Upload modeling_molmo.py with huggingface_hub
Browse files- modeling_molmo.py +2368 -0
modeling_molmo.py
ADDED
@@ -0,0 +1,2368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
from copy import deepcopy
|
4 |
+
from dataclasses import fields, dataclass, replace
|
5 |
+
from enum import Enum
|
6 |
+
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from einops import einsum, einops
|
10 |
+
from transformers import PreTrainedModel, GenerationConfig
|
11 |
+
from transformers.cache_utils import Cache
|
12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
|
13 |
+
from transformers.models.auto import AutoModelForCausalLM
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
from .config_molmo import MolmoConfig
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
|
20 |
+
log = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
24 |
+
"""
|
25 |
+
Cache for attention biases and other things that would normally be stored as buffers.
|
26 |
+
We avoid using buffers because we've run into various issues doing so with FSDP.
|
27 |
+
In general it appears the way FSDP handles buffers is not well-defined.
|
28 |
+
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
29 |
+
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
30 |
+
NaNs when they're synchronized due to casting or some other issue.
|
31 |
+
"""
|
32 |
+
|
33 |
+
|
34 |
+
class StrEnum(str, Enum):
|
35 |
+
def __str__(self) -> str:
|
36 |
+
return self.value
|
37 |
+
|
38 |
+
def __repr__(self) -> str:
|
39 |
+
return f"'{str(self)}'"
|
40 |
+
|
41 |
+
|
42 |
+
class ImageProjectType(StrEnum):
|
43 |
+
mlp = "mlp"
|
44 |
+
mlpx2 = "2mlp"
|
45 |
+
linear = "linear"
|
46 |
+
|
47 |
+
|
48 |
+
class ImagePooling2DType(StrEnum):
|
49 |
+
attention = "attention"
|
50 |
+
attention_meanq = "attention-meanq"
|
51 |
+
attention_2wide = "attention_2wide"
|
52 |
+
attention_v2 = "attention-v2"
|
53 |
+
none = "none"
|
54 |
+
stack = "stack"
|
55 |
+
|
56 |
+
|
57 |
+
class ActivationType(StrEnum):
|
58 |
+
quick_gelu = "quick_gelu"
|
59 |
+
gelu = "gelu"
|
60 |
+
gelu_tanh = "gelu_tanh"
|
61 |
+
relu = "relu"
|
62 |
+
silu = "silu"
|
63 |
+
llama_geglu = "llama_geglu"
|
64 |
+
llama_geglu_tanh = "llama_geglu_tanh"
|
65 |
+
llama_swiglu = "llama_swiglu"
|
66 |
+
swiglu = "swiglu"
|
67 |
+
|
68 |
+
|
69 |
+
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
70 |
+
"""
|
71 |
+
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
72 |
+
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
73 |
+
"""
|
74 |
+
if check_neg_inf:
|
75 |
+
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
76 |
+
if check_pos_inf:
|
77 |
+
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
78 |
+
|
79 |
+
|
80 |
+
class MolmoConfigurationError(Exception):
|
81 |
+
pass
|
82 |
+
|
83 |
+
|
84 |
+
def _non_meta_init_device(config) -> torch.device:
|
85 |
+
if config.init_device is not None and config.init_device != "meta":
|
86 |
+
return torch.device(config.init_device)
|
87 |
+
else:
|
88 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
89 |
+
|
90 |
+
|
91 |
+
class RotaryEmbedding(nn.Module):
|
92 |
+
"""
|
93 |
+
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, config: MolmoConfig, cache: BufferCache):
|
97 |
+
super().__init__()
|
98 |
+
self.config = config
|
99 |
+
self.__cache = cache
|
100 |
+
# Warm up cache.
|
101 |
+
self.get_rotary_embedding(
|
102 |
+
config.max_position_embeddings or config.max_sequence_length,
|
103 |
+
_non_meta_init_device(config)
|
104 |
+
)
|
105 |
+
|
106 |
+
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
107 |
+
if (
|
108 |
+
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
109 |
+
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
110 |
+
and pos_sin.shape[-2] >= seq_len
|
111 |
+
and pos_cos.shape[-2] >= seq_len
|
112 |
+
):
|
113 |
+
if pos_sin.device != device:
|
114 |
+
pos_sin = pos_sin.to(device)
|
115 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
116 |
+
if pos_cos.device != device:
|
117 |
+
pos_cos = pos_cos.to(device)
|
118 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
119 |
+
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
120 |
+
|
121 |
+
with torch.autocast(device.type, enabled=False):
|
122 |
+
dim = self.config.d_model // self.config.n_heads
|
123 |
+
inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
124 |
+
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
125 |
+
freqs = torch.einsum("i , j -> i j", seq, inv_freq)
|
126 |
+
if self.config.rope_impl == "interleave":
|
127 |
+
positions = freqs.repeat_interleave(2, dim=-1)
|
128 |
+
else:
|
129 |
+
positions = torch.cat((freqs, freqs), dim=-1)
|
130 |
+
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
131 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
132 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
133 |
+
return pos_sin, pos_cos
|
134 |
+
|
135 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
136 |
+
B, nh, T, hs = x.size()
|
137 |
+
x = x.view(B, nh, T, 2, hs // 2)
|
138 |
+
x1, x2 = x.unbind(dim=-2)
|
139 |
+
return torch.cat((-x2, x1), dim=-1)
|
140 |
+
|
141 |
+
def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
|
142 |
+
B, nh, T, hs = x.size()
|
143 |
+
x = x.view(B, nh, T, hs // 2, 2)
|
144 |
+
x1, x2 = x.unbind(dim=-1)
|
145 |
+
x = torch.stack((-x2, x1), dim=-1)
|
146 |
+
return x.view(B, nh, T, hs)
|
147 |
+
|
148 |
+
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
149 |
+
if self.config.rope_impl == "interleave":
|
150 |
+
return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype)
|
151 |
+
else:
|
152 |
+
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
q: torch.Tensor,
|
157 |
+
k: torch.Tensor,
|
158 |
+
position_ids: Optional[torch.Tensor] = None
|
159 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
160 |
+
if self.config.rope_full_precision:
|
161 |
+
q_, k_ = q.float(), k.float()
|
162 |
+
else:
|
163 |
+
q_, k_ = q, k
|
164 |
+
|
165 |
+
with torch.autocast(q.device.type, enabled=False):
|
166 |
+
batch_size = q_.shape[0]
|
167 |
+
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
168 |
+
if position_ids is not None:
|
169 |
+
freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length)
|
170 |
+
else:
|
171 |
+
freqs_cis_len = key_len
|
172 |
+
pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device)
|
173 |
+
pos_sin = pos_sin.type_as(q_)
|
174 |
+
pos_cos = pos_cos.type_as(q_)
|
175 |
+
if position_ids is not None:
|
176 |
+
assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
|
177 |
+
pos_sin = pos_sin[0, 0][position_ids].view(
|
178 |
+
(batch_size, 1, key_len, pos_sin.shape[-1])
|
179 |
+
)
|
180 |
+
pos_cos = pos_cos[0, 0][position_ids].view(
|
181 |
+
(batch_size, 1, key_len, pos_cos.shape[-1])
|
182 |
+
)
|
183 |
+
q_ = self.apply_rotary_pos_emb(
|
184 |
+
pos_sin[:, :, key_len - query_len : key_len, :],
|
185 |
+
pos_cos[:, :, key_len - query_len : key_len, :],
|
186 |
+
q_,
|
187 |
+
)
|
188 |
+
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
189 |
+
return q_.type_as(q), k_.type_as(k)
|
190 |
+
|
191 |
+
|
192 |
+
class MolmoBlock(nn.Module):
|
193 |
+
"""
|
194 |
+
A base class for transformer block implementations.
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
198 |
+
super().__init__()
|
199 |
+
self.layer_id = layer_id
|
200 |
+
self.config = config
|
201 |
+
self.hidden_size = (
|
202 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
203 |
+
)
|
204 |
+
self.__cache = cache
|
205 |
+
self._activation_checkpoint_fn = None
|
206 |
+
|
207 |
+
# Dropout.
|
208 |
+
self.dropout = Dropout(config.residual_dropout)
|
209 |
+
|
210 |
+
# Layer norms.
|
211 |
+
self.k_norm: Optional[LayerNormBase] = None
|
212 |
+
self.q_norm: Optional[LayerNormBase] = None
|
213 |
+
if config.attention_layer_norm:
|
214 |
+
assert config.effective_n_kv_heads is not None
|
215 |
+
self.k_norm = LayerNormBase.build(
|
216 |
+
config,
|
217 |
+
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
218 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
219 |
+
)
|
220 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
221 |
+
|
222 |
+
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
|
223 |
+
if config.clip_qkv is not None:
|
224 |
+
assert config.clip_qkv > 0
|
225 |
+
|
226 |
+
# Activation function.
|
227 |
+
self.act = Activation.build(config)
|
228 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
229 |
+
|
230 |
+
# Attention output projection.
|
231 |
+
input_dim = config.d_model
|
232 |
+
self.attn_out = nn.Linear(
|
233 |
+
input_dim, config.d_model,
|
234 |
+
bias=config.include_bias,
|
235 |
+
device=config.init_device
|
236 |
+
)
|
237 |
+
|
238 |
+
# Feed-forward output projection.
|
239 |
+
self.ff_out = nn.Linear(
|
240 |
+
int(self.act.output_multiplier * self.hidden_size),
|
241 |
+
config.d_model,
|
242 |
+
bias=config.include_bias,
|
243 |
+
device=config.init_device,
|
244 |
+
)
|
245 |
+
self.ff_out._is_residual = True # type: ignore
|
246 |
+
|
247 |
+
# Rotary embeddings.
|
248 |
+
if self.config.rope:
|
249 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
250 |
+
|
251 |
+
self.flash_attn_func = None
|
252 |
+
if config.attention_type == "flash":
|
253 |
+
try:
|
254 |
+
from flash_attn import flash_attn_func # type: ignore
|
255 |
+
|
256 |
+
self.flash_attn_func = flash_attn_func
|
257 |
+
except ModuleNotFoundError:
|
258 |
+
pass
|
259 |
+
|
260 |
+
def reset_parameters(self):
|
261 |
+
if self.k_norm is not None:
|
262 |
+
self.k_norm.reset_parameters()
|
263 |
+
if self.q_norm is not None:
|
264 |
+
self.q_norm.reset_parameters()
|
265 |
+
init_weights(
|
266 |
+
self.config,
|
267 |
+
self.attn_out,
|
268 |
+
d=self.config.d_model,
|
269 |
+
layer_id=self.layer_id,
|
270 |
+
type_of_module=ModuleType.out_module,
|
271 |
+
)
|
272 |
+
init_weights(
|
273 |
+
self.config,
|
274 |
+
self.ff_out,
|
275 |
+
d=self.ff_out.in_features,
|
276 |
+
layer_id=self.layer_id,
|
277 |
+
type_of_module=ModuleType.out_module,
|
278 |
+
)
|
279 |
+
|
280 |
+
@classmethod
|
281 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
282 |
+
target_dtype = input_dtype
|
283 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
284 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
285 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
286 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
287 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
288 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
289 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
290 |
+
if bias.dtype != target_dtype:
|
291 |
+
bias = bias.to(target_dtype)
|
292 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
293 |
+
return bias
|
294 |
+
|
295 |
+
def _scaled_dot_product_attention(
|
296 |
+
self,
|
297 |
+
q: torch.Tensor,
|
298 |
+
k: torch.Tensor,
|
299 |
+
v: torch.Tensor,
|
300 |
+
attn_mask: Optional[torch.Tensor] = None,
|
301 |
+
dropout_p: float = 0.0,
|
302 |
+
response_dropout_p: float = 0.0,
|
303 |
+
is_causal: bool = False,
|
304 |
+
) -> torch.Tensor:
|
305 |
+
"""
|
306 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
307 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
308 |
+
"""
|
309 |
+
if attn_mask is not None:
|
310 |
+
attn_mask = attn_mask.to(q.device)
|
311 |
+
|
312 |
+
if self.flash_attn_func is not None and attn_mask is None:
|
313 |
+
r = self.flash_attn_func(
|
314 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
|
315 |
+
)
|
316 |
+
return r.transpose(1, 2)
|
317 |
+
else:
|
318 |
+
# torch's sdpa doesn't support GQA, so we're doing this
|
319 |
+
assert k.size(1) == v.size(1)
|
320 |
+
num_kv_heads = k.size(1)
|
321 |
+
num_q_heads = q.size(1)
|
322 |
+
if num_q_heads != num_kv_heads:
|
323 |
+
assert num_q_heads % num_kv_heads == 0
|
324 |
+
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
325 |
+
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
326 |
+
|
327 |
+
return F.scaled_dot_product_attention(
|
328 |
+
q,
|
329 |
+
k,
|
330 |
+
v,
|
331 |
+
attn_mask=attn_mask,
|
332 |
+
dropout_p=dropout_p,
|
333 |
+
is_causal=is_causal,
|
334 |
+
)
