1990two commited on
Commit
b20a806
·
verified ·
1 Parent(s): 0361142

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - markov-chains
4
+ - complex-analysis
5
+ - non-euclidean-geometry
6
+ - classics-revival
7
+ - experimental
8
+ license: apache-2.0
9
+ library_name: pytorch
10
+ ---
11
+
12
+ # Möbius Markov Chain - The Classics Revival
13
+
14
+ **Non-Euclidean Probabilistic Systems with Dynamic Geometry**
15
+
16
+ **Experimental Research Code** - Functional but unoptimized, expect rough edges
17
+
18
+ ## What Is This?
19
+
20
+ Möbius Markov Chain operates Markov processes in complex space with dynamically warped geometry via Möbius transformations. The state space itself evolves based on current states, creating probabilistic dynamics that adapt their geometric structure during evolution.
21
+
22
+ **Core Innovation**: Markov transition probabilities computed in continuously warped complex space, where the geometry itself learns to optimize transition dynamics.
23
+
24
+ ## Architecture Highlights
25
+
26
+ - **Complex State Space**: States positioned in the complex plane
27
+ - **Dynamic Möbius Transformations**: Learnable conformal mappings f(z) = (az+b)/(cz+d)
28
+ - **Geometric Transition Matrices**: Distances computed in transformed space
29
+ - **State-Dependent Warping**: Geometry evolves based on current state distribution
30
+ - **Conformal Invariance**: Preserves angles while warping distances
31
+ - **Distance Kernels**: Multiple kernel options for probability computation
32
+
33
+ ## Quick Start
34
+ ```python
35
+ from mobius_markov import MobiusMarkovSystem
36
+
37
+ # Create non-Euclidean Markov system
38
+ system = MobiusMarkovSystem(
39
+ num_states=8,
40
+ state_embedding_dim=32,
41
+ evolution_steps=5
42
+ )
43
+
44
+ # Initialize state distribution
45
+ initial_state = torch.zeros(batch_size, num_states)
46
+ initial_state[:, 0] = 1.0 # Start in state 0
47
+
48
+ # Evolve through warped space
49
+ output = system(initial_state, return_full_trajectory=True)
50
+
51
+ # Generate sequence predictions
52
+ sequence = system.predict_sequence(initial_state, sequence_length=10)
53
+ ```
54
+
55
+ ## Current Status
56
+ - **Working**: Möbius transformations, complex state dynamics, geometric evolution, sequence prediction
57
+ - **Rough Edges**: No validation on standard Markov tasks, numerical stability needs improvement
58
+ - **Still Missing**: Advanced conformal mappings, multi-scale geometry, distributed state spaces
59
+ - **Performance**: Novel behavior on toy problems, needs real-world validation
60
+ - **Memory Usage**: Moderate, dominated by complex number operations
61
+ - **Speed**: Reasonable for small state spaces, optimization needed for large systems
62
+
63
+ ## Mathematical Foundation
64
+ Möbius transformations are defined as:
65
+ ```
66
+ f(z) = (az + b)/(cz + d)
67
+ ```
68
+ where a,b,c,d are learnable complex parameters with ad - bc ≠ 0.
69
+
70
+ State positions in complex space determine transition probabilities:
71
+ ```
72
+ P_ij = kernel(d_transformed(z_i, z_j))
73
+ ```
74
+
75
+ Distance kernels include:
76
+ - **Gaussian**: `P ∝ exp(-d²/2σ²)`
77
+ - **Inverse**: `P ∝ 1/d^α`
78
+ - **Linear**: `P ∝ max(0, 1-d)`
79
+
80
+ The geometry evolves according to:
81
+ ```
82
+ ∂θ/∂t = η × state_embedding_evolution(current_distribution)
83
+ ```
84
+
85
+ where θ represents the Möbius transformation parameters.
86
+
87
+ ## Research Applications
88
+ - **Non-Euclidean machine learning**
89
+ - **Adaptive probabilistic models**
90
+ - **Complex systems with geometric constraints**
91
+ - **Hyperbolic neural networks**
92
+ - **Conformal prediction systems**
93
+
94
+ ## Installation
95
+ ```bash
96
+ pip install torch numpy matplotlib
97
+ # Download mobius_markov.py from this repo
98
+ ```
99
+
100
+ ## The Classics Revival Collection
101
+
102
+ Möbius Markov Chain is part of a larger exploration of foundational algorithms enhanced with modern neural techniques:
103
+
104
+ - Evolutionary Turing Machine
105
+ - Hebbian Bloom Filter
106
+ - Hopfield Decision Graph
107
+ - Liquid Bayes Chain
108
+ - Liquid State Space Model
109
+ - **Möbius Markov Chain** ← You are here
110
+ - Memory Forest
111
+
112
+ ## Citation
113
+ ```bibtex
114
+ @misc{mobiusmarkov2025,
115
+ title={Möbius Markov Chain: Non-Euclidean Probabilistic Systems},
116
+ author={Jae Parker 𓅸 1990two},
117
+ year={2025},
118
+ note={Part of The Classics Revival Collection}
119
+ }
120
+ ```