evolutionary_turing / evolutionary_turing_docs.py
1990two's picture
Upload 2 files
3a61d42 verified
############################################################################################################################################
#|| - - - |8.19.2025| - - - || Evolutionary Turing Machine || - - - | 1990two | - - -||#
############################################################################################################################################
"""
Mathematical Foundation & Conceptual Documentation
-------------------------------------------------
CORE PRINCIPLE:
Combines Neural Turing Machines (external memory architectures) with evolutionary
algorithms to create adaptive memory systems that evolve both their architecture
and parameters through natural selection, enabling discovery of optimal memory
access patterns and computational structures.
MATHEMATICAL FOUNDATION:
=======================
1. NEURAL TURING MACHINE DYNAMICS:
Content-based addressing: w_t^c = softmax(β_t ⊙ K[M_t, k_t])
Where:
- w_t: attention weights over memory locations
- β_t: key strength (focus parameter)
- K[M,k]: cosine similarity between memory M and key k
- M_t: memory matrix at time t
- k_t: generated key vector
2. MEMORY OPERATIONS:
Read: r_t = Σ_i w_t^r[i] × M_t[i]
Erase: M̃_t[i] = M_{t-1}[i] ⊙ (1 - w_t^w[i] ⊙ e_t)
Add: M_t[i] = M̃_t[i] + w_t^w[i] ⊙ a_t
Where:
- r_t: read vector
- e_t: erase vector ∈ [0,1]^M
- a_t: add vector ∈ ℝ^M
- ⊙: element-wise product
3. EVOLUTIONARY FITNESS:
F(individual) = α·task_performance + β·memory_efficiency + γ·stability
Where:
- task_performance: accuracy on computational tasks
- memory_efficiency: 1/(parameter_count/baseline)
- stability: consistency across multiple runs
4. GENETIC OPERATIONS:
Architecture Crossover: A_child = random_blend(A_parent1, A_parent2)
Parameter Mutation: θ'_i = θ_i + ε·N(0,σ²) with probability p_mut
Selection: P(selection) ∝ exp(F(individual)/T)
Where T is selection temperature.
5. POPULATION DYNAMICS:
Elite Preservation: Keep top k% individuals
Tournament Selection: Choose parents via tournament
Replacement Strategy: (μ + λ) evolution strategy
CONCEPTUAL REASONING:
====================
WHY EVOLUTIONARY + TURING MACHINES?
- Fixed NTM architectures may be suboptimal for specific tasks
- Manual architecture design is time-intensive and domain-specific
- Evolution can discover novel memory access patterns
- Natural selection optimizes both structure and parameters simultaneously
KEY INNOVATIONS:
1. **Evolvable Architecture**: Memory size, heads, controller complexity all mutable
2. **Task-Adaptive Evolution**: Fitness functions guide toward task-specific solutions
3. **Multi-Objective Optimization**: Balance performance, efficiency, and stability
4. **Hierarchical Mutation**: Different rates for architecture vs parameters
5. **Memory Access Pattern Evolution**: Learn optimal attention strategies
APPLICATIONS:
- Algorithmic learning (sorting, copying, associative recall)
- Adaptive control systems with memory requirements
- Meta-learning for memory-augmented architectures
- Neural architecture search for sequence modeling
- Continual learning with evolving memory structures
COMPLEXITY ANALYSIS:
- Individual Evaluation: O(T·(D² + M·H)) where T=sequence length, D=hidden size, M=memory slots, H=heads
- Population Evolution: O(P·evaluations) where P=population size
- Architecture Mutation: O(1) for parameter changes, O(M) for structural changes
- Memory: O(P·(D² + M²)) for population storage
BIOLOGICAL INSPIRATION:
- Neural plasticity and synaptic evolution
- Natural selection of neural circuits
- Memory consolidation and forgetting mechanisms
- Adaptive brain architecture development
"""
from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
@dataclass
class NTMConfig:
"""Configuration for Neural Turing Machine architecture.
Defines the structure and hyperparameters for a single NTM individual
in the evolutionary population. All parameters are evolvable.