|
335 |
+
|
336 |
+
def attention(
|
337 |
+
self,
|
338 |
+
q: torch.Tensor,
|
339 |
+
k: torch.Tensor,
|
340 |
+
v: torch.Tensor,
|
341 |
+
attention_bias: Optional[torch.Tensor] = None,
|
342 |
+
position_ids: Optional[torch.Tensor] = None,
|
343 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
344 |
+
use_cache: bool = False,
|
345 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
346 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
347 |
+
dtype = k.dtype
|
348 |
+
|
349 |
+
# Optionally apply layer norm to keys and queries.
|
350 |
+
if self.q_norm is not None and self.k_norm is not None:
|
351 |
+
q = self.q_norm(q).to(dtype=dtype)
|
352 |
+
k = self.k_norm(k).to(dtype=dtype)
|
353 |
+
|
354 |
+
# Move head forward to be next to the batch dim.
|
355 |
+
# shape: (B, nh, T, hs)
|
356 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
357 |
+
# shape: (B, n_kv_h, T, hs)
|
358 |
+
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
359 |
+
# shape: (B, n_kv_h, T, hs)
|
360 |
+
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
361 |
+
|
362 |
+
if self.config.use_position_ids and self.config.rope:
|
363 |
+
# Apply rotary embeddings
|
364 |
+
q, k = self.rotary_emb(q, k, position_ids=position_ids)
|
365 |
+
|
366 |
+
if layer_past is not None:
|
367 |
+
past_key, past_value = layer_past
|
368 |
+
k = torch.cat((past_key.to(k.device), k), dim=-2)
|
369 |
+
v = torch.cat((past_value.to(v.device), v), dim=-2)
|
370 |
+
|
371 |
+
present = (k, v) if use_cache else None
|
372 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
373 |
+
|
374 |
+
if not self.config.use_position_ids and self.config.rope:
|
375 |
+
# Apply rotary embeddings
|
376 |
+
q, k = self.rotary_emb(q, k)
|
377 |
+
|
378 |
+
if attention_bias is not None:
|
379 |
+
# Resize and cast attention bias.
|
380 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
381 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
382 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
383 |
+
# cause the SDP attn function to produce NaNs.
|
384 |
+
attention_bias = self._cast_attn_bias(
|
385 |
+
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
386 |
+
)
|
387 |
+
|
388 |
+
# Get the attention scores.
|
389 |
+
# shape: (B, nh, T, hs)
|
390 |
+
att = self._scaled_dot_product_attention(
|
391 |
+
q,
|
392 |
+
k,
|
393 |
+
v,
|
394 |
+
attn_mask=attention_bias,
|
395 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
396 |
+
response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout,
|
397 |
+
is_causal=attention_bias is None,
|
398 |
+
)
|
399 |
+
|
400 |
+
# Re-assemble all head outputs side-by-side.
|
401 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
402 |
+
|
403 |
+
# Apply output projection.
|
404 |
+
return self.attn_out(att), present
|
405 |
+
|
406 |
+
def forward(
|
407 |
+
self,
|
408 |
+
x: torch.Tensor,
|
409 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
410 |
+
position_ids: Optional[torch.Tensor] = None,
|
411 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
412 |
+
use_cache: bool = False,
|
413 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
414 |
+
raise NotImplementedError
|
415 |
+
|
416 |
+
@classmethod
|
417 |
+
def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
418 |
+
return MolmoSequentialBlock(layer_id, config, cache)
|
419 |
+
|
420 |
+
|
421 |
+
class MolmoSequentialBlock(MolmoBlock):
|
422 |
+
"""
|
423 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
424 |
+
(plus another skip connection).
|
425 |
+
"""
|
426 |
+
|
427 |
+
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
|
428 |
+
super().__init__(layer_id, config, cache)
|
429 |
+
# Layer norms.
|
430 |
+
self.attn_norm = LayerNorm.build(config)
|
431 |
+
self.ff_norm = LayerNorm.build(config)
|
432 |
+
# Attention input projection. Projects x -> (q, k, v)
|
433 |
+
|
434 |
+
head_dim = config.d_model // config.n_heads
|
435 |
+
self.fused_dims = (
|
436 |
+
config.d_model,
|
437 |
+
config.effective_n_kv_heads * head_dim,
|
438 |
+
config.effective_n_kv_heads * head_dim,
|
439 |
+
)
|
440 |
+
self.att_proj = nn.Linear(
|
441 |
+
config.d_model, sum(self.fused_dims),
|
442 |
+
bias=config.include_bias or config.qkv_bias,
|
443 |
+
device=config.init_device
|
444 |
+
)
|
445 |
+
# Feed-forward input projection.
|
446 |
+
self.ff_proj = nn.Linear(
|
447 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
448 |
+
)
|
449 |
+
|
450 |
+
def reset_parameters(self):
|
451 |
+
super().reset_parameters()
|
452 |
+
self.attn_norm.reset_parameters()
|
453 |
+
self.ff_norm.reset_parameters()
|
454 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
455 |
+
init_weights(
|
456 |
+
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
457 |
+
)
|
458 |
+
init_weights(
|
459 |
+
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
460 |
+
)
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self,
|
464 |
+
x: torch.Tensor,
|
465 |
+
attention_bias: Optional[torch.Tensor] = None,
|
466 |
+
position_ids: Optional[torch.Tensor] = None,
|
467 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
468 |
+
use_cache: bool = False,
|
469 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
470 |
+
# Get query, key, value projections.
|
471 |
+
# shape:
|
472 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
473 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
474 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
475 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
476 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
477 |
+
|
478 |
+
if not self.config.norm_after:
|
479 |
+
if self._activation_checkpoint_fn is not None:
|
480 |
+
atten_in = self._activation_checkpoint_fn(self.attn_norm, x)
|
481 |
+
else:
|
482 |
+
atten_in = self.attn_norm(x)
|
483 |
+
else:
|
484 |
+
atten_in = x
|
485 |
+
qkv = self.att_proj(atten_in)
|
486 |
+
|
487 |
+
if self.config.clip_qkv is not None:
|
488 |
+
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
489 |
+
|
490 |
+
q, k, v = qkv.split(self.fused_dims, dim=-1)
|
491 |
+
|
492 |
+
# Get attention scores.
|
493 |
+
if self._activation_checkpoint_fn is not None:
|
494 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
495 |
+
self.attention, q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
499 |
+
|
500 |
+
if self.config.norm_after:
|
501 |
+
if self._activation_checkpoint_fn is not None:
|
502 |
+
att = self._activation_checkpoint_fn(self.attn_norm, att)
|
503 |
+
else:
|
504 |
+
att = self.attn_norm(att)
|
505 |
+
|
506 |
+
# Add attention scores.
|
507 |
+
# shape: (B, T, C)
|
508 |
+
x = x + self.dropout(att)
|
509 |
+
|
510 |
+
# Add feed-forward projection.
|
511 |
+
# shape: (batch_size, seq_len, d_model)
|
512 |
+
og_x = x
|
513 |
+
|
514 |
+
if not self.config.norm_after:
|
515 |
+
if self._activation_checkpoint_fn is not None:
|
516 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
517 |
+
else:
|
518 |
+
x = self.ff_norm(x)
|
519 |
+
|
520 |
+
x = self.ff_proj(x)
|
521 |
+
if self._activation_checkpoint_fn is not None:
|
522 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
523 |
+
else:
|
524 |
+
x = self.act(x)
|
525 |
+
x = self.ff_out(x)
|
526 |
+
|
527 |
+
if self.config.norm_after:
|
528 |
+
if self._activation_checkpoint_fn is not None:
|
529 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
530 |
+
else:
|
531 |
+
x = self.ff_norm(x)
|
532 |
+
|
533 |
+
x = self.dropout(x)
|
534 |
+
x = og_x + x
|
535 |
+
|
536 |
+
return x, cache
|
537 |
+
|
538 |
+
|
539 |
+
class Embedding(nn.Module):
|
540 |
+
def __init__(
|
541 |
+
self,
|
542 |
+
num_embeddings: int,
|
543 |
+
num_new_embeddings: int,
|
544 |
+
features: int,
|
545 |
+
device: Union[str, torch.device],
|
546 |
+
initializer_range: float = 0.02,
|
547 |
+
new_embed_initializer_range: float = 0.02,
|
548 |
+
):
|
549 |
+
super().__init__()
|
550 |
+
self.initializer_range = initializer_range
|
551 |
+
self.new_embed_initializer_range = new_embed_initializer_range
|
552 |
+
self.embedding = nn.Parameter(
|
553 |
+
torch.zeros(num_embeddings, features, device=device),
|
554 |
+
)
|
555 |
+
self.new_embedding = nn.Parameter(
|
556 |
+
torch.zeros(num_new_embeddings, features, device=device),
|
557 |
+
)
|
558 |
+
|
559 |
+
def reset_parameters(self):
|
560 |
+
nn.init.normal_(self.embedding, std=self.initializer_range)
|
561 |
+
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)
|
562 |
+
|
563 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
564 |
+
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
|
565 |
+
|
566 |
+
|
567 |
+
class Dropout(nn.Dropout):
|
568 |
+
def __init__(
|
569 |
+
self,
|
570 |
+
p: float = 0.5,
|
571 |
+
inplace: bool = False,
|
572 |
+
mask_p: float = 0,
|
573 |
+
broadcast_dims: Sequence[int] = (),
|
574 |
+
):
|
575 |
+
super().__init__(p, inplace)
|
576 |
+
self.mask_p = mask_p
|
577 |
+
self.broadcast_dims = broadcast_dims
|
578 |
+
|
579 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
580 |
+
"""
|
581 |
+
:param input: A tensor of shape `(batch_size, seq_len, embed_dim)`
|
582 |
+
"""
|
583 |
+
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
|
584 |
+
return input
|
585 |
+
else:
|
586 |
+
if self.p > 0. and len(self.broadcast_dims) > 0 and self.training:
|
587 |
+
keep_prob = 1.0 - self.p
|
588 |
+
dropout_shape = list(input.shape)
|
589 |
+
for dim in self.broadcast_dims:
|
590 |
+
dropout_shape[dim] = 1
|
591 |
+
keep = input.new_empty(dropout_shape).bernoulli_(keep_prob)
|
592 |
+
multiplier = keep.broadcast_to(input.shape)
|
593 |
+
multiplier.div_(keep_prob)
|
594 |
+
input = input * multiplier
|
595 |
+
else:
|
596 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
597 |
+
|
598 |
+
|
599 |
+
@dataclass
|
600 |
+
class VisionBackboneConfig:
|
601 |
+
image_default_input_size: Tuple[int, int] = (336, 336)
|
602 |
+
image_patch_size: int = 14
|
603 |
+
image_pos_patch_size: int = 14
|
604 |
+
image_emb_dim: int = 1024
|
605 |
+
image_num_heads: int = 16
|
606 |
+
image_num_key_value_heads: int = 16
|
607 |
+
image_num_layers: int = 24
|
608 |
+
image_head_dim: int = 64
|
609 |
+
image_mlp_dim: int = 4096
|
610 |
+
image_mlp_activations: str = "gelu"
|
611 |
+
image_dropout_rate: float = 0.0
|
612 |
+
image_num_pos: int = 577
|
613 |
+
image_norm_eps: float = 1e-5
|
614 |
+
attention_dropout: float = 0.0
|
615 |
+
residual_dropout: float = 0.0
|
616 |
+
initializer_range: float = 0.02
|
617 |
+
fsdp_wrap: bool = False
|
618 |
+
resize_mode: str = "default"
|
619 |
+
|
620 |
+
def __post_init__(self):
|
621 |
+
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
|
622 |
+
|
623 |
+
@property
|
624 |
+
def image_num_patch(self):
|
625 |
+
h, w = self.image_default_input_size
|
626 |
+
return h // self.image_patch_size, w // self.image_patch_size
|
627 |
+
|
628 |
+
|
629 |
+
@dataclass
|
630 |
+
class FullMolmoConfig:
|
631 |
+
d_model: int = 768
|
632 |
+
n_heads: int = 12
|
633 |
+
n_kv_heads: Optional[int] = None
|
634 |
+
qkv_bias: bool = False
|
635 |
+
clip_qkv: Optional[float] = None
|
636 |
+
n_layers: int = 12
|
637 |
+
mlp_ratio: int = 4
|
638 |
+
mlp_hidden_size: Optional[int] = None
|
639 |
+
activation_type: str = "swiglu"
|
640 |
+
block_group_size: int = 1
|
641 |
+
rope: bool = True
|
642 |
+
rope_full_precision: bool = True
|
643 |
+
rope_theta: float = 10000.
