|
import mysql.connector |
|
import pandas as pd |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
def fetch_objects_from_datase(db): |
|
cursor = db.cursor() |
|
|
|
cursor.execute("""SELECT |
|
UniqueGroundTruth.focus_stack_id, |
|
UniqueGroundTruth.x_min, |
|
UniqueGroundTruth.y_min, |
|
UniqueGroundTruth.x_max, |
|
UniqueGroundTruth.y_max, |
|
UniqueGroundTruth.object_type_id, |
|
ObjectType.name, |
|
Image.add_date |
|
FROM UniqueGroundTruth |
|
JOIN DetectedObject on DetectedObject.id = UniqueGroundTruth.object_id |
|
JOIN Image on Image.id = DetectedObject.image_id |
|
JOIN FocusStack on FocusStack.id = Image.focus_stack_id |
|
JOIN ObjectType on ObjectType.id = UniqueGroundTruth.object_type_id |
|
WHERE metaclass_id = 1 -- only select eggs; |
|
AND unix_timestamp(Image.add_date) > unix_timestamp('2021-03-07 00:00:00') |
|
ORDER BY UniqueGroundTruth.focus_stack_id; |
|
""") |
|
|
|
result = cursor.fetchall() |
|
return result |
|
|
|
def fetch_focus_stacks_from_database(db): |
|
cursor = db.cursor() |
|
|
|
cursor.execute("""SELECT |
|
FocusStack.id as foucs_stack_id, |
|
CONCAT (study_id, "/", uuid, "/", file_name) as file_path, |
|
file_name, |
|
uuid, |
|
study_id, |
|
Image.pos_z, |
|
Image.focus_value, |
|
Image.add_date |
|
FROM FocusStack |
|
JOIN Scan on Scan.id = FocusStack.scan_id |
|
JOIN Slide on Slide.id = Scan.slide_id |
|
JOIN Study on Study .id = Slide.study_id |
|
JOIN Image on Image.focus_stack_id = FocusStack.id |
|
WHERE |
|
FocusStack.id IN( -- get all focus stacks that have objects in them; |
|
SELECT DISTINCT |
|
UniqueGroundTruth.focus_stack_id |
|
FROM UniqueGroundTruth |
|
JOIN DetectedObject on DetectedObject.id = UniqueGroundTruth.object_id |
|
JOIN Image on Image.id = DetectedObject.image_id |
|
JOIN FocusStack on FocusStack.id = Image.focus_stack_id |
|
JOIN ObjectType on ObjectType.id = UniqueGroundTruth.object_type_id |
|
WHERE metaclass_id = 1 -- only select eggs; |
|
AND unix_timestamp(Image.add_date) > unix_timestamp('2021-03-07 00:00:00') |
|
) |
|
ORDER BY FocusStack.id DESC, focus_value, focus_level |
|
""") |
|
result = cursor.fetchall() |
|
return result |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
load_dotenv() |
|
|
|
db = mysql.connector.connect( |
|
host=os.getenv('DB_HOST'), |
|
user=os.getenv('DB_USER'), |
|
password=os.getenv('DB_PASSWORD'), |
|
database=os.getenv('DB_NAME') |
|
) |
|
|
|
print("Querring objects...") |
|
df_objects = pd.DataFrame(fetch_objects_from_datase(db)) |
|
print("Querring stacks...") |
|
df_stacks = pd.DataFrame(fetch_focus_stacks_from_database(db)) |
|
|
|
df_objects.columns = ['stack_id', 'x_min', 'y_min', 'x_max', 'y_max', 'object_type_id', 'name', 'add_date'] |
|
df_stacks.columns = ['stack_id', 'file_path', 'file_name', |
|
'uuid', 'study_id', 'pos_z', 'focus_value', 'add_date'] |
|
|
|
print("Writing objects to file...") |
|
df_objects.to_csv("out/objects.csv") |
|
print("Writing stacks to file...") |
|
df_stacks.to_csv("out/stacks.csv") |
|
|