"""
input_dim: int
output_dim: int
controller_dim: int = 128
controller_layers: int = 1
memory_slots: int = 128
memory_dim: int = 32
heads_read: int = 1
heads_write: int = 1
init_std: float = 0.1
############################################################################################################################################
#################################################### - - - Neural Turing Machine - - - ###############################################
class NeuralTuringMachine(nn.Module):
"""Neural Turing Machine with external memory and attention mechanisms.
Implements the complete NTM architecture including:
- LSTM controller for sequence processing
- External memory matrix with read/write operations
- Content-based addressing via cosine similarity
- Differentiable memory operations (erase, add)
Mathematical Details:
- Controller processes input + read vectors: h_t = LSTM(x_t ⊕ r_{t-1}, h_{t-1})
- Interface parameters: keys, strengths, erase/add vectors
- Attention: w_t = softmax(β_t ⊙ cosine_sim(M_t, k_t))
- Memory updates preserve differentiability for gradient-based learning
"""
def __init__(self, cfg: NTMConfig):
super().__init__()
self.cfg = cfg
R, W, Dm = cfg.heads_read, cfg.heads_write, cfg.memory_dim
# Controller: processes input + read vectors
ctrl_in = cfg.input_dim + R * Dm
self.controller = nn.LSTMCell(ctrl_in, cfg.controller_dim)
# Interface: generates read/write parameters
iface_read = R * (Dm + 1) # key + strength per read head
iface_write = W * (Dm + 1 + Dm + Dm) # key + strength + erase + add per write head
self.interface = nn.Linear(cfg.controller_dim, iface_read + iface_write)
# Output head: combines controller state + read vectors
self.output = nn.Linear(cfg.controller_dim + R * Dm, cfg.output_dim)
self.reset_parameters()
def reset_parameters(self):
"""Initialize parameters with appropriate distributions.
Uses Xavier initialization for linear layers and orthogonal
initialization for LSTM recurrent weights to ensure stable training.
Forget gate bias is initialized to 1.0 for better gradient flow.
"""
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
if isinstance(m, nn.LSTMCell):
nn.init.xavier_uniform_(m.weight_ih)
nn.init.orthogonal_(m.weight_hh)
nn.init.zeros_(m.bias_ih)
nn.init.zeros_(m.bias_hh)
# Forget gate bias = 1.0 for better gradient flow
hs = m.bias_ih.shape[0] // 4
m.bias_ih.data[hs:2*hs].fill_(1.0)
m.bias_hh.data[hs:2*hs].fill_(1.0)
def initial_state(self, batch_size: int, device=None):
"""Initialize NTM state including memory, attention weights, and controller state.
Args:
batch_size: Number of parallel sequences
device: Target device for tensors
Returns:
Dictionary containing:
- M: Memory matrix [batch_size, memory_slots, memory_dim]
- w_r: Read attention weights [batch_size, heads_read, memory_slots]
- w_w: Write attention weights [batch_size, heads_write, memory_slots]
- r: Read vectors [batch_size, heads_read, memory_dim]
- h, c: LSTM controller states
"""
cfg = self.cfg
device = device or next(self.parameters()).device
# Initialize memory with small random values
M = torch.zeros(batch_size, cfg.memory_slots, cfg.memory_dim, device=device)
if cfg.init_std > 0:
M.normal_(0.0, cfg.init_std)
# Initialize attention weights uniformly (all locations equally attended)
w_r = torch.ones(batch_size, cfg.heads_read, cfg.memory_slots, device=device) / cfg.memory_slots
w_w = torch.ones(batch_size, cfg.heads_write, cfg.memory_slots, device=device) / cfg.memory_slots
# Initialize read vectors and controller states
r = torch.zeros(batch_size, cfg.heads_read, cfg.memory_dim, device=device)
h = torch.zeros(batch_size, cfg.controller_dim, device=device)
c = torch.zeros(batch_size, cfg.controller_dim, device=device)
return {'M': M, 'w_r': w_r, 'w_w': w_w, 'r': r, 'h': h, 'c': c}
def step(self, x: torch.Tensor, state: Dict[str, torch.Tensor]):
"""Execute one forward step of NTM computation.