|
644 |
+
rope_impl: str = "interleave"
|
645 |
+
vision_backbone: Optional[VisionBackboneConfig] = None
|
646 |
+
attention_type: str = "sdpa"
|
647 |
+
float32_attention: bool = True
|
648 |
+
attention_dropout: float = 0.1
|
649 |
+
response_attention_dropout: float = 0.0
|
650 |
+
multi_query_attention: Optional[bool] = None
|
651 |
+
attention_layer_norm: bool = False
|
652 |
+
residual_dropout: float = 0.1
|
653 |
+
embedding_dropout: float = 0.1
|
654 |
+
layer_norm_type: str = "default"
|
655 |
+
layer_norm_with_affine: bool = True
|
656 |
+
layer_norm_eps: Optional[float] = None
|
657 |
+
attention_layer_norm_with_affine: bool = True
|
658 |
+
max_sequence_length: int = 1024
|
659 |
+
max_position_embeddings: Optional[int] = None
|
660 |
+
include_bias: bool = True
|
661 |
+
bias_for_layer_norm: Optional[bool] = None
|
662 |
+
scale_logits: bool = False
|
663 |
+
vocab_size: int = 50257
|
664 |
+
embedding_size: Optional[int] = 50304
|
665 |
+
additional_vocab_size: Optional[int] = None
|
666 |
+
new_embedding_init_range: float = 0.02
|
667 |
+
weight_tying: bool = True
|
668 |
+
pad_token_id: int = -1
|
669 |
+
init_device: Optional[str] = None
|
670 |
+
init_std: float = 0.02
|
671 |
+
init_cutoff_factor: Optional[float] = None
|
672 |
+
norm_after: bool = False
|
673 |
+
precision: Optional[str] = None
|
674 |
+
image_padding_embed: Optional[str] = None
|
675 |
+
vit_layers: Tuple = (-1,)
|
676 |
+
image_pooling_h: int = 2
|
677 |
+
image_pooling_w: int = 2
|
678 |
+
image_pooling_2d: str = "attention"
|
679 |
+
image_projector: str = "mlp"
|
680 |
+
image_feature_dropout: float = 0.0
|
681 |
+
initializer_range: float = 0.02
|
682 |
+
normalize_input_embeds: bool = False
|
683 |
+
use_position_ids: bool = True
|
684 |
+
|
685 |
+
@property
|
686 |
+
def effective_n_kv_heads(self) -> int:
|
687 |
+
if self.n_kv_heads is None:
|
688 |
+
if self.multi_query_attention is True:
|
689 |
+
return 1
|
690 |
+
else:
|
691 |
+
return self.n_heads
|
692 |
+
else:
|
693 |
+
if self.multi_query_attention is None:
|
694 |
+
return self.n_kv_heads
|
695 |
+
if self.multi_query_attention:
|
696 |
+
n_kv_heads_should_be = 1
|
697 |
+
else:
|
698 |
+
n_kv_heads_should_be = self.n_heads
|
699 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
700 |
+
return n_kv_heads_should_be
|
701 |
+
else:
|
702 |
+
raise MolmoConfigurationError(
|
703 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
704 |
+
)
|
705 |
+
|
706 |
+
@property
|
707 |
+
def image_num_patch(self):
|
708 |
+
assert self.vision_backbone is not None
|
709 |
+
return self.vision_backbone.image_num_patch
|
710 |
+
|
711 |
+
@property
|
712 |
+
def image_patch_size(self):
|
713 |
+
assert self.vision_backbone is not None
|
714 |
+
return self.visoin_backbone.image_patch_size
|
715 |
+
|
716 |
+
def llm_patches_per_crop(self):
|
717 |
+
h, w = self.image_num_patch
|
718 |
+
# Round up in case we need to pad the image features for pooling
|
719 |
+
h = (h + self.image_pooling_h - 1) // self.image_pooling_h
|
720 |
+
w = (w + self.image_pooling_w - 1) // self.image_pooling_w
|
721 |
+
return h, w
|
722 |
+
|
723 |
+
|
724 |
+
def _expand_token(token, batch_size: int):
|
725 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
726 |
+
|
727 |
+
|
728 |
+
class LayerNormFp32(nn.LayerNorm):
|
729 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).
|
730 |
+
Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py.
|
731 |
+
"""
|
732 |
+
|
733 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
734 |
+
orig_type = x.dtype
|
735 |
+
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
|
736 |
+
return x.to(orig_type)
|
737 |
+
|
738 |
+
|
739 |
+
class ViTMLP(nn.Module):
|
740 |
+
def __init__(self, config: FullMolmoConfig):
|
741 |
+
super().__init__()
|
742 |
+
self.config = config
|
743 |
+
v_cfg = config.vision_backbone
|
744 |
+
|
745 |
+
self.w1 = nn.Linear(
|
746 |
+
v_cfg.image_emb_dim,
|
747 |
+
v_cfg.image_mlp_dim,
|
748 |
+
bias=True,
|
749 |
+
device=config.init_device,
|
750 |
+
)
|
751 |
+
# Activation function.
|
752 |
+
cfg = deepcopy(config)
|
753 |
+
cfg.activation_type = v_cfg.image_mlp_activations
|
754 |
+
self.act = Activation.build(cfg)
|
755 |
+
self.w2 = nn.Linear(
|
756 |
+
v_cfg.image_mlp_dim,
|
757 |
+
v_cfg.image_emb_dim,
|
758 |
+
bias=True,
|
759 |
+
device=config.init_device,
|
760 |
+
)
|
761 |
+
|
762 |
+
def reset_parameters(self):
|
763 |
+
v_cfg = self.config.vision_backbone
|
764 |
+
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
|
765 |
+
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
|
766 |
+
nn.init.zeros_(self.w1.bias)
|
767 |
+
nn.init.zeros_(self.w2.bias)
|
768 |
+
|
769 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
770 |
+
x = self.w1(x)
|
771 |
+
x = self.act(x)
|
772 |
+
x = self.w2(x)
|
773 |
+
return x
|
774 |
+
|
775 |
+
|
776 |
+
|
777 |
+
class ResidualAttentionBlock(nn.Module):
|
778 |
+
|
779 |
+
def __init__(self, config: FullMolmoConfig):
|
780 |
+
super().__init__()
|
781 |
+
self.config = config
|
782 |
+
|
783 |
+
v_cfg = config.vision_backbone
|
784 |
+
self.attention = MultiHeadDotProductAttention(config)
|
785 |
+
self.feed_forward = ViTMLP(config)
|
786 |
+
self.attention_norm = nn.LayerNorm(
|
787 |
+
v_cfg.image_emb_dim,
|
788 |
+
eps=v_cfg.image_norm_eps,
|
789 |
+
device=config.init_device,
|
790 |
+
)
|
791 |
+
self.ffn_norm = nn.LayerNorm(
|
792 |
+
v_cfg.image_emb_dim,
|
793 |
+
eps=v_cfg.image_norm_eps,
|
794 |
+
device=config.init_device,
|
795 |
+
)
|
796 |
+
|
797 |
+
def reset_parameters(self):
|
798 |
+
self.attention.reset_parameters()
|
799 |
+
self.feed_forward.reset_parameters()
|
800 |
+
self.attention_norm.reset_parameters()
|
801 |
+
self.ffn_norm.reset_parameters()
|
802 |
+
|
803 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
804 |
+
x = x + self.attention(self.attention_norm(x))
|
805 |
+
x = x + self.feed_forward(self.ffn_norm(x))
|
806 |
+
return x
|
807 |
+
|
808 |
+
|
809 |
+
class BlockCollection(nn.Module):
|
810 |
+
|
811 |
+
def __init__(self, config: FullMolmoConfig):
|
812 |
+
super().__init__()
|
813 |
+
self.config = config
|
814 |
+
self.grad_checkpointing: bool = False
|
815 |
+
|
816 |
+
v_cfg = config.vision_backbone
|
817 |
+
self.resblocks = nn.ModuleList([
|
818 |
+
ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)
|
819 |
+
])
|
820 |
+
|
821 |
+
def reset_parameters(self):
|
822 |
+
for r in self.resblocks:
|
823 |
+
r.reset_parameters()
|
824 |
+
|
825 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
826 |
+
hidden_states = []
|
827 |
+
for r in self.resblocks:
|
828 |
+
x = r(x)
|
829 |
+
hidden_states.append(x)
|
830 |
+
return hidden_states
|
831 |
+
|
832 |
+
|
833 |
+
class VisionTransformer(nn.Module):
|
834 |
+
|
835 |
+
def __init__(self, config: FullMolmoConfig):
|
836 |
+
super().__init__()
|
837 |
+
self.config = config
|
838 |
+
|
839 |
+
v_cfg = config.vision_backbone
|
840 |
+
# class embeddings and positional embeddings
|
841 |
+
self.scale = v_cfg.image_emb_dim ** -0.5
|
842 |
+
self.class_embedding = nn.Parameter(
|
843 |
+
torch.zeros(v_cfg.image_emb_dim, device=config.init_device),
|
844 |
+
)
|
845 |
+
self.num_prefix_tokens: int = 1
|
846 |
+
self.positional_embedding = nn.Parameter(
|
847 |
+
torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device),
|
848 |
+
)
|
849 |
+
|
850 |
+
image_patch_size = v_cfg.image_patch_size
|
851 |
+
self.patch_embedding = nn.Linear(
|
852 |
+
image_patch_size * image_patch_size * 3,
|
853 |
+
v_cfg.image_emb_dim,
|
854 |
+
bias=False,
|
855 |
+
device=config.init_device,
|
856 |
+
)
|
857 |
+
|
858 |
+
self.pre_ln = LayerNormFp32(
|
859 |
+
v_cfg.image_emb_dim,
|
860 |
+
eps=v_cfg.image_norm_eps,
|
861 |
+
device=config.init_device,
|
862 |
+
)
|
863 |
+
|
864 |
+
self.transformer = BlockCollection(config)
|
865 |
+
|
866 |
+
@torch.jit.ignore
|
867 |
+
def set_grad_checkpointing(self, enable=True):
|
868 |
+
self.transformer.grad_checkpointing = enable
|
869 |
+
|
870 |
+
def reset_parameters(self):
|
871 |
+
nn.init.normal_(self.class_embedding, std=self.scale)
|
872 |
+
nn.init.normal_(self.positional_embedding, std=self.scale)
|
873 |
+
nn.init.normal_(self.patch_embedding.weight, std=0.02)
|
874 |
+
self.pre_ln.reset_parameters()
|
875 |
+
self.transformer.reset_parameters()
|
876 |
+
|
877 |
+
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
|
878 |
+
cls_emb = self.positional_embedding[0:1]
|
879 |
+
pos_emb = self.positional_embedding[1:]
|
880 |
+
|
881 |
+
pos_emb = pos_emb.reshape(
|
882 |
+
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
|
883 |
+
)
|
884 |
+
|
885 |
+
(patch_num_0, patch_num_1) = patch_num
|
886 |
+
|
887 |
+
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
|
888 |
+
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
889 |
+
# antialias: default True in jax.image.resize
|
890 |
+
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
|
891 |
+
pos_emb = F.interpolate(
|
892 |
+
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
|
893 |
+
)
|
894 |
+
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
|
895 |
+
|
896 |
+
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
|
897 |
+
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
|
898 |
+
return x
|
899 |
+
|
900 |
+
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
|
901 |
+
"""
|
902 |
+
: param x: (batch_size, num_patch, n_pixels)
|
903 |
+
"""
|
904 |
+
if patch_num is None:
|
905 |
+
patch_num = self.config.vision_backbone.image_num_patch
|
906 |
+
B, N, D = x.shape
|
907 |
+
|
908 |
+
x = self.patch_embedding(x)
|
909 |
+
|
910 |
+
# class embeddings and positional embeddings
|
911 |
+
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
|
912 |
+
x = self.add_pos_emb(x, patch_num)
|
913 |
+
|
914 |
+
x = self.pre_ln(x)
|
915 |
+
|
916 |
+
hidden_states = self.transformer(x)
|
917 |
+
return hidden_states
|
918 |
+
|
919 |
+
|
920 |
+
class MultiHeadDotProductAttention(nn.Module):
|
921 |
+
def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True):
|
922 |
+
super().__init__()
|
923 |
+
self.config = config
|
924 |
+
self.use_bias = use_bias
|
925 |
+
|
926 |
+
v_cfg = config.vision_backbone
|
927 |
+
self.embed_dim = v_cfg.image_emb_dim
|
928 |
+
self.num_heads = v_cfg.image_num_heads
|
929 |
+
self.head_dim = v_cfg.image_head_dim
|
930 |
+
