1998Shubham commited on
Commit
a44dd82
·
verified ·
1 Parent(s): 4114b3a

Upload 2 files

Browse files
Recommendation_paper.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
recommendation_paper.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Recommendation_paper.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/16l0DYZhK4q7tjYvRqpa1IMyIatp1Gtd1
8
+ """
9
+
10
+ !pip install -q -U sentence-transformers
11
+
12
+ import torch
13
+ import pandas as pd
14
+
15
+ from sentence_transformers import SentenceTransformer,util
16
+
17
+ data=pd.read_csv("/content/arxiv_data.csv")
18
+
19
+ data.head(10)
20
+
21
+ titles=data["titles"]
22
+
23
+ titles.head(5)
24
+
25
+ model=SentenceTransformer("all-MiniLM-L6-v2")
26
+
27
+ Encoded_titles=model.encode(titles,device="cuda")
28
+
29
+ keep_counter=0
30
+ for title,encode in zip(titles,Encoded_titles):
31
+ print("Titles",title)
32
+ print("Encoded Data",encode)
33
+ print("length of Encoded Data",len(encode))
34
+ if(keep_counter==5):
35
+ break;
36
+ keep_counter+=1
37
+
38
+ type(titles),type(Encoded_titles)
39
+
40
+ #checking the shape of embeding
41
+ Encoded_titles.shape
42
+
43
+ !pip install huggingface-cli
44
+
45
+ !pip install huggingface_hub
46
+
47
+ from huggingface_hub import notebook_login
48
+ notebook_login()
49
+
50
+ from google.colab import userdata
51
+ userdata.get('secretName')
52
+
53
+
54
+
55
+ !pip install datasets
56
+
57
+ model.push_to_hub("1998Shubham007/ModelRecomm")
58
+
59
+
60
+
61
+ #Now save your embedding,Title,model
62
+ import pickle
63
+
64
+ #saving embedding
65
+ with open("embedding.pkl","wb") as f:
66
+ pickle.dump(Encoded_titles,f)
67
+
68
+ with open("ModelRec.pkl","wb") as f:
69
+ pickle.dump(model,f)
70
+
71
+ with open("Titles.pkl","wb") as f:
72
+ pickle.dump(titles,f)
73
+
74
+
75
+
76
+ #Loading the saved Embedding
77
+ with open("/content/embedding.pkl","rb") as f:
78
+ Lencode=pickle.load(f)
79
+
80
+ #Loading the saved Model
81
+ with open("/content/ModelRec.pkl","rb") as f:
82
+ lModelRec=pickle.load(f)
83
+
84
+ #Prediction
85
+
86
+ def recomm(inputPaper):
87
+ encodePaper=lModelRec.encode(inputPaper)
88
+ cosine_score=util.cos_sim(Lencode,encodePaper)
89
+ Top_score=torch.topk(cosine_score,dim=0,k=4)
90
+ paperList=[]
91
+ for i in Top_score.indices:
92
+ paperList.append(titles[i.item()])
93
+ return paperList
94
+
95
+ value=input("enter the paper name")
96
+
97
+ papers=recomm(value)
98
+
99
+ print(papers)
100
+