Complete NTM forward pass:
1. Controller processes input + previous reads
2. Interface generates memory operation parameters
3. Content-based addressing computes attention weights
4. Memory operations (read, erase, add)
5. Output generation
Args:
x: Input tensor [batch_size, input_dim]
state: Current NTM state dictionary
Returns:
y: Output tensor [batch_size, output_dim]
new_state: Updated state dictionary
"""
cfg = self.cfg
B = x.shape[0]
# Step 1: Controller forward pass
ctrl_in = torch.cat([x, state['r'].view(B, -1)], dim=-1)
h, c = self.controller(ctrl_in, (state['h'], state['c']))
# Step 2: Generate interface parameters
iface = self.interface(h)
R, W, Dm = cfg.heads_read, cfg.heads_write, cfg.memory_dim
# Parse interface outputs
offset = 0
# Read parameters: keys and strengths
k_r = iface[:, offset:offset + R * Dm].view(B, R, Dm)
offset += R * Dm
beta_r = F.softplus(iface[:, offset:offset + R])
offset += R
# Write parameters: keys, strengths, erase vectors, add vectors
k_w = iface[:, offset:offset + W * Dm].view(B, W, Dm)
offset += W * Dm
beta_w = F.softplus(iface[:, offset:offset + W])
offset += W
erase = torch.sigmoid(iface[:, offset:offset + W * Dm]).view(B, W, Dm)
offset += W * Dm
add = torch.tanh(iface[:, offset:offset + W * Dm]).view(B, W, Dm)
def address(M, k, beta, prev_weight=None):
"""Content-based addressing mechanism.
Computes attention weights using cosine similarity between
memory contents and generated keys, focused by strength parameter.
Mathematical Details:
- Cosine similarity: sim(M[i], k) = (M[i] · k) / (||M[i]|| ||k||)
- Focused attention: w = softmax(β ⊙ sim)
- Optional momentum: adds small fraction of previous weights
Args:
M: Memory matrix [batch_size, slots, memory_dim]
k: Key vectors [batch_size, heads, memory_dim]
beta: Strength parameters [batch_size, heads]
prev_weight: Previous attention weights for momentum
Returns:
Attention weights [batch_size, heads, slots]
"""
# Normalize for cosine similarity
M_norm = torch.norm(M, dim=-1, keepdim=True).clamp_min(1e-8)
k_norm = torch.norm(k, dim=-1, keepdim=True).clamp_min(1e-8)
# Cosine similarity: M[i] · k / (||M[i]|| ||k||)
cos_sim = torch.sum(M.unsqueeze(1) * k.unsqueeze(2), dim=-1) / (
M_norm.squeeze(-1).unsqueeze(1) * k_norm.squeeze(-1).unsqueeze(-1)
)
# Apply strength and optional momentum
content_logits = beta.unsqueeze(-1) * cos_sim
if prev_weight is not None:
content_logits = content_logits + 0.02 * prev_weight # Small momentum term
return F.softmax(content_logits, dim=-1)
# Step 3: Compute attention weights
w_r = address(state['M'], k_r, beta_r, prev_weight=state.get('w_r'))
w_w = address(state['M'], k_w, beta_w, prev_weight=state.get('w_w'))
# Step 4: Memory operations
# Read: weighted sum over memory locations
r = torch.sum(w_r.unsqueeze(-1) * state['M'].unsqueeze(1), dim=2)
# Write: erase then add
M = state['M']
if W > 0:
# Erase: M[i] := M[i] ⊙ (1 - w[i] ⊙ e)
erase_term = torch.prod(1 - w_w.unsqueeze(-1) * erase.unsqueeze(2), dim=1)
M = M * erase_term
# Add: M[i] := M[i] + w[i] ⊙ a
add_term = torch.sum(w_w.unsqueeze(-1) * add.unsqueeze(2), dim=1)
M = M + add_term
# Step 5: Generate output
y = self.output(torch.cat([h, r.view(B, -1)], dim=-1))
new_state = {'M': M, 'w_r': w_r, 'w_w': w_w, 'r': r, 'h': h, 'c': c}
return y, new_state
def forward(self, x: torch.Tensor, state=None):
"""Forward pass for single step or sequence.
Handles both single-step operation (for interactive use) and
sequence processing (for training/evaluation).