self.num_key_value_heads = v_cfg.image_num_key_value_heads
|
931 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
932 |
+
self.initializer_range = v_cfg.initializer_range
|
933 |
+
self.is_vit_layer = is_vit_layer
|
934 |
+
|
935 |
+
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
|
936 |
+
|
937 |
+
self.wq = nn.Linear(
|
938 |
+
nlayers * self.embed_dim,
|
939 |
+
self.num_heads * self.head_dim,
|
940 |
+
bias=use_bias,
|
941 |
+
device=config.init_device,
|
942 |
+
)
|
943 |
+
self.wk = nn.Linear(
|
944 |
+
nlayers * self.embed_dim,
|
945 |
+
self.num_key_value_heads * self.head_dim,
|
946 |
+
bias=use_bias,
|
947 |
+
device=config.init_device,
|
948 |
+
)
|
949 |
+
self.wv = nn.Linear(
|
950 |
+
nlayers * self.embed_dim,
|
951 |
+
self.num_key_value_heads * self.head_dim,
|
952 |
+
bias=use_bias,
|
953 |
+
device=config.init_device,
|
954 |
+
)
|
955 |
+
self.wo = nn.Linear(
|
956 |
+
self.num_heads * self.head_dim,
|
957 |
+
self.embed_dim,
|
958 |
+
bias=use_bias,
|
959 |
+
device=config.init_device,
|
960 |
+
)
|
961 |
+
self.attention_dropout: Optional[Dropout] = None
|
962 |
+
if v_cfg.attention_dropout > 0:
|
963 |
+
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
|
964 |
+
self.residual_dropout = Dropout(v_cfg.residual_dropout)
|
965 |
+
|
966 |
+
def reset_parameters(self):
|
967 |
+
nn.init.normal_(self.wq.weight, std=self.initializer_range)
|
968 |
+
nn.init.normal_(self.wk.weight, std=self.initializer_range)
|
969 |
+
nn.init.normal_(self.wv.weight, std=self.initializer_range)
|
970 |
+
nn.init.normal_(self.wo.weight, std=self.initializer_range)
|
971 |
+
if self.use_bias:
|
972 |
+
nn.init.constant_(self.wq.bias, 0)
|
973 |
+
nn.init.constant_(self.wk.bias, 0)
|
974 |
+
nn.init.constant_(self.wv.bias, 0)
|
975 |
+
nn.init.constant_(self.wo.bias, 0)
|
976 |
+
|
977 |
+
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
|
978 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
979 |
+
|
980 |
+
def _merge_heads(self, hidden_states) -> torch.Tensor:
|
981 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
982 |
+
|
983 |
+
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
|
984 |
+
|
985 |
+
if inputs_kv is not None:
|
986 |
+
inputs_k = inputs_kv
|
987 |
+
inputs_v = inputs_kv
|
988 |
+
else:
|
989 |
+
inputs_k = inputs_q
|
990 |
+
inputs_v = inputs_q
|
991 |
+
|
992 |
+
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
|
993 |
+
|
994 |
+
xq = self._split_heads(xq, self.num_heads)
|
995 |
+
xk = self._split_heads(xk, self.num_key_value_heads)
|
996 |
+
xv = self._split_heads(xv, self.num_key_value_heads)
|
997 |
+
|
998 |
+
if self.num_heads != self.num_key_value_heads:
|
999 |
+
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
1000 |
+
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
1001 |
+
|
1002 |
+
og_dtype = xq.dtype
|
1003 |
+
|
1004 |
+
if self.config.float32_attention:
|
1005 |
+
xq = xq.to(torch.float)
|
1006 |
+
xk = xk.to(torch.float)
|
1007 |
+
|
1008 |
+
if self.config.attention_type == "direct":
|
1009 |
+
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
|
1010 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
|
1011 |
+
if self.attention_dropout is not None:
|
1012 |
+
attn_weights = self.attention_dropout(attn_weights)
|
1013 |
+
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
|
1014 |
+
|
1015 |
+
elif self.config.attention_type == "sdpa":
|
1016 |
+
attn_output = F.scaled_dot_product_attention(
|
1017 |
+
xq.transpose(1, 2).contiguous(),
|
1018 |
+
xk.transpose(1, 2).contiguous(),
|
1019 |
+
xv.transpose(1, 2).contiguous(),
|
1020 |
+
is_causal=False,
|
1021 |
+
dropout_p=self.config.vision_backbone.attention_dropout
|
1022 |
+
).transpose(1, 2)
|
1023 |
+
else:
|
1024 |
+
raise NotImplementedError(self.config.attention_type)
|
1025 |
+
attn_output = attn_output.to(og_dtype)
|
1026 |
+
attn_output = self._merge_heads(attn_output)
|
1027 |
+
attn_output = self.wo(attn_output)
|
1028 |
+
attn_output = self.residual_dropout(attn_output)
|
1029 |
+
|
1030 |
+
return attn_output
|
1031 |
+
|
1032 |
+
|
1033 |
+
class MultiHeadAttentionPool(nn.Module):
|
1034 |
+
def __init__(
|
1035 |
+
self,
|
1036 |
+
config: FullMolmoConfig,
|
1037 |
+
factor: int = 1,
|
1038 |
+
use_bias: bool = True,
|
1039 |
+
dropout: bool = True,
|
1040 |
+
output_layer: bool = True,
|
1041 |
+
mean_residual: bool = False,
|
1042 |
+
query: str = "mean",
|
1043 |
+
is_vit_layer: Optional[bool] = True
|
1044 |
+
):
|
1045 |
+
super().__init__()
|
1046 |
+
self.config = config
|
1047 |
+
self.factor = factor
|
1048 |
+
self.use_bias = use_bias
|
1049 |
+
self.dropout = dropout
|
1050 |
+
self.output_layer = output_layer
|
1051 |
+
self.mean_residual = mean_residual
|
1052 |
+
self.query = query
|
1053 |
+
|
1054 |
+
v_cfg = config.vision_backbone
|
1055 |
+
input_dim = v_cfg.image_emb_dim
|
1056 |
+
self.embed_dim = v_cfg.image_emb_dim * factor
|
1057 |
+
self.num_heads = v_cfg.image_num_heads
|
1058 |
+
self.head_dim = v_cfg.image_head_dim * factor
|
1059 |
+
self.num_key_value_heads = v_cfg.image_num_key_value_heads
|
1060 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
1061 |
+
self.initializer_range = v_cfg.initializer_range
|
1062 |
+
|
1063 |
+
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
|
1064 |
+
|
1065 |
+
if query != "vector":
|
1066 |
+
self.wq = nn.Linear(
|
1067 |
+
nlayers * input_dim,
|
1068 |
+
self.num_heads * self.head_dim,
|
1069 |
+
bias=use_bias,
|
1070 |
+
device=config.init_device,
|
1071 |
+
)
|
1072 |
+
self.wk = nn.Linear(
|
1073 |
+
nlayers * input_dim,
|
1074 |
+
self.num_key_value_heads * self.head_dim,
|
1075 |
+
bias=use_bias,
|
1076 |
+
device=config.init_device,
|
1077 |
+
)
|
1078 |
+
self.wv = nn.Linear(
|
1079 |
+
nlayers * input_dim,
|
1080 |
+
self.num_key_value_heads * self.head_dim,
|
1081 |
+
bias=use_bias,
|
1082 |
+
device=config.init_device,
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
if query == "vector":
|
1086 |
+
self.attention_query = nn.Parameter(
|
1087 |
+
torch.zeros(
|
1088 |
+
1, self.num_key_value_heads * self.head_dim, device=config.init_device,
|
1089 |
+
),
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
if output_layer:
|
1093 |
+
self.wo = nn.Linear(
|
1094 |
+
self.num_heads * self.head_dim,
|
1095 |
+
self.embed_dim,
|
1096 |
+
bias=use_bias,
|
1097 |
+
device=config.init_device,
|
1098 |
+
)
|
1099 |
+
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
|
1100 |
+
if dropout:
|
1101 |
+
self.residual_dropout = Dropout(v_cfg.residual_dropout)
|
1102 |
+
|
1103 |
+
def reset_parameters(self):
|
1104 |
+
if self.query != "vector":
|
1105 |
+
nn.init.normal_(self.wq.weight, std=self.initializer_range)
|
1106 |
+
nn.init.normal_(self.wk.weight, std=self.initializer_range)
|
1107 |
+
nn.init.normal_(self.wv.weight, std=self.initializer_range)
|
1108 |
+
if self.output_layer:
|
1109 |
+
nn.init.normal_(self.wo.weight, std=self.initializer_range)
|
1110 |
+
if self.use_bias:
|
1111 |
+
if self.query != "vector":
|
1112 |
+
nn.init.constant_(self.wq.bias, 0)
|
1113 |
+
nn.init.constant_(self.wk.bias, 0)
|
1114 |
+
nn.init.constant_(self.wv.bias, 0)
|
1115 |
+
if self.output_layer:
|
1116 |
+
nn.init.constant_(self.wo.bias, 0)
|
1117 |
+
if self.query == "vector":
|
1118 |
+
nn.init.normal_(self.attention_query, std=self.initializer_range)
|
1119 |
+
|
1120 |
+
def _split_heads(self, hidden_states, num_heads):
|
1121 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
1122 |
+
|
1123 |
+
def _merge_heads(self, hidden_states):
|
1124 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
1125 |
+
|
1126 |
+
def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor:
|
1127 |
+
|
1128 |
+
xk, xv = self.wk(inputs_kv), self.wv(inputs_kv)
|
1129 |
+
|
1130 |
+
if self.query == "mean":
|
1131 |
+
inputs_q = inputs_kv.mean(dim=1, keepdim=True)
|
1132 |
+
xq = self.wq(inputs_q)
|
1133 |
+
elif self.query == "first":
|
1134 |
+
inputs_q = inputs_kv[:, :1]
|
1135 |
+
xq = self.wq(inputs_q)
|
1136 |
+
elif self.query == "vector":
|
1137 |
+
xq = self.attention_query.expand(inputs_kv.size(0), -1, -1)
|
1138 |
+
elif self.query == "constant":
|
1139 |
+
inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1])
|
1140 |
+
xq = self.wq(inputs_q)
|
1141 |
+
else:
|
1142 |
+
raise ValueError(f"Unknown query type: {self.query}")
|
1143 |
+
|
1144 |
+
xq = self._split_heads(xq, self.num_heads)
|
1145 |
+
xk = self._split_heads(xk, self.num_key_value_heads)
|
1146 |
+
xv = self._split_heads(xv, self.num_key_value_heads)
|
1147 |
+
|
1148 |
+
if self.num_heads != self.num_key_value_heads:
|
1149 |
+
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
1150 |
+
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
1151 |
+
|
1152 |
+
xq = xq.to(torch.float)
|
1153 |
+
xk = xk.to(torch.float)
|
1154 |
+
|
1155 |
+
xq = xq / math.sqrt(xq.size(-1))
|
1156 |
+
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk)
|
1157 |
+
|
1158 |
+
attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype)
|
1159 |
+
|
1160 |
+
attn_weights = self.attention_dropout(attn_weights).to(xv.dtype)
|
1161 |
+
|
1162 |
+
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv)
|
1163 |
+
attn_output = self._merge_heads(attn_output)
|
1164 |
+
if self.output_layer:
|
1165 |
+
attn_output = self.wo(attn_output)
|
1166 |
+
if self.dropout:
|
1167 |
+
attn_output = self.residual_dropout(attn_output)
|
1168 |
+
if self.mean_residual:
|
1169 |
+
attn_output += inputs_kv.mean(dim=1, keepdim=True)
|
1170 |
+
|
1171 |
+
return attn_output
|
1172 |
+
|
1173 |
+
|
1174 |
+
class MLP(nn.Module):
|
1175 |
+
def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0):
|
1176 |
+
super().__init__()
|
1177 |
+
self.config = config
|
1178 |
+
self.hidden_size = (
|
1179 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
1180 |
+
)
|
1181 |
+
self.initializer_range = config.initializer_range
|
1182 |
+
|
1183 |
+
self.w1 = nn.Linear(
|
1184 |
+
input_dim,
|
1185 |
+
self.hidden_size // 2,
|
1186 |
+
bias=False,
|
1187 |
+
device=config.init_device,
|
1188 |
+
)
|
1189 |
+
self.w2 = nn.Linear(
|
1190 |
+
self.hidden_size // 2,
|
1191 |
+
config.d_model,
|
1192 |
+
bias=False,
|
1193 |
+
device=config.init_device,
|
1194 |
+
)
|
1195 |
+
self.w3 = nn.Linear(
|
1196 |
+
input_dim,
|
1197 |
+
self.hidden_size // 2,
|
1198 |
+
bias=False,
|
1199 |
+
device=config.init_device,
|
1200 |
+
)
