|
{ |
|
"best_metric": null, |
|
"best_model_checkpoint": null, |
|
"epoch": 4.716981132075472, |
|
"eval_steps": 500, |
|
"global_step": 1500, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.7293548387096774, |
|
"eval_loss": 3.176466703414917, |
|
"eval_runtime": 2.372, |
|
"eval_samples_per_second": 1306.914, |
|
"eval_steps_per_second": 27.403, |
|
"step": 318 |
|
}, |
|
{ |
|
"epoch": 1.57, |
|
"learning_rate": 1.650593990216632e-05, |
|
"loss": 3.7036, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.8590322580645161, |
|
"eval_loss": 1.5857902765274048, |
|
"eval_runtime": 2.418, |
|
"eval_samples_per_second": 1282.05, |
|
"eval_steps_per_second": 26.882, |
|
"step": 636 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.9109677419354839, |
|
"eval_loss": 0.7998820543289185, |
|
"eval_runtime": 2.461, |
|
"eval_samples_per_second": 1259.651, |
|
"eval_steps_per_second": 26.412, |
|
"step": 954 |
|
}, |
|
{ |
|
"epoch": 3.14, |
|
"learning_rate": 1.3011879804332637e-05, |
|
"loss": 1.3611, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 4.0, |
|
"eval_accuracy": 0.9338709677419355, |
|
"eval_loss": 0.4834734797477722, |
|
"eval_runtime": 2.399, |
|
"eval_samples_per_second": 1292.206, |
|
"eval_steps_per_second": 27.095, |
|
"step": 1272 |
|
}, |
|
{ |
|
"epoch": 4.72, |
|
"learning_rate": 9.517819706498952e-06, |
|
"loss": 0.4625, |
|
"step": 1500 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 2862, |
|
"num_train_epochs": 9, |
|
"save_steps": 500, |
|
"total_flos": 472108083521340.0, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.47830413160685104, |
|
"num_train_epochs": 9, |
|
"temperature": 3 |
|
} |
|
} |
|
|