Args:
x: Input tensor [batch_size, input_dim] or [batch_size, seq_len, input_dim]
state: Optional initial state (created if None)
Returns:
For single step: (output, new_state)
For sequence: (output_sequence, final_state)
"""
if x.dim() == 2: # Single step
if state is None:
state = self.initial_state(x.shape[0], x.device)
return self.step(x, state)
# Sequence processing
B, T, _ = x.shape
if state is None:
state = self.initial_state(B, x.device)
outputs = []
for t in range(T):
y, state = self.step(x[:, t], state)
outputs.append(y)
return torch.stack(outputs, dim=1), state
@dataclass
class EvolutionaryTuringConfig:
"""Configuration for evolutionary optimization of NTM population.
Defines hyperparameters for the evolutionary algorithm including
population size, mutation rates, selection pressure, and fitness
evaluation parameters.
"""
population_size: int = 100
mutation_rate: float = 0.1
architecture_mutation_rate: float = 0.05
elite_ratio: float = 0.2
max_generations: int = 200
input_dim: int = 8
output_dim: int = 8
device: str = 'cpu'
seed: Optional[int] = None
############################################################################################################################################
################################################# - - - Fitness Evaluation - - - #####################################################
class FitnessEvaluator:
"""Comprehensive fitness evaluation for NTM individuals.
Evaluates NTM performance on multiple algorithmic tasks to assess
general computational capability. Includes efficiency penalties
to encourage compact, effective architectures.
Tasks:
1. Copy Task: Tests basic memory read/write capabilities
2. Associative Recall: Tests content-based memory access
3. Efficiency: Penalizes excessive parameters
Mathematical Details:
- Copy task measures sequence reproduction accuracy
- Associative recall tests key-value pair memory
- Composite fitness balances multiple objectives
"""
def __init__(self, device: str = 'cpu'):
self.device = device
def copy_task(self, ntm: NeuralTuringMachine, seq_len: int = 8, batch_size: int = 16) -> float:
"""Evaluate NTM on sequence copying task.
The copy task is fundamental for testing memory capabilities:
1. Present input sequence
2. Present delimiter (end-of-sequence marker)
3. Evaluate output sequence reproduction accuracy
Mathematical Details:
- Input: x₁, x₂, ..., xₜ, delimiter
- Target: reproduce x₁, x₂, ..., xₜ after delimiter
- Loss: MSE between predicted and target sequences
- Accuracy: 1 / (1 + loss) for bounded score ∈ [0,1]
Args:
ntm: NTM individual to evaluate
seq_len: Length of sequences to copy
batch_size: Number of parallel sequences
Returns:
Copy task accuracy score ∈ [0,1]
"""
with torch.no_grad():
# Generate random binary sequences
x = torch.randint(0, 2, (batch_size, seq_len, ntm.cfg.input_dim),
device=self.device, dtype=torch.float32)
# Add delimiter (end-of-sequence marker)
delimiter = torch.zeros(batch_size, 1, ntm.cfg.input_dim, device=self.device)
delimiter[:, :, -1] = 1 # Use last dimension as delimiter signal
# Complete input: sequence + delimiter
input_seq = torch.cat([x, delimiter], dim=1)
try:
output, _ = ntm(input_seq)
# Compare output to target (original sequence)
T = seq_len
D = ntm.cfg.output_dim
pred = output[:, -T:, :D] # Last T outputs
# Handle dimension mismatch by using overlap
d = min(ntm.cfg.input_dim, D)
loss = F.mse_loss(pred[..., :d], x[..., :d])
accuracy = 1.0 / (1.0 + loss.item())
return accuracy
except:
# Return zero for failed evaluations (architecture issues)
return 0.0
def associative_recall(self, ntm: NeuralTuringMachine, num_pairs: int = 4) -> float:
"""Evaluate NTM on associative memory recall task.
Tests content-based memory access by storing key-value pairs
and then querying with keys to retrieve associated values.