|
1201 |
+
# Activation function.
|
1202 |
+
self.act = Activation.build(config)
|
1203 |
+
self.dropout = Dropout(dropout)
|
1204 |
+
|
1205 |
+
def reset_parameters(self):
|
1206 |
+
nn.init.normal_(self.w1.weight, std=self.initializer_range)
|
1207 |
+
nn.init.normal_(self.w2.weight, std=self.initializer_range)
|
1208 |
+
nn.init.normal_(self.w3.weight, std=self.initializer_range)
|
1209 |
+
|
1210 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1211 |
+
x = self.w2(self.act(self.w1(x), self.w3(x)))
|
1212 |
+
x = self.dropout(x)
|
1213 |
+
return x
|
1214 |
+
|
1215 |
+
|
1216 |
+
class Residual(nn.Module):
|
1217 |
+
def __init__(self, submodule: nn.Module):
|
1218 |
+
super().__init__()
|
1219 |
+
self.submodule = submodule
|
1220 |
+
|
1221 |
+
def reset_parameters(self):
|
1222 |
+
self.submodule.reset_parameters()
|
1223 |
+
|
1224 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1225 |
+
return x + self.submodule(x)
|
1226 |
+
|
1227 |
+
|
1228 |
+
class OLMoVisionBackbone(nn.Module):
|
1229 |
+
def __init__(self, config: FullMolmoConfig):
|
1230 |
+
super().__init__()
|
1231 |
+
self.config = config
|
1232 |
+
self.image_vit = VisionTransformer(config)
|
1233 |
+
|
1234 |
+
input_dim: int = None
|
1235 |
+
self.image_pooling_2d: nn.Module = None
|
1236 |
+
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
|
1237 |
+
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
|
1238 |
+
input_dim = config.vision_backbone.image_emb_dim
|
1239 |
+
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
|
1240 |
+
cfg = deepcopy(config)
|
1241 |
+
cfg.vision_backbone.image_emb_dim *= 2
|
1242 |
+
cfg.vision_backbone.image_head_dim *= 2
|
1243 |
+
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
|
1244 |
+
input_dim = cfg.vision_backbone.image_emb_dim
|
1245 |
+
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
|
1246 |
+
assert config.vit_layers is not None
|
1247 |
+
use_bias = True
|
1248 |
+
dropout = True
|
1249 |
+
output_layer = True
|
1250 |
+
query = "mean"
|
1251 |
+
mean_residual = False
|
1252 |
+
factor = len(config.vit_layers)
|
1253 |
+
self.image_pooling_2d = MultiHeadAttentionPool(
|
1254 |
+
config,
|
1255 |
+
factor=factor,
|
1256 |
+
use_bias=use_bias,
|
1257 |
+
dropout=dropout,
|
1258 |
+
output_layer=output_layer,
|
1259 |
+
mean_residual=mean_residual,
|
1260 |
+
query=query,
|
1261 |
+
is_vit_layer=False,
|
1262 |
+
)
|
1263 |
+
input_dim = config.vision_backbone.image_emb_dim * factor
|
1264 |
+
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
|
1265 |
+
self.image_pooling_2d = None
|
1266 |
+
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
|
1267 |
+
input_dim = nlayers * config.vision_backbone.image_emb_dim
|
1268 |
+
else:
|
1269 |
+
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
|
1270 |
+
|
1271 |
+
self.input_dim = input_dim
|
1272 |
+
|
1273 |
+
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
|
1274 |
+
if config.activation_type == ActivationType.swiglu:
|
1275 |
+
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
|
1276 |
+
elif config.activation_type == ActivationType.gelu:
|
1277 |
+
mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
|
1278 |
+
else:
|
1279 |
+
mlp_config = config
|
1280 |
+
if config.image_projector == ImageProjectType.mlpx2:
|
1281 |
+
self.image_projector = nn.ModuleList(
|
1282 |
+
[MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))]
|
1283 |
+
)
|
1284 |
+
elif config.image_projector == ImageProjectType.mlp:
|
1285 |
+
self.image_projector = MLP(mlp_config, input_dim)
|
1286 |
+
elif config.image_projector == ImageProjectType.linear:
|
1287 |
+
self.image_projector = nn.Linear(
|
1288 |
+
input_dim,
|
1289 |
+
config.d_model,
|
1290 |
+
bias=False,
|
1291 |
+
device=config.init_device,
|
1292 |
+
)
|
1293 |
+
else:
|
1294 |
+
raise NotImplementedError(f"Unknown image projector: {config.image_projector}")
|
1295 |
+
|
1296 |
+
self.image_feature_dropout = Dropout(config.image_feature_dropout)
|
1297 |
+
|
1298 |
+
def reset_parameters(self):
|
1299 |
+
if self.image_pooling_2d is not None:
|
1300 |
+
self.image_pooling_2d.reset_parameters()
|
1301 |
+
if self.config.image_projector == "2mlp":
|
1302 |
+
for module in self.image_projector:
|
1303 |
+
module.reset_parameters()
|
1304 |
+
elif self.config.image_projector == "linear":
|
1305 |
+
nn.init.xavier_uniform_(self.image_projector.weight)
|
1306 |
+
else:
|
1307 |
+
self.image_projector.reset_parameters()
|
1308 |
+
|
1309 |
+
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
1310 |
+
raise NotImplementedError
|
1311 |
+
|
1312 |
+
|
1313 |
+
class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
|
1314 |
+
def __init__(self, config: FullMolmoConfig):
|
1315 |
+
super().__init__(config)
|
1316 |
+
v_cfg = self.config.vision_backbone
|
1317 |
+
self.grad_checkpointing = False
|
1318 |
+
|
1319 |
+
self.num_prefix_tokens = self.image_vit.num_prefix_tokens
|
1320 |
+
assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported"
|
1321 |
+
|
1322 |
+
self.pad_embed = None
|
1323 |
+
if config.image_padding_embed:
|
1324 |
+
image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers)
|
1325 |
+
if config.image_padding_embed in ["pad_embed", "regress"]:
|
1326 |
+
self.pad_embed = nn.Parameter(
|
1327 |
+
torch.zeros((image_dim,), device=config.init_device))
|
1328 |
+
elif config.image_padding_embed == "pad_and_partial_pad":
|
1329 |
+
self.pad_embed = nn.Parameter(
|
1330 |
+
torch.zeros((2, image_dim), device=config.init_device))
|
1331 |
+
else:
|
1332 |
+
raise ValueError(config.image_padding_embed)
|
1333 |
+
|
1334 |
+
def reset_parameters(self):
|
1335 |
+
super().reset_parameters()
|
1336 |
+
self.image_vit.reset_parameters()
|
1337 |
+
|
1338 |
+
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
|
1339 |
+
"""
|
1340 |
+
: param images: (batch_size, num_crops, num_patch, n_pixels)
|
1341 |
+
"""
|
1342 |
+
cfg = self.config
|
1343 |
+
v_cfg = self.config.vision_backbone
|
1344 |
+
B, T, N, D = images.shape
|
1345 |
+
|
1346 |
+
mask = ~torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
|
1347 |
+
|
1348 |
+
# Output all hidden states
|
1349 |
+
# n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
|
1350 |
+
images = images.view(B * T, N, D)
|
1351 |
+
image_features = self.image_vit(images)
|
1352 |
+
|
1353 |
+
if cfg.vit_layers is not None:
|
1354 |
+
features = []
|
1355 |
+
for layer in cfg.vit_layers:
|
1356 |
+
features.append(image_features[layer])
|
1357 |
+
image_features = torch.cat(features, dim=-1)
|
1358 |
+
else:
|
1359 |
+
image_features = image_features[-1]
|
1360 |
+
|
1361 |
+
cls_embed: torch.Tensor = None
|
1362 |
+
if self.num_prefix_tokens > 0:
|
1363 |
+
cls_embed = image_features[:, 0]
|
1364 |
+
image_features = image_features[:, 1:]
|
1365 |
+
|
1366 |
+
image_features = image_features * mask
|
1367 |
+
image_features = image_features.view(B, T, N, -1)
|
1368 |
+
|
1369 |
+
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None
|
1370 |
+
|
1371 |
+
return image_features, cls_embed
|
1372 |
+
|
1373 |
+
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
1374 |
+
cfg = self.config
|
1375 |
+
|
1376 |
+
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
1377 |
+
batch_size, num_image = images.shape[:2]
|
1378 |
+
image_features, cls_embed = self.encode_image(images)
|
1379 |
+
|
1380 |
+
if cfg.image_padding_embed:
|
1381 |
+
assert image_masks is not None
|
1382 |
+
if cfg.image_padding_embed == "pad_embed":
|
1383 |
+
all_pad = (image_masks == 0).to(dtype=torch.float32)
|
1384 |
+
pad_embed = self.pad_embed[None, None, None, :]
|
1385 |
+
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
|
1386 |
+
elif cfg.image_padding_embed == "regress":
|
1387 |
+
pad_embed = self.pad_embed[None, None, None, :]
|
1388 |
+
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
|
1389 |
+
elif cfg.image_padding_embed == "pad_and_partial_pad":
|
1390 |
+
pad_embed = self.pad_embed[:, None, None, None, :]
|
1391 |
+
all_pad = image_masks == 0
|
1392 |
+
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=torch.float32)
|
1393 |
+
all_pad = all_pad.to(dtype=torch.float32)
|
1394 |
+
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
|
1395 |
+
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
|
1396 |
+
else:
|
1397 |
+
raise ValueError(cfg.image_padding_embed)
|
1398 |
+
|
1399 |
+
image_features = self.image_feature_dropout(image_features)
|
1400 |
+
if cls_embed is not None:
|
1401 |
+
cls_embed = self.image_feature_dropout(cls_embed)
|
1402 |
+
|
1403 |
+
image_features = image_features.reshape(
|
1404 |
+
(batch_size, num_image) + cfg.image_num_patch + (-1,),
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
|
1408 |
+
# Pad so we can still pool 2x2 patches
|
1409 |
+
image_features = F.pad(
|
1410 |
+
image_features,
|
1411 |
+
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
# image pooling
|
1415 |
+
image_features = einops.rearrange(
|
1416 |
+
image_features,
|
1417 |
+
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
|
1418 |
+
dh=cfg.image_pooling_h,
|
1419 |
+
dw=cfg.image_pooling_w,
|
1420 |
+
)
|
1421 |
+
|
1422 |
+
if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq:
|
1423 |
+
query = image_features.mean(-2, keepdim=True)
|
1424 |
+
image_features = self.image_pooling_2d(query, image_features)
|
1425 |
+
elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}:
|
1426 |
+
if self.grad_checkpointing:
|
1427 |
+
from torch.utils.checkpoint import checkpoint
|
1428 |
+
image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False)
|
1429 |
+
else:
|
1430 |
+
image_features = self.image_pooling_2d(image_features[:, :1, :], image_features)
|
1431 |
+
|
1432 |
+
h, w = cfg.llm_patches_per_crop()
|
1433 |
+
image_features = image_features.reshape(batch_size, num_image, h * w, -1)
