|
{ |
|
"best_metric": null, |
|
"best_model_checkpoint": null, |
|
"epoch": 4.716981132075472, |
|
"eval_steps": 500, |
|
"global_step": 1500, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.7209677419354839, |
|
"eval_loss": 3.2341866493225098, |
|
"eval_runtime": 2.348, |
|
"eval_samples_per_second": 1320.273, |
|
"eval_steps_per_second": 27.683, |
|
"step": 318 |
|
}, |
|
{ |
|
"epoch": 1.57, |
|
"learning_rate": 1.4758909853249476e-05, |
|
"loss": 3.7475, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.8493548387096774, |
|
"eval_loss": 1.7498714923858643, |
|
"eval_runtime": 2.405, |
|
"eval_samples_per_second": 1288.982, |
|
"eval_steps_per_second": 27.027, |
|
"step": 636 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.9016129032258065, |
|
"eval_loss": 0.9944729208946228, |
|
"eval_runtime": 2.409, |
|
"eval_samples_per_second": 1286.84, |
|
"eval_steps_per_second": 26.982, |
|
"step": 954 |
|
}, |
|
{ |
|
"epoch": 3.14, |
|
"learning_rate": 9.517819706498952e-06, |
|
"loss": 1.55, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 4.0, |
|
"eval_accuracy": 0.9229032258064516, |
|
"eval_loss": 0.6697528958320618, |
|
"eval_runtime": 2.372, |
|
"eval_samples_per_second": 1306.914, |
|
"eval_steps_per_second": 27.403, |
|
"step": 1272 |
|
}, |
|
{ |
|
"epoch": 4.72, |
|
"learning_rate": 4.276729559748428e-06, |
|
"loss": 0.69, |
|
"step": 1500 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 1908, |
|
"num_train_epochs": 6, |
|
"save_steps": 500, |
|
"total_flos": 389479376069112.0, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.24525056082338137, |
|
"num_train_epochs": 6, |
|
"temperature": 19 |
|
} |
|
} |
|
|