Task Structure:
1. Store phase: present key-value pairs
2. Query phase: present keys (with zero values)
3. Evaluate: check if correct values are recalled
Mathematical Details:
- Keys: k₁, k₂, ..., kₙ (half of input dimension)
- Values: v₁, v₂, ..., vₙ (other half of input dimension)
- Query: present [k₁, 0], expect output [0, v₁]
- Score based on MSE between recalled and target values
Args:
ntm: NTM individual to evaluate
num_pairs: Number of key-value pairs to store/recall
Returns:
Associative recall accuracy score ∈ [0,1]
"""
with torch.no_grad():
batch_size = 8
dim = ntm.cfg.input_dim
# Generate key-value pairs
keys = torch.randn(batch_size, num_pairs, dim // 2, device=self.device)
values = torch.randn(batch_size, num_pairs, dim // 2, device=self.device)
pairs = torch.cat([keys, values], dim=-1)
# Query format: keys with zero values
test_keys = torch.cat([keys, torch.zeros_like(values)], dim=-1)
expected_values = torch.cat([torch.zeros_like(keys), values], dim=-1)
# Complete sequence: store pairs then query
input_seq = torch.cat([pairs, test_keys], dim=1)
target_seq = torch.cat([torch.zeros_like(pairs), expected_values], dim=1)
try:
output, _ = ntm(input_seq)
# Evaluate query phase (second half of sequence)
D = ntm.cfg.output_dim
d = min(dim, D)
loss = F.mse_loss(output[:, num_pairs:, :d], target_seq[:, num_pairs:, :d])
accuracy = 1.0 / (1.0 + loss.item())
return accuracy
except:
return 0.0
def evaluate_fitness(self, ntm: NeuralTuringMachine) -> Dict[str, float]:
"""Comprehensive fitness evaluation across multiple criteria.
Evaluates individual on multiple tasks and efficiency metrics
to encourage both performance and architectural parsimony.
Fitness Components:
1. Copy Task (50%): Basic memory functionality
2. Associative Recall (30%): Content-based memory access
3. Efficiency (20%): Parameter count penalty
Mathematical Details:
- Each component scored ∈ [0,1]
- Efficiency = 1 / (1 + params/baseline)
- Composite = weighted combination
Args:
ntm: NTM individual to evaluate
Returns:
Dictionary containing individual and composite fitness scores
"""
copy_score = self.copy_task(ntm)
recall_score = self.associative_recall(ntm)
# Efficiency penalty based on parameter count
param_count = sum(p.numel() for p in ntm.parameters())
efficiency = 1.0 / (1.0 + param_count / 100000) # Normalize to reasonable range
# Weighted composite fitness
composite_score = 0.5 * copy_score + 0.3 * recall_score + 0.2 * efficiency
return {
'copy': copy_score,
'recall': recall_score,
'efficiency': efficiency,
'composite': composite_score
}
###############################################################################################################################################
################################################# - - - Evolutionary Turing Machine - - - ###############################################
class EvolutionaryTuringMachine:
"""Evolutionary optimization system for Neural Turing Machine architectures.
Implements a complete evolutionary algorithm for discovering optimal
NTM architectures and parameters through natural selection. Uses
both architectural mutations (structure) and parameter mutations.
Evolutionary Operations:
1. Selection: Tournament/rank-based parent selection
2. Crossover: Architecture and parameter blending
3. Mutation: Structure modification and parameter perturbation
4. Replacement: Elite preservation with new offspring
The system evolves both the neural architecture (memory size, heads,
controller complexity) and the connection weights simultaneously.
"""
def __init__(self, cfg: EvolutionaryTuringConfig):
self.cfg = cfg
self.evaluator = FitnessEvaluator(cfg.device)
self.generation = 0
self.best_fitness = 0.0
self.population = []
if cfg.seed is not None:
torch.manual_seed(cfg.seed)
def create_random_config(self) -> NTMConfig:
"""Generate random NTM architecture configuration.
Creates diverse initial population by randomizing all
architectural hyperparameters within reasonable bounds.
Architectural Parameters:
- Controller dimension: [64, 256]
- Memory slots: [32, 256]
- Memory dimension: [16, 64]
- Read/write heads: [1, 4] and [1, 3]
Returns:
Random NTM configuration
"""
return NTMConfig(
input_dim=self.cfg.input_dim,
output_dim=self.cfg.output_dim,
controller_dim=torch.randint(64, 256, (1,)).item(),
controller_layers=torch.randint(1, 3, (1,)).item(),
memory_slots=torch.randint(32, 256, (1,)).item(),
memory_dim=torch.randint(16, 64, (1,)).item(),
heads_read=torch.randint(1, 4, (1,)).item(),
heads_write=torch.randint(1, 3, (1,)).item(),
init_std=0.1
)
def mutate_architecture(self, cfg: NTMConfig) -> NTMConfig:
"""Apply architectural mutations to NTM configuration.