|
1434 |
+
|
1435 |
+
# MLP layer to map the feature.
|
1436 |
+
if self.grad_checkpointing:
|
1437 |
+
from torch.utils.checkpoint import checkpoint
|
1438 |
+
image_features = checkpoint(self.image_projector, image_features, use_reentrant=False)
|
1439 |
+
else:
|
1440 |
+
image_features = self.image_projector(image_features)
|
1441 |
+
|
1442 |
+
# image_features: (batch_size, num_image, num_patch, d_model)
|
1443 |
+
# cls_embed: (batch_size, num_image, d_model)
|
1444 |
+
return image_features, cls_embed
|
1445 |
+
|
1446 |
+
|
1447 |
+
class ModuleType(str, Enum):
|
1448 |
+
in_module = "in"
|
1449 |
+
out_module = "out"
|
1450 |
+
emb = "emb"
|
1451 |
+
final_out = "final_out"
|
1452 |
+
|
1453 |
+
|
1454 |
+
def init_weights(
|
1455 |
+
config: FullMolmoConfig,
|
1456 |
+
module: Union[nn.Linear, nn.Embedding],
|
1457 |
+
d: Optional[int] = None,
|
1458 |
+
layer_id: Optional[int] = None,
|
1459 |
+
std_factor: float = 1.0,
|
1460 |
+
type_of_module: Optional[ModuleType] = None,
|
1461 |
+
) -> None:
|
1462 |
+
d = d if d is not None else config.d_model
|
1463 |
+
std = config.init_std * std_factor
|
1464 |
+
if config.init_cutoff_factor is not None:
|
1465 |
+
cutoff_value = config.init_cutoff_factor * std
|
1466 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
1467 |
+
else:
|
1468 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
1469 |
+
|
1470 |
+
|
1471 |
+
class LlamaSwiGLU(nn.Module):
|
1472 |
+
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
|
1473 |
+
return F.silu(x1) * x2
|
1474 |
+
|
1475 |
+
@property
|
1476 |
+
def output_multiplier(self) -> float:
|
1477 |
+
return 0.5
|
1478 |
+
|
1479 |
+
|
1480 |
+
class SwiGLU(nn.Module):
|
1481 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1482 |
+
x, gate = x.chunk(2, dim=-1)
|
1483 |
+
return F.silu(gate) * x
|
1484 |
+
|
1485 |
+
@property
|
1486 |
+
def output_multiplier(self) -> float:
|
1487 |
+
return 0.5
|
1488 |
+
|
1489 |
+
|
1490 |
+
class Activation(nn.Module):
|
1491 |
+
def __init__(self, config: FullMolmoConfig):
|
1492 |
+
super().__init__()
|
1493 |
+
self.config = config
|
1494 |
+
|
1495 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1496 |
+
raise NotImplementedError
|
1497 |
+
|
1498 |
+
@property
|
1499 |
+
def output_multiplier(self) -> float:
|
1500 |
+
raise NotImplementedError
|
1501 |
+
|
1502 |
+
@classmethod
|
1503 |
+
def build(cls, config: FullMolmoConfig) -> 'Activation':
|
1504 |
+
if config.activation_type == "quick_gelu":
|
1505 |
+
return QuickGELU(config)
|
1506 |
+
elif config.activation_type == "gelu":
|
1507 |
+
return cast(Activation, GELU(approximate="none"))
|
1508 |
+
elif config.activation_type == "gelu_tanh":
|
1509 |
+
return cast(Activation, GELU(approximate="tanh"))
|
1510 |
+
elif config.activation_type == "relu":
|
1511 |
+
return cast(Activation, ReLU(inplace=False))
|
1512 |
+
elif config.activation_type == "silu":
|
1513 |
+
return cast(Activation, SiLU(inplace=False))
|
1514 |
+
# elif config.activation_type == "llama_geglu":
|
1515 |
+
# return LlamaGEGLU(config)
|
1516 |
+
# elif config.activation_type == "llama_geglu_tanh":
|
1517 |
+
# return LlamaGEGLUTanh(config)
|
1518 |
+
elif config.activation_type == "llama_swiglu":
|
1519 |
+
return LlamaSwiGLU()
|
1520 |
+
elif config.activation_type == "swiglu":
|
1521 |
+
return SwiGLU()
|
1522 |
+
else:
|
1523 |
+
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
1524 |
+
|
1525 |
+
|
1526 |
+
class QuickGELU(Activation):
|
1527 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1528 |
+
return x * torch.sigmoid(1.702 * x)
|
1529 |
+
|
1530 |
+
@property
|
1531 |
+
def output_multiplier(self) -> float:
|
1532 |
+
return 1.0
|
1533 |
+
|
1534 |
+
|
1535 |
+
class GELU(nn.GELU):
|
1536 |
+
@property
|
1537 |
+
def output_multiplier(self) -> float:
|
1538 |
+
return 1.0
|
1539 |
+
|
1540 |
+
|
1541 |
+
class ReLU(nn.ReLU):
|
1542 |
+
@property
|
1543 |
+
def output_multiplier(self) -> float:
|
1544 |
+
return 1.0
|
1545 |
+
|
1546 |
+
|
1547 |
+
class SiLU(nn.SiLU):
|
1548 |
+
@property
|
1549 |
+
def output_multiplier(self) -> float:
|
1550 |
+
return 1.0
|
1551 |
+
|
1552 |
+
|
1553 |
+
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
1554 |
+
att_bias = torch.triu(
|
1555 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
1556 |
+
diagonal=1,
|
1557 |
+
)
|
1558 |
+
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
1559 |
+
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
1560 |
+
|
1561 |
+
|
1562 |
+
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
1563 |
+
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
1564 |
+
if causal_bias.device != device:
|
1565 |
+
causal_bias = causal_bias.to(device)
|
1566 |
+
cache["causal_attention_bias"] = causal_bias
|
1567 |
+
return causal_bias
|
1568 |
+
with torch.autocast(device.type, enabled=False):
|
1569 |
+
causal_bias = causal_attention_bias(seq_len, device)
|
1570 |
+
cache["causal_attention_bias"] = causal_bias
|
1571 |
+
return causal_bias
|
1572 |
+
|
1573 |
+
|
1574 |
+
class LayerNormBase(nn.Module):
|
1575 |
+
def __init__(
|
1576 |
+
self,
|
1577 |
+
config: MolmoConfig,
|
1578 |
+
*,
|
1579 |
+
size: Optional[int] = None,
|
1580 |
+
elementwise_affine: Optional[bool] = True,
|
1581 |
+
eps: float = 1e-05,
|
1582 |
+
weight_initializer: Optional[Callable] = torch.ones,
|
1583 |
+
bias_initializer: Optional[Callable] = torch.zeros,
|
1584 |
+
):
|
1585 |
+
super().__init__()
|
1586 |
+
self.config = config
|
1587 |
+
self.eps = self.config.layer_norm_eps or eps
|
1588 |
+
self.normalized_shape = (size or config.d_model,)
|
1589 |
+
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
1590 |
+
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
|
1591 |
+
use_bias = self.config.bias_for_layer_norm
|
1592 |
+
if use_bias is None:
|
1593 |
+
use_bias = self.config.include_bias
|
1594 |
+
if use_bias:
|
1595 |
+
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
|
1596 |
+
else:
|
1597 |
+
self.register_parameter("bias", None)
|
1598 |
+
else:
|
1599 |
+
self.register_parameter("bias", None)
|
1600 |
+
self.register_parameter("weight", None)
|
1601 |
+
|
1602 |
+
@classmethod
|
1603 |
+
def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs):
|
1604 |
+
if config.layer_norm_type == "default":
|
1605 |
+
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
1606 |
+
elif config.layer_norm_type == "low_precision":
|
1607 |
+
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
1608 |
+
elif config.layer_norm_type == "rms":
|
1609 |
+
return RMSLayerNorm(config, size=size, **kwargs)
|
1610 |
+
else:
|
1611 |
+
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
1612 |
+
|
1613 |
+
|
1614 |
+
class RMSLayerNorm(LayerNormBase):
|
1615 |
+
"""
|
1616 |
+
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
1617 |
+
"""
|
1618 |
+
|
1619 |
+
def __init__(
|
1620 |
+
self,
|
1621 |
+
config: FullMolmoConfig,
|
1622 |
+
size: Optional[int] = None,
|
1623 |
+
elementwise_affine: Optional[bool] = None,
|
1624 |
+
eps: float = 1e-5,
|
1625 |
+
):
|
1626 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
1627 |
+
|
1628 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1629 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
1630 |
+
og_dtype = x.dtype
|
1631 |
+
x = x.to(torch.float32)
|
1632 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
1633 |
+
x = x * torch.rsqrt(variance + self.eps)
|
1634 |
+
x = x.to(og_dtype)
|
1635 |
+
|
1636 |
+
if self.weight is not None:
|
1637 |
+
if self.bias is not None:
|
1638 |
+
return self.weight * x + self.bias
|
1639 |
+
else:
|
1640 |
+
return self.weight * x
|
1641 |
+
else:
|
1642 |
+
return x
|
1643 |
+
|
1644 |
+
|
1645 |
+
class LayerNorm(LayerNormBase):
|
1646 |
+
"""
|
1647 |
+
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
1648 |
+
"""
|
1649 |
+
|
1650 |
+
def __init__(
|
1651 |
+
self,
|
1652 |
+
config: FullMolmoConfig,
|
1653 |
+
size: Optional[int] = None,
|
1654 |
+
low_precision: bool = False,
|
1655 |
+
elementwise_affine: Optional[bool] = None,
|
1656 |
+
eps: float = 1e-05,
|
1657 |
+
):
|
1658 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
1659 |
+
self.low_precision = low_precision
|
1660 |
+
|
1661 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1662 |
+
if self.low_precision:
|
1663 |
+
module_device = x.device
|
1664 |
+
downcast_x = self._cast_if_autocast_enabled(x)
|
1665 |
+
downcast_weight = (
|
1666 |
+
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
1667 |
+
)
|
1668 |
+
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
1669 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
1670 |
+
return F.layer_norm(
|
1671 |
+
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
1672 |
+
)
|
1673 |
+
else:
|
1674 |
+
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
1675 |
+
|
1676 |
+
|
1677 |
+
class Molmo(nn.Module):
|
1678 |
+
def __init__(self, config: FullMolmoConfig, init_params: bool = True):
|
1679 |
+
super().__init__()
|
1680 |
+
self.config = config
|
1681 |
+
self.__cache = BufferCache()
|
1682 |
+
|
1683 |
+
# Validate config.
|
1684 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
1685 |
+
if self.config.embedding_size < self.config.vocab_size:
|
1686 |
+
raise MolmoConfigurationError("embedding size should be at least as big as vocab size")
|
1687 |
+
elif self.config.embedding_size % 128 != 0:
|
1688 |
+
import warnings
|
1689 |
+
|
1690 |
+
warnings.warn(
|
1691 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
1692 |
+
)
|
1693 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
1694 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
1695 |
+
|
1696 |
+
wte = None
|
1697 |
+
if self.config.additional_vocab_size is not None:
|
1698 |
+
wte = Embedding(
|
1699 |
+
config.embedding_size or config.vocab_size,
|
1700 |
+
config.additional_vocab_size,
|
1701 |
+
config.d_model,
|
1702 |
+
device=config.init_device,
|
1703 |
+
initializer_range=config.initializer_range,
|
1704 |
+
new_embed_initializer_range=config.new_embedding_init_range
|
1705 |
+
)
|
1706 |
+
else:
|
1707 |
+
wte=nn.Embedding(
|
1708 |
+
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
1709 |
+
)
|
1710 |
+
|
1711 |
+
self.transformer = nn.ModuleDict(
|
1712 |
+
dict(
|
1713 |
+
wte=wte,
|
1714 |
+
emb_drop=Dropout(config.embedding_dropout),
|
1715 |
+
ln_f=LayerNorm.build(config),
|
1716 |
+
)
|
1717 |
+
)
|
1718 |
+
|
1719 |
+
blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
1720 |
+
if self.config.block_group_size > 1:
|
1721 |
+
raise NotImplementedError()
|
1722 |
+
else:
|
1723 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
1724 |
+
|
1725 |
+
if not self.config.rope:
|
1726 |
+
self.transformer.update(
|
1727 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
1728 |
+
)
|
1729 |
+
if not config.weight_tying:
|
1730 |
+
self.transformer.update(
|
1731 |
+
{
|
1732 |
+
"ff_out": nn.Linear(
|
1733 |
+
config.d_model,
|
1734 |
+
config.embedding_size or config.vocab_size,
|
1735 |
+
bias=config.include_bias,
|
1736 |
+
device=config.init_device,
|
1737 |
+
)
|
1738 |
+
}
|
1739 |
+
)
|
1740 |
+
|
1741 |
+
self.vision_backbone: Optional[OLMoVisionBackbone] = None
|
1742 |
+
if config.vision_backbone is not None:
|
1743 |
+
self.vision_backbone = OLMoPretrainedVisionBackbone(config)
|
1744 |
+
|
1745 |
+
self.__num_fwd_flops: Optional[int] = None
|
1746 |
+
|
1747 |
+
def reset_parameters(self):
|
1748 |
+
if self.vision_backbone is not None:
|
1749 |
+
self.vision_backbone.reset_parameters()
|
1750 |
+
self.reset_non_vision_parameters()
|
1751 |
+
|
1752 |
+
def reset_non_vision_parameters(self):
|
1753 |
+
self.transformer.wte.reset_parameters()
|
1754 |
+
if hasattr(self.transformer.wte, "new_embedding"):
|
1755 |
+
nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range)
|
1756 |
+
|
1757 |
+
if hasattr(self.transformer, "wpe"):
|
1758 |
+
nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0)
|
1759 |
+
|
1760 |
+
self.transformer.ln_f.reset_parameters() # type: ignore
|
1761 |
+
|
1762 |
+
if hasattr(self.transformer, "ff_out"):
|
1763 |
+
nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02)
|
1764 |
+
|
1765 |
+
if self.config.block_group_size == 1:
|
1766 |
+
for block in self.transformer.blocks:
|
1767 |
+
block.reset_parameters()
|
1768 |
+
else:
|
1769 |
+
for block_group in self.transformer.block_groups:
|
1770 |
+
block_group.reset_parameters()
|
1771 |
+
|
1772 |
+
def forward(
|
1773 |
+
self,
|
1774 |
+
input_ids: torch.LongTensor,
|
1775 |
+
input_embeddings: Optional[torch.FloatTensor] = None,
|
1776 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1777 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1778 |
+
response_mask: Optional[torch.Tensor] = None,
|
1779 |
+
images: Optional[torch.Tensor] = None,
|
1780 |
+
image_masks: Optional[torch.Tensor] = None,
|
1781 |
+
image_input_idx: Optional[torch.Tensor] = None,
|
1782 |
+
subsegment_ids: Optional[torch.Tensor] = None,
|
1783 |
+
position_ids: Optional[torch.Tensor] = None,
|
1784 |
+
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
1785 |
+
use_cache: bool = False,
|
1786 |
+
last_logits_only: bool = False,
|
1787 |
+
output_hidden_states: Optional[bool] = None,
|
1788 |
+
append_last_valid_logits: Optional[torch.Tensor] = None,
|
1789 |
+
) -> ModelOutput:
|
1790 |
+
"""
|
1791 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1792 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
1793 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
1794 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1795 |
+
which input IDs are masked. A `1` value in the mask means that
|
1796 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
1797 |
+
that the corresponding input ID is masked.
