMmgWR0CgN31bzK9xdX2UKGgGaAloD0MIA+/k02Pb/b+UhpRSlGgVSzJoFkdAoDc/5WRzR3V9lChoBmgJaA9DCNhHp658Vvu/lIaUUpRoFUsyaBZHQKA2+ArhBJJ1fZQoaAZoCWgPQwgTLA5nfrX3v5SGlFKUaBVLMmgWR0CgNrmdqcmTdX2UKGgGaAloD0MIXBsqxvmb+7+UhpRSlGgVSzJoFkdAoD0roEB8yHV9lChoBmgJaA9DCBSUopV7Af2/lIaUUpRoFUsyaBZHQKA89tGd7OV1fZQoaAZoCWgPQwioqtBALNv5v5SGlFKUaBVLMmgWR0CgPLnZsbeedX2UKGgGaAloD0MIkKFjB5U4/7+UhpRSlGgVSzJoFkdAoDx90ihWYHV9lChoBmgJaA9DCCasjbETHvq/lIaUUpRoFUsyaBZHQKA8O63iJfp1fZQoaAZoCWgPQwi/uFSlLW76v5SGlFKUaBVLMmgWR0CgO/y+6Ae8dX2UKGgGaAloD0MIRMAhVKkZ+r+UhpRSlGgVSzJoFkdAoDu7cO9WZXV9lChoBmgJaA9DCNTRcTWya/6/lIaUUpRoFUsyaBZHQKA7cS7oSth1fZQoaAZoCWgPQwghAg6hSs39v5SGlFKUaBVLMmgWR0CgOzKcNH6NdX2UKGgGaAloD0MICp5CrtQz/7+UhpRSlGgVSzJoFkdAoDrz/lyR0XV9lChoBmgJaA9DCEypS8Yxkvm/lIaUUpRoFUsyaBZHQKA6tb+Lm6p1fZQoaAZoCWgPQwgeqFMe3cj+v5SGlFKUaBVLMmgWR0CgOnh7mdRSdX2UKGgGaAloD0MIns+AejNq/b+UhpRSlGgVSzJoFkdAoDo7dgv12HV9lChoBmgJaA9DCNB7YwgAzve/lIaUUpRoFUsyaBZHQKA5/hGYrrh1fZQoaAZoCWgPQwinAu55/rT/v5SGlFKUaBVLMmgWR0CgObZLRKHxdX2UKGgGaAloD0MIstmR6jv//b+UhpRSlGgVSzJoFkdAoDl3XAdn03V9lChoBmgJaA9DCJgz2xX6oPy/lIaUUpRoFUsyaBZHQKA/4kka/AV1fZQoaAZoCWgPQwirP8IwYIn7v5SGlFKUaBVLMmgWR0CgP60zj3mFdX2UKGgGaAloD0MIuMmoMoybAMCUhpRSlGgVSzJoFkdAoD9wQ4CIUXV9lChoBmgJaA9DCOyhfazg9wDAlIaUUpRoFUsyaBZHQKA/NCF9KEp1fZQoaAZoCWgPQwhBmrFoOvv4v5SGlFKUaBVLMmgWR0CgPvI0IkZ8dX2UKGgGaAloD0MIQPZ698c7+b+UhpRSlGgVSzJoFkdAoD6zPjXFtXV9lChoBmgJaA9DCMuD9BQ5BPm/lIaUUpRoFUsyaBZHQKA+cfkFOfx1fZQoaAZoCWgPQwi8AtGTMmn9v5SGlFKUaBVLMmgWR0CgPie6y0KJdX2UKGgGaAloD0MI9rLttDWi/7+UhpRSlGgVSzJoFkdAoD3pClabF3V9lChoBmgJaA9DCEqYaftXlv+/lIaUUpRoFUsyaBZHQKA9qmIj4Yd1fZQoaAZoCWgPQwjh8e1dg778v5SGlFKUaBVLMmgWR0CgPWwe3hGZdX2UKGgGaAloD0MIB9Dv+zdv87+UhpRSlGgVSzJoFkdAoD0vGjsUqXV9lChoBmgJaA9DCGDq501FigDAlIaUUpRoFUsyaBZHQKA88lSCOFR1fZQoaAZoCWgPQwgSpb3BFyb6v5SGlFKUaBVLMmgWR0CgPLUlzEJjdX2UKGgGaAloD0MIH7k16bYE+7+UhpRSlGgVSzJoFkdAoDxtjG1hLHV9lChoBmgJaA9DCIquCz84n/2/lIaUUpRoFUsyaBZHQKA8LpfQa751fZQoaAZoCWgPQwjVlGQdju76v5SGlFKUaBVLMmgWR0CgQohSUC7sdX2UKGgGaAloD0MIM+GX+nlT+r+UhpRSlGgVSzJoFkdAoEJTcqOLi3V9lChoBmgJaA9DCFwhrMYSlv+/lIaUUpRoFUsyaBZHQKBCFr1M/Ql1fZQoaAZoCWgPQwhlUG1wInr3v5SGlFKUaBVLMmgWR0CgQdqZ+hGpdX2UKGgGaAloD0MIFYxK6gS0AMCUhpRSlGgVSzJoFkdAoEGYffXPJXV9lChoBmgJaA9DCPLvMy4ciPy/lIaUUpRoFUsyaBZHQKBBWXVsk6d1fZQoaAZoCWgPQwirlnSUgxn0v5SGlFKUaBVLMmgWR0CgQRgc94eLdX2UKGgGaAloD0MIAHSYLy/A/b+UhpRSlGgVSzJoFkdAoEDOSwGGEnV9lChoBmgJaA9DCMWRByKLNP2/lIaUUpRoFUsyaBZHQKBAj7a7EpB1fZQoaAZoCWgPQwhkOnR63s38v5SGlFKUaBVLMmgWR0CgQFEl/pdKdX2UKGgGaAloD0MIuJTzxd6L97+UhpRSlGgVSzJoFkdAoEAS6WgOBnV9lChoBmgJaA9DCPUsCOV93Pi/lIaUUpRoFUsyaBZHQKA/1at9x6x1fZQoaAZoCWgPQwj5n/zdO+r5v5SGlFKUaBVLMmgWR0CgP5iih37ldX2UKGgGaAloD0MI8DMuHAhJ/L+UhpRSlGgVSzJoFkdAoD9bJnxri3V9lChoBmgJaA9DCICcMGE06/+/lIaUUpRoFUsyaBZHQKA/E2Dxsl91fZQoaAZoCWgPQwh2i8BY3wD7v5SGlFKUaBVLMmgWR0CgPtRsuWa+dX2UKGgGaAloD0MIE/HW+bcL/b+UhpRSlGgVSzJoFkdAoEU+9eyAx3V9lChoBmgJaA9DCII3pFGBE/y/lIaUUpRoFUsyaBZHQKBFCgU1yeZ1fZQoaAZoCWgPQwj+YrZkVaQAwJSGlFKUaBVLMmgWR0CgRM0m+j/NdX2UKGgGaAloD0MIMjhKXp2j/b+UhpRSlGgVSzJoFkdAoESRK15SnHV9lChoBmgJaA9DCOc3TDRIAf2/lIaUUpRoFUsyaBZHQKBETxrBTGZ1fZQoaAZoCWgPQwia6sn8o6/+v5SGlFKUaBVLMmgWR0CgRBAdfb9IdX2UKGgGaAloD0MI8fYgBOQL97+UhpRSlGgVSzJoFkdAoEPO5OJtSHV9lChoBmgJaA9DCLsLlBRYgPu/lIaUUpRoFUsyaBZHQKBDhKtga3t1fZQoaAZoCWgPQwg+P4wQHu33v5SGlFKUaBVLMmgWR0CgQ0YlhPTHdX2UKGgGaAloD0MIJqd2hqntAcCUhpRSlGgVSzJoFkdAoEMHlS0jT3V9lChoBmgJaA9DCHzRHi+kg/2/lIaUUpRoFUsyaBZHQKBCyV5a/yp1fZQoaAZoCWgPQwhnYroQq3/+v5SGlFKUaBVLMmgWR0CgQowfIS13dX2UKGgGaAloD0MIDaX2ItpO+7+UhpRSlGgVSzJoFkdAoEJPLxI8Q3V9lChoBmgJaA9DCHHMsieBzfq/lIaUUpRoFUsyaBZHQKBCEcm0E5h1fZQoaAZoCWgPQwh95xcl6O/+v5SGlFKUaBVLMmgWR0CgQcoqkM1CdX2UKGgGaAloD0MIKlYNwtzu+L+UhpRSlGgVSzJoFkdAoEGLW9US7HV9lChoBmgJaA9DCNO+ub96HP2/lIaUUpRoFUsyaBZHQKBH8ofCAMF1fZQoaAZoCWgPQwhorz4e+m74v5SGlFKUaBVLMmgWR0CgR72NFSbZdX2UKGgGaAloD0MIqrncYKhD/r+UhpRSlGgVSzJoFkdAoEeA287IUHV9lChoBmgJaA9DCNY6cTlewfy/lIaUUpRoFUsyaBZHQKBHRM5fdAR1fZQoaAZoCWgPQwgE4nX9gh31v5SGlFKUaBVLMmgWR0CgRwK6vq1PdX2UKGgGaAloD0MInzpWKT2T/b+UhpRSlGgVSzJoFkdAoEbD1kDp1XV9lChoBmgJaA9DCOkN95FbU/2/lIaUUpRoFUsyaBZHQKBGgoo/iYN1fZQoaAZoCWgPQwi9p3LaU3L9v5SGlFKUaBVLMmgWR0CgRjhBZ6lddX2UKGgGaAloD0MI7DNnfcrRAMCUhpRSlGgVSzJoFkdAoEX5uhsZYXV9lChoBmgJaA9DCPLrh9hgIfy/lIaUUpRoFUsyaBZHQKBFuyE+Pil1fZQoaAZoCWgPQwiSByKLNHH3v5SGlFKUaBVLMmgWR0CgRXzdUKiPdX2UKGgGaAloD0MI3soSnWWW+L+UhpRSlGgVSzJoFkdAoEU/kBCD3HV9lChoBmgJaA9DCMPxfAbUm/y/lIaUUpRoFUsyaBZHQKBFApYLb6B1fZQoaAZoCWgPQwiu1/SgoBT9v5SGlFKUaBVLMmgWR0CgRMUdzXBhdX2UKGgGaAloD0MIF/IIbqSMAsCUhpRSlGgVSzJoFkdAoER9OymhunV9lChoBmgJaA9DCG/x8J4DC/+/lIaUUpRoFUsyaBZHQKBEPirksBh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}