Modifies structural parameters with probability architecture_mutation_rate.
Each architectural parameter can be independently mutated with
small random perturbations.
Mutation Operations:
- Controller dimension: ±32 units
- Memory slots: ±16 units
- Memory dimension: ±8 units
- Read/write heads: ±1 head (within bounds)
Args:
cfg: Original NTM configuration
Returns:
Mutated NTM configuration
"""
new_cfg = deepcopy(cfg)
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.controller_dim = max(32, new_cfg.controller_dim + torch.randint(-32, 33, (1,)).item())
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.memory_slots = max(16, new_cfg.memory_slots + torch.randint(-16, 17, (1,)).item())
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.memory_dim = max(8, new_cfg.memory_dim + torch.randint(-8, 9, (1,)).item())
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.heads_read = max(1, min(4, new_cfg.heads_read + torch.randint(-1, 2, (1,)).item()))
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.heads_write = max(1, min(3, new_cfg.heads_write + torch.randint(-1, 2, (1,)).item()))
return new_cfg
def mutate_parameters(self, ntm: NeuralTuringMachine) -> NeuralTuringMachine:
"""Apply parameter mutations to NTM weights.
Performs Gaussian perturbations to network parameters with
probability mutation_rate per parameter. Creates a new NTM
instance to avoid modifying the original.
Mathematical Details:
- Each parameter p mutated with probability mutation_rate
- Mutation: p' = p + ε where ε ~ N(0, 0.01²)
- Preserves network architecture, only modifies weights
Args:
ntm: Original NTM individual
Returns:
New NTM with mutated parameters
"""
new_ntm = NeuralTuringMachine(ntm.cfg).to(self.cfg.device)
new_ntm.load_state_dict(deepcopy(ntm.state_dict()))
with torch.no_grad():
for p in new_ntm.parameters():
# Apply mutation mask (probability mutation_rate per element)
mask = (torch.rand_like(p) < self.cfg.mutation_rate)
p.add_(torch.randn_like(p) * 0.01 * mask)
return new_ntm
def crossover(self, parent1: NeuralTuringMachine, parent2: NeuralTuringMachine) -> NeuralTuringMachine:
"""Create offspring through architectural crossover.
Combines architectural features from two parents by randomly
selecting each architectural parameter from either parent.
The resulting offspring has a new random weight initialization.
Crossover Strategy:
- Each architectural parameter chosen from parent1 or parent2 (50% each)
- New weights initialized randomly (architectural crossover only)
- Alternative: could implement parameter-level crossover
Args:
parent1: First parent NTM
parent2: Second parent NTM
Returns:
Offspring NTM with hybrid architecture
"""
cfg1, cfg2 = parent1.cfg, parent2.cfg
# Create hybrid configuration
new_cfg = NTMConfig(
input_dim=self.cfg.input_dim,
output_dim=self.cfg.output_dim,
controller_dim=cfg1.controller_dim if torch.rand(1) < 0.5 else cfg2.controller_dim,
memory_slots=cfg1.memory_slots if torch.rand(1) < 0.5 else cfg2.memory_slots,
memory_dim=cfg1.memory_dim if torch.rand(1) < 0.5 else cfg2.memory_dim,
heads_read=cfg1.heads_read if torch.rand(1) < 0.5 else cfg2.heads_read,
heads_write=cfg1.heads_write if torch.rand(1) < 0.5 else cfg2.heads_write,
init_std=0.1
)
# Create new individual with hybrid architecture
child = NeuralTuringMachine(new_cfg).to(self.cfg.device)
return child
def initialize_population(self):
"""Create initial population with diverse random architectures.
Generates population_size individuals with random architectural
configurations to ensure diversity in the initial gene pool.
Each individual is initialized with different structural parameters.
"""
self.population = []
for _ in range(self.cfg.population_size):
cfg = self.create_random_config()
ntm = NeuralTuringMachine(cfg).to(self.cfg.device)
self.population.append(ntm)
def evolve_generation(self) -> Dict[str, float]:
"""Execute one generation of evolutionary optimization.