|
1798 |
+
|
1799 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
1800 |
+
library.
|
1801 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
1802 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
1803 |
+
to introduce causal or other biases.
|
1804 |
+
|
1805 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
1806 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
1807 |
+
element in the sequence.
|
1808 |
+
|
1809 |
+
If the tensor is a float tensor, it will just be added to the attention
|
1810 |
+
scores before the softmax.
|
1811 |
+
|
1812 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
1813 |
+
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1814 |
+
the response mask. A `1` value in the mask means that the corresponding token
|
1815 |
+
is a response token. A `0` means that the corresponding token is not
|
1816 |
+
a response token.
|
1817 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
1818 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
1819 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
1820 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
1821 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
1822 |
+
This can speed up decoding when you only care about the next token.
|
1823 |
+
"""
|
1824 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
1825 |
+
|
1826 |
+
if past_key_values:
|
1827 |
+
assert len(past_key_values) == self.config.n_layers
|
1828 |
+
|
1829 |
+
has_image = images is not None
|
1830 |
+
|
1831 |
+
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
|
1832 |
+
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images."
|
1833 |
+
|
1834 |
+
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
1835 |
+
if past_key_values is None:
|
1836 |
+
past_length = 0
|
1837 |
+
else:
|
1838 |
+
past_length = past_key_values[0][0].size(-2)
|
1839 |
+
|
1840 |
+
if self.config.use_position_ids and attention_mask is None:
|
1841 |
+
attention_mask = input_ids != -1
|
1842 |
+
|
1843 |
+
if subsegment_ids is not None:
|
1844 |
+
assert not use_cache, "Subsegment_ids cannot be used with cache."
|
1845 |
+
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
|
1846 |
+
attention_mask = (
|
1847 |
+
subsegment_mask.to(attention_mask.dtype) *
|
1848 |
+
attention_mask.unsqueeze(2) *
|
1849 |
+
attention_mask.unsqueeze(1))
|
1850 |
+
if position_ids is None:
|
1851 |
+
raise ValueError(f"Positioned ids must be given if using subsegment_ids")
|
1852 |
+
else:
|
1853 |
+
if self.config.use_position_ids and position_ids is None:
|
1854 |
+
position_ids = torch.clamp(
|
1855 |
+
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
|
1856 |
+
min=0,
|
1857 |
+
).broadcast_to((batch_size, attention_mask.shape[-1]))
|
1858 |
+
|
1859 |
+
# Get embeddings of input.
|
1860 |
+
# shape: (batch_size, seq_len, d_model)
|
1861 |
+
if input_ids is not None:
|
1862 |
+
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
1863 |
+
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
1864 |
+
|
1865 |
+
num_image: Optional[int] = None
|
1866 |
+
if images is not None:
|
1867 |
+
# shape: (batch_size, num_image, num_patch, d_model)
|
1868 |
+
# cls_embed: (batch_size, num_image, d_model)
|
1869 |
+
image_features, cls_embed = self.vision_backbone(images, image_masks)
|
1870 |
+
num_image, num_patch = image_features.shape[1:3]
|
1871 |
+
assert image_input_idx.shape == (batch_size, num_image, num_patch)
|
1872 |
+
|
1873 |
+
# inster the image feature into the embedding.
|
1874 |
+
image_features = image_features.view(batch_size, num_image * num_patch, -1)
|
1875 |
+
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)
|
1876 |
+
|
1877 |
+
valid = image_input_idx >= 0
|
1878 |
+
batch_idx = torch.arange(batch_size, device=x.device)
|
1879 |
+
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
|
1880 |
+
|
1881 |
+
# For hf demo/endpoint
|
1882 |
+
image_features = image_features.to(x.device)
|
1883 |
+
|
1884 |
+
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
|
1885 |
+
|
1886 |
+
if not self.config.rope:
|
1887 |
+
# Get positional embeddings.
|
1888 |
+
# shape: (1, seq_len)
|
1889 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
1890 |
+
# shape: (1, seq_len, d_model)
|
1891 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
1892 |
+
x = pos_emb + x
|
1893 |
+
|
1894 |
+
# Add input + positional embeddings and apply dropout.
|
1895 |
+
# shape: (batch_size, seq_len, d_model)
|
1896 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1897 |
+
|
1898 |
+
# normalized
|
1899 |
+
if self.config.normalize_input_embeds:
|
1900 |
+
x = x * (self.config.d_model ** 0.5)
|
1901 |
+
|
1902 |
+
# Transform the attention mask into what the blocks expect.
|
1903 |
+
if attention_mask is not None:
|
1904 |
+
# shape: (batch_size, 1, 1, seq_len)
|
1905 |
+
if len(attention_mask.shape) == 2:
|
1906 |
+
attention_mask = attention_mask[:, :past_length + seq_len]
|
1907 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
1908 |
+
else:
|
1909 |
+
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
|
1910 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
1911 |
+
|
1912 |
+
# Merge attention mask with attention bias.
|
1913 |
+
if (
|
1914 |
+
attention_bias is not None
|
1915 |
+
or attention_mask is not None
|
1916 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
1917 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
1918 |
+
# scores correctly.
|
1919 |
+
or past_key_values is not None
|
1920 |
+
):
|
1921 |
+
if attention_bias is None:
|
1922 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
1923 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
1924 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
1925 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
1926 |
+
|
1927 |
+
# Transform to the right shape and data type.
|
1928 |
+
mask_len = seq_len
|
1929 |
+
if attention_mask is not None:
|
1930 |
+
mask_len = attention_mask.shape[-1]
|
1931 |
+
elif past_key_values is not None:
|
1932 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
1933 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
1934 |
+
|
1935 |
+
# Add in the masking bias.
|
1936 |
+
if attention_mask is not None:
|
1937 |
+
attention_bias = attention_bias + attention_mask
|
1938 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
1939 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
1940 |
+
# it can produce NaNs.
|
1941 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
1942 |
+
|
1943 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
1944 |
+
|
1945 |
+
# decoder layers
|
1946 |
+
all_hidden_states = []
|
1947 |
+
|
1948 |
+
# Apply blocks one-by-one.
|
1949 |
+
if self.config.block_group_size == 1:
|
1950 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
1951 |
+
if output_hidden_states:
|
1952 |
+
# add hidden states
|
1953 |
+
all_hidden_states.append(x)
|
1954 |
+
|
1955 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
1956 |
+
x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
|
1957 |
+
|
1958 |
+
if attn_key_values is not None:
|
1959 |
+
assert cache is not None
|
1960 |
+
attn_key_values.append(cache)
|
1961 |
+
else:
|
1962 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
1963 |
+
if output_hidden_states:
|
1964 |
+
# add hidden states
|
1965 |
+
all_hidden_states.append(x)
|
1966 |
+
|
1967 |
+
layers_past = (
|
1968 |
+
None
|
1969 |
+
if past_key_values is None
|
1970 |
+
else past_key_values[
|
1971 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
1972 |
+
]
|
1973 |
+
)
|
1974 |
+
x, cache = block_group(
|
1975 |
+
x, attention_bias=attention_bias, position_ids=position_ids, layers_past=layers_past, use_cache=use_cache
|
1976 |
+
)
|
1977 |
+
if attn_key_values is not None:
|
1978 |
+
assert cache is not None
|
1979 |
+
attn_key_values.extend(cache)
|
1980 |
+
|
1981 |
+
if last_logits_only:
|
1982 |
+
# shape: (batch_size, 1, d_model)
|
1983 |
+
if append_last_valid_logits is not None:
|
1984 |
+
last_valid_output = x[
|
1985 |
+
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)]
|
1986 |
+
x = last_valid_output.unsqueeze(1)
|
1987 |
+
else:
|
1988 |
+
x = x[:, -1, :].unsqueeze(1)
|
1989 |
+
|
1990 |
+
# Apply final layer norm.
|
1991 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
1992 |
+
x = self.transformer.ln_f(x) # type: ignore
|
1993 |
+
if output_hidden_states:
|
1994 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
1995 |
+
all_hidden_states.append(x)
|
1996 |
+
|
1997 |
+
# Get logits.
|
1998 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
1999 |
+
if self.config.weight_tying:
|
2000 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
2001 |
+
else:
|
2002 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
2003 |
+
if self.config.scale_logits:
|
2004 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
2005 |
+
|
2006 |
+
if not last_logits_only and append_last_valid_logits is not None:
|
2007 |
+
last_valid_logit = logits[
|
2008 |
+
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits]
|
2009 |
+
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)
|
2010 |
+
|
2011 |
+
return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
|
2012 |
+
|
2013 |
+
|
2014 |
+
class MolmoForCausalLM(PreTrainedModel):
|
2015 |
+
config_class = MolmoConfig
|
2016 |
+
base_model_prefix = "model"
|
2017 |
+
_no_split_modules = ["MolmoBlock"]
|
2018 |
+
|
2019 |
+
def __init__(self, config: MolmoConfig, model: Optional[Molmo] = None, init_params: bool = False):
|
2020 |
+
super().__init__(config)
|
2021 |
+
|
2022 |
+
if not model:
|
2023 |
+
full_config = FullMolmoConfig(
|
2024 |
+
image_padding_embed="pad_and_partial_pad",
|
2025 |
+
image_pooling_2d="attention-meanq",
|
2026 |
+
attention_layer_norm=config.attention_layer_norm,
|
2027 |
+
rope_impl="llama",
|
2028 |
+
vocab_size=config.vocab_size,
|
2029 |
+
max_sequence_length=config.max_position_embeddings,
|
2030 |
+
qkv_bias=config.qkv_bias,
|
2031 |
+
norm_after=config.norm_after,
|
2032 |
+
embedding_size=config.embedding_size,
|
2033 |
+
attention_type="sdpa",
|
2034 |
+
embedding_dropout=0,
|
2035 |
+
attention_dropout=0,
|
2036 |
+
residual_dropout=0,
|
2037 |
+
rope=True,
|
2038 |
+
weight_tying=False,
|
2039 |
+
include_bias=False,
|
2040 |
+
d_model=config.hidden_size,
|
2041 |
+
mlp_hidden_size=config.intermediate_size,
|
2042 |
+
n_layers=config.num_hidden_layers,
|
2043 |
+
additional_vocab_size=128,
|
2044 |
+
n_heads=config.num_attention_heads,
|
2045 |
+
n_kv_heads=config.num_key_value_heads,
|
2046 |
+
rope_theta=config.rope_theta,
|
2047 |
+
layer_norm_eps=config.layer_norm_eps,
|
2048 |
+
layer_norm_type=config.layer_norm_type,
|
2049 |
+
vit_layers=[-2, -9],
|
2050 |
+
vision_backbone=VisionBackboneConfig(
|
2051 |
+
image_default_input_size=(336, 336),
|
2052 |
+
image_patch_size=14,
|
2053 |
+
image_pos_patch_size=14,
|
2054 |
+
image_emb_dim=1024,
|
2055 |
+
image_num_heads=16,
|
2056 |
+
image_num_key_value_heads=16,
|
2057 |
+
image_num_layers=23,
|
2058 |
+
image_head_dim=64,
|
2059 |
+
image_mlp_dim=4096,
|
2060 |
+
image_mlp_activations="quick_gelu",
|
2061 |
+
image_dropout_rate=0.0,
|
2062 |
+
image_num_pos=577,
|
2063 |
+
image_norm_eps=1e-5,
|
2064 |
+
attention_dropout=0.0,
|
2065 |
+
residual_dropout=0.0,
|
2066 |
+
initializer_range=0.02,
|
2067 |
+
)
|
2068 |
+
)
|
2069 |
+
self.model = Molmo(full_config, init_params=init_params)
|
2070 |
+
else:
|
2071 |
+
self.model = model
|
2072 |
+
|
2073 |
+
def forward(
|
2074 |
+
self,
|
2075 |
+
input_ids: torch.LongTensor = None,
|
2076 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2077 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2078 |
+
attention_bias: Optional[torch.Tensor] = None,
|
2079 |
+
response_mask: Optional[torch.Tensor] = None,
|
2080 |
+
images: Optional[torch.Tensor] = None,
|
2081 |
+
image_masks: Optional[torch.Tensor] = None,
|
2082 |
+
image_input_idx: Optional[torch.Tensor] = None,
|
2083 |
+
