commit files to HF hub
Browse files- config.json +10 -0
- generation_config.json +7 -3
- tts_pipeline.py +102 -0
config.json
CHANGED
@@ -1,10 +1,20 @@
|
|
1 |
{
|
|
|
2 |
"activation_function": "gelu",
|
3 |
"architectures": [
|
4 |
"GPT2LMHeadModel"
|
5 |
],
|
6 |
"attn_pdrop": 0,
|
7 |
"bos_token_id": 50256,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"dropout": 0,
|
9 |
"embd_pdrop": 0,
|
10 |
"eos_token_id": 50256,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "cmeraki/mimi_124m_8cb",
|
3 |
"activation_function": "gelu",
|
4 |
"architectures": [
|
5 |
"GPT2LMHeadModel"
|
6 |
],
|
7 |
"attn_pdrop": 0,
|
8 |
"bos_token_id": 50256,
|
9 |
+
"custom_pipelines": {
|
10 |
+
"indri-tts": {
|
11 |
+
"impl": "tts_pipeline.IndriTTSPipeline",
|
12 |
+
"pt": [
|
13 |
+
"AutoModelForCausalLM"
|
14 |
+
],
|
15 |
+
"tf": []
|
16 |
+
}
|
17 |
+
},
|
18 |
"dropout": 0,
|
19 |
"embd_pdrop": 0,
|
20 |
"eos_token_id": 50256,
|
generation_config.json
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
"transformers_version": "4.46.0"
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"do_sample": true,
|
3 |
+
"eos_token_id": [
|
4 |
+
66645
|
5 |
+
],
|
6 |
+
"max_length": 1024,
|
7 |
+
"temperature": 0.5,
|
8 |
+
"top_k": 15,
|
9 |
"transformers_version": "4.46.0"
|
10 |
}
|
tts_pipeline.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import MimiModel, GenerationConfig
|
5 |
+
from transformers import Pipeline
|
6 |
+
|
7 |
+
class IndriTTSPipeline(Pipeline):
|
8 |
+
def __init__(self, *args, **kwargs):
|
9 |
+
super().__init__(*args, **kwargs)
|
10 |
+
|
11 |
+
self.audio_tokenizer = MimiModel.from_pretrained('kyutai/mimi').to(device=self.device)
|
12 |
+
|
13 |
+
# TODO: Ideally all of this should come from model config
|
14 |
+
self.convert_token = self.tokenizer.encode('[convert]')
|
15 |
+
self.stop_token = self.tokenizer.encode('[stop]')
|
16 |
+
self.text_modality_token = self.tokenizer.encode('[text]')
|
17 |
+
self.acoustic_modality_token = self.tokenizer.encode('[mimi]')
|
18 |
+
self.num_codebooks = 8
|
19 |
+
self.audio_offset = 50257
|
20 |
+
|
21 |
+
self.model.generation_config = GenerationConfig(
|
22 |
+
eos_token_id=self.stop_token,
|
23 |
+
max_length=kwargs.get('max_length', 1024),
|
24 |
+
temperature=kwargs.get('temperature', 0.5),
|
25 |
+
top_k=kwargs.get('top_k', 15),
|
26 |
+
do_sample=kwargs.get('do_sample', True)
|
27 |
+
)
|
28 |
+
|
29 |
+
def _sanitize_parameters(self, **kwargs):
|
30 |
+
speaker = kwargs.get('speaker', '[spkr_unk]')
|
31 |
+
|
32 |
+
preprocess_kwargs = {
|
33 |
+
'speaker': speaker
|
34 |
+
}
|
35 |
+
|
36 |
+
return preprocess_kwargs, {}, {}
|
37 |
+
|
38 |
+
def _prepare_tts_tokens(self, text_tokens, speaker):
|
39 |
+
input_tokens = np.hstack([
|
40 |
+
self.text_modality_token,
|
41 |
+
text_tokens,
|
42 |
+
self.convert_token,
|
43 |
+
self.acoustic_modality_token,
|
44 |
+
self.tokenizer.encode(speaker)
|
45 |
+
])
|
46 |
+
|
47 |
+
return input_tokens.tolist()
|
48 |
+
|
49 |
+
def _sanitize_text(self, text):
|
50 |
+
text = text.lower()
|
51 |
+
text = re.sub(r'\n+', ' ', text)
|
52 |
+
text = re.sub(r'[ \t]+', ' ', text)
|
53 |
+
|
54 |
+
text = re.sub(r'([,\.?])+', r'\1', text)
|
55 |
+
|
56 |
+
return text.strip()
|
57 |
+
|
58 |
+
def _deserialize_tokens(self, tokens, num_codebooks):
|
59 |
+
cb = [tokens[i::num_codebooks] for i in range(num_codebooks)]
|
60 |
+
min_shape = min([c.shape for c in cb])[0]
|
61 |
+
acoustic_tokens = torch.vstack([c[:min_shape] - 2048*i for i, c in enumerate(cb)])
|
62 |
+
|
63 |
+
return acoustic_tokens
|
64 |
+
|
65 |
+
def preprocess(self, inputs, speaker):
|
66 |
+
# TODO: Check for batching
|
67 |
+
input_text = self._sanitize_text(inputs)
|
68 |
+
input_tokens = self.tokenizer.encode(input_text)
|
69 |
+
task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
|
70 |
+
task_tokens = torch.tensor(task_tokens).unsqueeze(0)
|
71 |
+
|
72 |
+
return {'task_tokens': task_tokens}
|
73 |
+
|
74 |
+
def _forward(self, model_inputs, **forward_args):
|
75 |
+
|
76 |
+
outputs = self.model.generate(model_inputs['task_tokens'])
|
77 |
+
audio_tokens = []
|
78 |
+
|
79 |
+
for idx, inputs in enumerate(model_inputs['task_tokens']):
|
80 |
+
truncated = outputs[idx, inputs.shape[-1]:]
|
81 |
+
end = torch.where(truncated == self.stop_token[0])[-1]
|
82 |
+
|
83 |
+
if end.shape[-1] > 0:
|
84 |
+
end = end[0]
|
85 |
+
else:
|
86 |
+
end = truncated.shape[-1]
|
87 |
+
|
88 |
+
truncated = truncated[:end]
|
89 |
+
truncated -= self.audio_offset
|
90 |
+
truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
|
91 |
+
audio_tokens.append(truncated)
|
92 |
+
|
93 |
+
audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
|
94 |
+
audio = self.audio_tokenizer.decode(audio_tokens).audio_values
|
95 |
+
|
96 |
+
return {
|
97 |
+
'audio_tokens': audio_tokens, # (B, num_codebooks, num_samples)
|
98 |
+
'audio': audio # (B, 1, num_audio_samples)
|
99 |
+
}
|
100 |
+
|
101 |
+
def postprocess(self, model_outputs):
|
102 |
+
return model_outputs
|