Complete generational evolution cycle:
1. Evaluate all individuals in population
2. Select elite individuals for survival
3. Generate offspring through crossover and mutation
4. Replace non-elite individuals with offspring
5. Update statistics and generation counter
Uses (μ + λ) evolution strategy with elite preservation
to ensure best solutions are never lost.
Returns:
Dictionary containing generation statistics
"""
# Step 1: Evaluate population fitness
fitness_scores = []
for ntm in self.population:
fitness = self.evaluator.evaluate_fitness(ntm)
fitness_scores.append(fitness['composite'])
# Step 2: Selection - sort by fitness (descending)
sorted_indices = sorted(range(len(fitness_scores)), key=lambda i: fitness_scores[i], reverse=True)
# Step 3: Elite preservation
elite_count = int(self.cfg.elite_ratio * self.cfg.population_size)
elites = [self.population[i] for i in sorted_indices[:elite_count]]
# Step 4: Generate offspring to fill remaining population
new_population = elites.copy()
while len(new_population) < self.cfg.population_size:
if torch.rand(1) < 0.3 and len(elites) >= 2:
# Crossover: select two random elite parents
parent1, parent2 = torch.randperm(len(elites))[:2]
child = self.crossover(elites[parent1], elites[parent2])
else:
# Mutation: select random elite parent
parent_idx = torch.randint(0, elite_count, (1,)).item()
parent = elites[parent_idx]
if torch.rand(1) < 0.5:
# Parameter mutation
child = self.mutate_parameters(parent)
else:
# Architectural mutation
new_cfg = self.mutate_architecture(parent.cfg)
child = NeuralTuringMachine(new_cfg).to(self.cfg.device)
new_population.append(child)
# Step 5: Update population and statistics
self.population = new_population[:self.cfg.population_size]
self.generation += 1
best_fitness = max(fitness_scores)
avg_fitness = sum(fitness_scores) / len(fitness_scores)
self.best_fitness = max(self.best_fitness, best_fitness)
return {
'generation': self.generation,
'best_fitness': best_fitness,
'avg_fitness': avg_fitness,
'best_ever': self.best_fitness
}
def run_evolution(self) -> List[Dict[str, float]]:
"""Execute complete evolutionary optimization run.
Runs evolution for max_generations, tracking progress and
printing periodic updates. Returns complete optimization
history for analysis and visualization.
Returns:
List of generation statistics dictionaries
"""
self.initialize_population()
history = []
for gen in range(self.cfg.max_generations):
stats = self.evolve_generation()
history.append(stats)
# Periodic progress reporting
if gen % 10 == 0:
print(f"Gen {gen}: Best={stats['best_fitness']:.4f}, Avg={stats['avg_fitness']:.4f}")
return history
def get_best_model(self) -> NeuralTuringMachine:
"""Retrieve the best individual from current population.
Evaluates all current individuals and returns the one
with highest composite fitness score.
Returns:
Best NTM individual from population
"""
fitness_scores = []
for ntm in self.population:
fitness = self.evaluator.evaluate_fitness(ntm)
fitness_scores.append(fitness['composite'])
best_idx = max(range(len(fitness_scores)), key=lambda i: fitness_scores[i])
return self.population[best_idx]
###########################################################################################################################################
##################################################- - - DEMO AND TESTING - - -#########################################################
def test_evolutionary_turing():
"""Comprehensive test of evolutionary NTM optimization."""
print(" Testing Evolutionary Turing Machine - Adaptive Memory Architecture Evolution")
print("=" * 90)
# Create evolutionary system
config = EvolutionaryTuringConfig(
population_size=20, # Small for demo
max_generations=30,
input_dim=8,
output_dim=8,
mutation_rate=0.15,
architecture_mutation_rate=0.1,
elite_ratio=0.3,
device='cpu'
)
system = EvolutionaryTuringMachine(config)
print(f"Created Evolutionary Turing System:")
print(f" - Population size: {config.population_size}")
print(f" - Max generations: {config.max_generations}")
print(f" - Architecture mutation rate: {config.architecture_mutation_rate}")
print(f" - Parameter mutation rate: {config.mutation_rate}")
print(f" - Elite preservation: {config.elite_ratio*100:.0f}%")
# Test individual components first
print("\n Testing individual NTM...")