subsegment_ids: Optional[torch.Tensor] = None,
|
2084 |
+
position_ids: Optional[torch.Tensor] = None,
|
2085 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2086 |
+
labels: Optional[torch.LongTensor] = None,
|
2087 |
+
loss_masks: Optional[torch.Tensor] = None,
|
2088 |
+
use_cache: Optional[bool] = None,
|
2089 |
+
last_logits_only: Optional[bool] = None,
|
2090 |
+
output_attentions: Optional[bool] = None,
|
2091 |
+
output_hidden_states: Optional[bool] = None,
|
2092 |
+
append_last_valid_logits: Optional[torch.Tensor] = None,
|
2093 |
+
return_dict: Optional[bool] = None,
|
2094 |
+
cache_position: Optional[
|
2095 |
+
Cache
|
2096 |
+
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
|
2097 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
2098 |
+
if use_cache is None:
|
2099 |
+
use_cache = self.config.use_cache
|
2100 |
+
|
2101 |
+
if output_attentions:
|
2102 |
+
raise ValueError("output_attentions is not yet supported in Molmo")
|
2103 |
+
|
2104 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2105 |
+
|
2106 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
2107 |
+
outputs = self.model.forward(
|
2108 |
+
input_ids=input_ids,
|
2109 |
+
input_embeddings=inputs_embeds,
|
2110 |
+
attention_mask=attention_mask,
|
2111 |
+
attention_bias=attention_bias,
|
2112 |
+
response_mask=response_mask,
|
2113 |
+
images=images,
|
2114 |
+
image_masks=image_masks,
|
2115 |
+
image_input_idx=image_input_idx,
|
2116 |
+
subsegment_ids=subsegment_ids,
|
2117 |
+
position_ids=position_ids,
|
2118 |
+
past_key_values=past_key_values,
|
2119 |
+
use_cache=use_cache,
|
2120 |
+
last_logits_only=last_logits_only,
|
2121 |
+
output_hidden_states=output_hidden_states,
|
2122 |
+
append_last_valid_logits=append_last_valid_logits,
|
2123 |
+
)
|
2124 |
+
|
2125 |
+
logits = outputs.logits
|
2126 |
+
hidden_states = outputs.hidden_states
|
2127 |
+
|
2128 |
+
loss = None
|
2129 |
+
if labels is not None:
|
2130 |
+
if loss_masks is not None:
|
2131 |
+
loss_masks = loss_masks * (loss_masks > 0)
|
2132 |
+
batch_size_in_tokens = max(loss_masks.sum().item(), 1)
|
2133 |
+
labels = labels.long()
|
2134 |
+
labels.masked_fill_(~(loss_masks > 0), -100)
|
2135 |
+
labels = labels.view(-1)
|
2136 |
+
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
|
2137 |
+
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
|
2138 |
+
loss = loss_fct(logits_for_loss, labels)
|
2139 |
+
loss = loss.view(input_ids.shape[0], -1)
|
2140 |
+
loss = loss * loss_masks
|
2141 |
+
loss = loss.sum() / batch_size_in_tokens
|
2142 |
+
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
|
2143 |
+
if use_zloss:
|
2144 |
+
z_squared = logits_for_loss.logsumexp(-1).pow(2)
|
2145 |
+
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
|
2146 |
+
z_loss = z_loss.view(input_ids.shape[0], -1)
|
2147 |
+
z_loss = z_loss * loss_masks
|
2148 |
+
z_loss = z_loss.sum() / batch_size_in_tokens
|
2149 |
+
loss += z_loss
|
2150 |
+
else:
|
2151 |
+
# Shift so that tokens < n predict n
|
2152 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
2153 |
+
shift_labels = labels[..., 1:].contiguous()
|
2154 |
+
# Flatten the tokens
|
2155 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
2156 |
+
shift_logits = shift_logits.view(-1, self.config.embedding_size)
|
2157 |
+
shift_labels = shift_labels.view(-1)
|
2158 |
+
# Enable model parallelism
|
2159 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
2160 |
+
loss = loss_fct(shift_logits, shift_labels)
|
2161 |
+
|
2162 |
+
if not return_dict:
|
2163 |
+
output = (logits,) + outputs[1:]
|
2164 |
+
return (loss,) + output if loss is not None else output
|
2165 |
+
|
2166 |
+
return CausalLMOutputWithPast(
|
2167 |
+
loss=loss,
|
2168 |
+
logits=logits,
|
2169 |
+
past_key_values=outputs.attn_key_values,
|
2170 |
+
hidden_states=hidden_states,
|
2171 |
+
)
|
2172 |
+
|
2173 |
+
def can_generate(self) -> bool:
|
2174 |
+
return True
|
2175 |
+
|
2176 |
+
@torch.no_grad()
|
2177 |
+
def generate_from_batch(
|
2178 |
+
self,
|
2179 |
+
batch: Dict[str, Any],
|
2180 |
+
generation_config: Optional[GenerationConfig] = None,
|
2181 |
+
**kwargs,
|
2182 |
+
):
|
2183 |
+
if generation_config is not None:
|
2184 |
+
assert generation_config.use_cache
|
2185 |
+
|
2186 |
+
images = batch.get("images")
|
2187 |
+
image_masks = batch.get("image_masks")
|
2188 |
+
image_input_idx = batch.get("image_input_idx")
|
2189 |
+
|
2190 |
+
# Validate inputs.
|
2191 |
+
input_ids = batch["input_ids"]
|
2192 |
+
batch_size, seq_len = input_ids.shape
|
2193 |
+
attention_mask = batch.get("attention_mask", None)
|
2194 |
+
max_new_tokens = generation_config.max_new_tokens
|
2195 |
+
assert max_new_tokens is not None
|
2196 |
+
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
|
2197 |
+
position_ids: Optional[torch.Tensor] = None
|
2198 |
+
append_last_valid_logits: Optional[torch.Tensor] = None
|
2199 |
+
if self.config.use_position_ids and attention_mask is None:
|
2200 |
+
attention_mask = input_ids != -1
|
2201 |
+
position_ids = torch.clamp(
|
2202 |
+
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
|
2203 |
+
min=0
|
2204 |
+
)
|
2205 |
+
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
|
2206 |
+
attention_mask = torch.cat(
|
2207 |
+
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
|
2208 |
+
dim=1,
|
2209 |
+
)
|
2210 |
+
if attention_mask is not None:
|
2211 |
+
assert attention_mask.shape == (batch_size, mask_len)
|
2212 |
+
|
2213 |
+
out = super().generate(
|
2214 |
+
batch["input_ids"],
|
2215 |
+
generation_config,
|
2216 |
+
attention_mask=attention_mask,
|
2217 |
+
images=images,
|
2218 |
+
image_masks=image_masks,
|
2219 |
+
image_input_idx=image_input_idx,
|
2220 |
+
position_ids=position_ids,
|
2221 |
+
append_last_valid_logits=append_last_valid_logits,
|
2222 |
+
**kwargs,
|
2223 |
+
)
|
2224 |
+
|
2225 |
+
return out
|
2226 |
+
|
2227 |
+
def prepare_inputs_for_generation(
|
2228 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
2229 |
+
):
|
2230 |
+
if past_key_values:
|
2231 |
+
# This is because we want the model to only process the last generated token.
|
2232 |
+
input_ids = input_ids[:, -1:]
|
2233 |
+
|
2234 |
+
if self.config.use_position_ids:
|
2235 |
+
attention_mask = kwargs.get("attention_mask")
|
2236 |
+
images = kwargs.get("images")
|
2237 |
+
image_masks = kwargs.get("image_masks")
|
2238 |
+
image_input_idx = kwargs.get("image_input_idx")
|
2239 |
+
position_ids = kwargs.get("position_ids")
|
2240 |
+
append_last_valid_logits = kwargs.get("append_last_valid_logits")
|
2241 |
+
model_inputs = {
|
2242 |
+
"input_ids": input_ids,
|
2243 |
+
"attention_mask": attention_mask,
|
2244 |
+
"position_ids": position_ids,
|
2245 |
+
"past_key_values": past_key_values,
|
2246 |
+
"use_cache": True,
|
2247 |
+
"last_logits_only": True,
|
2248 |
+
}
|
2249 |
+
if past_key_values is None:
|
2250 |
+
model_inputs["images"] = images
|
2251 |
+
model_inputs["image_masks"] = image_masks
|
2252 |
+
model_inputs["image_input_idx"] = image_input_idx
|
2253 |
+
model_inputs["append_last_valid_logits"] = append_last_valid_logits
|
2254 |
+
else:
|
2255 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
2256 |
+
|
2257 |
+
model_inputs.update(kwargs)
|
2258 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
2259 |
+
return model_inputs
|
2260 |
+
|
2261 |
+
def _update_model_kwargs_for_generation(
|
2262 |
+
self,
|
2263 |
+
outputs: ModelOutput,
|
2264 |
+
model_kwargs: Dict[str, Any],
|
2265 |
+
is_encoder_decoder: bool = False,
|
2266 |
+
num_new_tokens: int = 1,
|
2267 |
+
) -> Dict[str, Any]:
|
2268 |
+
if self.config.use_position_ids:
|
2269 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
2270 |
+
if "append_last_valid_logits" in model_kwargs:
|
2271 |
+
del model_kwargs["append_last_valid_logits"]
|
2272 |
+
if "images" in model_kwargs:
|
2273 |
+
del model_kwargs["images"]
|
2274 |
+
del model_kwargs["image_masks"]
|
2275 |
+
del model_kwargs["image_input_idx"]
|
2276 |
+
cache_name, cache = super()._extract_past_from_model_output(outputs)
|
2277 |
+
model_kwargs[cache_name] = cache
|
2278 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
2279 |
+
return model_kwargs
|
2280 |
+
|
2281 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
2282 |
+
return self.model.transformer.wte
|
2283 |
+
|
2284 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
2285 |
+
self.model.transformer.wte = value
|
2286 |
+
|
2287 |
+
def get_output_embeddings(self):
|
2288 |
+
if self.config.weight_tying:
|
2289 |
+
return self.model.transformer.wte
|
2290 |
+
else:
|
2291 |
+
return self.model.transformer.ff_out
|
2292 |
+
|
2293 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
2294 |
+
if self.config.weight_tying:
|
2295 |
+
self.model.transformer.wte = value
|
2296 |
+
else:
|
2297 |
+
self.model.transformer.ff_out = value
|
2298 |
+
|
2299 |
+
def tie_weights(self):
|
2300 |
+
"""
|
2301 |
+
This function is intentionally left as a no-op.
|
2302 |
+
|
2303 |
+
Weight tying is handled as follows:
|
2304 |
+
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
|
2305 |
+
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
|
2306 |
+
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
|
2307 |
+
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
|
2308 |
+
|
2309 |
+
Therefore, there is no need to explicitly tie the weights in this function.
|
2310 |
+
"""
|
2311 |
+
pass
|
2312 |
+
|
2313 |
+
def resize_token_embeddings(
|
2314 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
2315 |
+
) -> torch.nn.Embedding:
|
2316 |
+
"""
|
2317 |
+
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
|
2318 |
+
|
2319 |
+
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
2320 |
+
|
2321 |
+
Arguments:
|
2322 |
+
new_num_tokens (`int`, *optional*):
|
2323 |
+
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
|
2324 |
+
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
|
2325 |
+
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
|
2326 |
+
pad_to_multiple_of (`int`, *optional*):
|
2327 |
+
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
|
2328 |
+
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
2329 |
+
|
2330 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
2331 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
2332 |
+
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
2333 |
+
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
2334 |
+
|
2335 |
+
Return:
|
2336 |
+
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
|
2337 |
+
|
2338 |
+
Note:
|
2339 |
+
This method differs from the base class implementation by resizing the `embedding_size` attribute of the
|
2340 |
+
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
|
2341 |
+
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
|
2342 |
+
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
|
2343 |
+
"""
|
2344 |
+
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
2345 |
+
if new_num_tokens is None and pad_to_multiple_of is None:
|
2346 |
+
return model_embeds
|
2347 |
+
|
2348 |
+
# Update base model and current model config
|
2349 |
+
self.config.embedding_size = model_embeds.weight.shape[0]
|
2350 |
+
self.model.config.embedding_size = model_embeds.weight.shape[0]
|
2351 |
+
|
2352 |
+
# Check if the embedding size is less than the vocab size
|
2353 |
+
if self.config.embedding_size < self.config.vocab_size:
|
2354 |
+
warning_message = (
|
2355 |
+
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
|
2356 |
+
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
|
2357 |
+
"size is less than or equal to the new token embedding size."
|
2358 |
+
)
|
2359 |
+
log.warning(warning_message)
|
2360 |
+
|
2361 |
+
# Tie weights again if needed
|
2362 |
+
self.tie_weights()
|
2363 |
+
|
2364 |
+
return model_embeds
|
2365 |
+
|
2366 |
+
|
2367 |
+
# Always register for multi-modal features
|
2368 |
+
AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM)
|