Upload 2 files
Browse files- Recommendation_paper.ipynb +0 -0
- recommendation_paper.py +100 -0
Recommendation_paper.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
recommendation_paper.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Recommendation_paper.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/16l0DYZhK4q7tjYvRqpa1IMyIatp1Gtd1
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install -q -U sentence-transformers
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import pandas as pd
|
14 |
+
|
15 |
+
from sentence_transformers import SentenceTransformer,util
|
16 |
+
|
17 |
+
data=pd.read_csv("/content/arxiv_data.csv")
|
18 |
+
|
19 |
+
data.head(10)
|
20 |
+
|
21 |
+
titles=data["titles"]
|
22 |
+
|
23 |
+
titles.head(5)
|
24 |
+
|
25 |
+
model=SentenceTransformer("all-MiniLM-L6-v2")
|
26 |
+
|
27 |
+
Encoded_titles=model.encode(titles,device="cuda")
|
28 |
+
|
29 |
+
keep_counter=0
|
30 |
+
for title,encode in zip(titles,Encoded_titles):
|
31 |
+
print("Titles",title)
|
32 |
+
print("Encoded Data",encode)
|
33 |
+
print("length of Encoded Data",len(encode))
|
34 |
+
if(keep_counter==5):
|
35 |
+
break;
|
36 |
+
keep_counter+=1
|
37 |
+
|
38 |
+
type(titles),type(Encoded_titles)
|
39 |
+
|
40 |
+
#checking the shape of embeding
|
41 |
+
Encoded_titles.shape
|
42 |
+
|
43 |
+
!pip install huggingface-cli
|
44 |
+
|
45 |
+
!pip install huggingface_hub
|
46 |
+
|
47 |
+
from huggingface_hub import notebook_login
|
48 |
+
notebook_login()
|
49 |
+
|
50 |
+
from google.colab import userdata
|
51 |
+
userdata.get('secretName')
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
!pip install datasets
|
56 |
+
|
57 |
+
model.push_to_hub("1998Shubham007/ModelRecomm")
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
#Now save your embedding,Title,model
|
62 |
+
import pickle
|
63 |
+
|
64 |
+
#saving embedding
|
65 |
+
with open("embedding.pkl","wb") as f:
|
66 |
+
pickle.dump(Encoded_titles,f)
|
67 |
+
|
68 |
+
with open("ModelRec.pkl","wb") as f:
|
69 |
+
pickle.dump(model,f)
|
70 |
+
|
71 |
+
with open("Titles.pkl","wb") as f:
|
72 |
+
pickle.dump(titles,f)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
#Loading the saved Embedding
|
77 |
+
with open("/content/embedding.pkl","rb") as f:
|
78 |
+
Lencode=pickle.load(f)
|
79 |
+
|
80 |
+
#Loading the saved Model
|
81 |
+
with open("/content/ModelRec.pkl","rb") as f:
|
82 |
+
lModelRec=pickle.load(f)
|
83 |
+
|
84 |
+
#Prediction
|
85 |
+
|
86 |
+
def recomm(inputPaper):
|
87 |
+
encodePaper=lModelRec.encode(inputPaper)
|
88 |
+
cosine_score=util.cos_sim(Lencode,encodePaper)
|
89 |
+
Top_score=torch.topk(cosine_score,dim=0,k=4)
|
90 |
+
paperList=[]
|
91 |
+
for i in Top_score.indices:
|
92 |
+
paperList.append(titles[i.item()])
|
93 |
+
return paperList
|
94 |
+
|
95 |
+
value=input("enter the paper name")
|
96 |
+
|
97 |
+
papers=recomm(value)
|
98 |
+
|
99 |
+
print(papers)
|
100 |
+
|