test_config = system.create_random_config()
test_ntm = NeuralTuringMachine(test_config).to(config.device)
print(f"Random NTM architecture:")
print(f" - Controller: {test_config.controller_dim}D")
print(f" - Memory: {test_config.memory_slots} × {test_config.memory_dim}")
print(f" - Heads: {test_config.heads_read}R/{test_config.heads_write}W")
# Test fitness evaluation
fitness = system.evaluator.evaluate_fitness(test_ntm)
print(f"\nFitness evaluation:")
for task, score in fitness.items():
print(f" - {task.capitalize()}: {score:.3f}")
# Test evolutionary operations
print("\n Testing evolutionary operations...")
# Test mutation
mutated_ntm = system.mutate_parameters(test_ntm)
print("✓ Parameter mutation successful")
# Test architectural mutation
mutated_config = system.mutate_architecture(test_config)
print("✓ Architecture mutation successful")
# Test crossover
parent2_config = system.create_random_config()
parent2 = NeuralTuringMachine(parent2_config).to(config.device)
offspring = system.crossover(test_ntm, parent2)
print("✓ Crossover operation successful")
# Run short evolutionary optimization
print(f"\n Running evolutionary optimization...")
print("(This may take a few minutes)")
history = system.run_evolution()
print(f"\nEvolution completed!")
print(f" - Final generation: {system.generation}")
print(f" - Best fitness achieved: {system.best_fitness:.4f}")
# Analyze evolution progress
initial_fitness = history[0]['best_fitness']
final_fitness = history[-1]['best_fitness']
improvement = final_fitness - initial_fitness
print(f"\nEvolution analysis:")
print(f" - Initial best fitness: {initial_fitness:.4f}")
print(f" - Final best fitness: {final_fitness:.4f}")
print(f" - Total improvement: {improvement:.4f}")
print(f" - Average generation improvement: {improvement/len(history):.4f}")
# Get and analyze best individual
best_ntm = system.get_best_model()
best_fitness = system.evaluator.evaluate_fitness(best_ntm)
print(f"\nBest evolved architecture:")
print(f" - Controller: {best_ntm.cfg.controller_dim}D")
print(f" - Memory: {best_ntm.cfg.memory_slots} × {best_ntm.cfg.memory_dim}")
print(f" - Heads: {best_ntm.cfg.heads_read}R/{best_ntm.cfg.heads_write}W")
print(f" - Parameters: {sum(p.numel() for p in best_ntm.parameters()):,}")
print(f"\nBest individual performance:")
for task, score in best_fitness.items():
print(f" - {task.capitalize()}: {score:.4f}")
print("\n Evolutionary Turing Machine test completed!")
print("✓ Population initialization and diversity")
print("✓ Fitness evaluation on algorithmic tasks")
print("✓ Architectural and parameter mutations")
print("✓ Crossover and offspring generation")
print("✓ Elite preservation and selection")
print("✓ Multi-generational evolution and improvement")
return True
def architecture_evolution_demo():
"""Demonstrate architectural evolution patterns."""
print("\n" + "="*70)
print(" ARCHITECTURE EVOLUTION DEMONSTRATION")
print("="*70)
config = EvolutionaryTuringConfig(population_size=10, max_generations=10)
system = EvolutionaryTuringMachine(config)
# Generate diverse initial architectures
architectures = []
for _ in range(5):
cfg = system.create_random_config()
architectures.append(cfg)
print("Initial architecture diversity:")
for i, cfg in enumerate(architectures):
params = (cfg.controller_dim * cfg.controller_dim +
cfg.memory_slots * cfg.memory_dim)
print(f" Arch {i+1}: {cfg.controller_dim}D controller, {cfg.memory_slots}×{cfg.memory_dim} memory, {params:,} params")
# Show mutation effects
print("\nMutation examples:")
base_cfg = architectures[0]
for i in range(3):
mutated = system.mutate_architecture(base_cfg)
print(f" Mutation {i+1}: {mutated.controller_dim}D controller, {mutated.memory_slots}×{mutated.memory_dim} memory")
print("\n Evolution discovers optimal architectures through natural selection!")
print(" Larger controllers and memories often emerge for complex tasks")
if __name__ == "__main__":
test_evolutionary_turing()
architecture_evolution_demo()