|
{ |
|
"best_metric": null, |
|
"best_model_checkpoint": null, |
|
"epoch": 4.716981132075472, |
|
"eval_steps": 500, |
|
"global_step": 1500, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.7241935483870968, |
|
"eval_loss": 3.2103216648101807, |
|
"eval_runtime": 2.39, |
|
"eval_samples_per_second": 1297.069, |
|
"eval_steps_per_second": 27.197, |
|
"step": 318 |
|
}, |
|
{ |
|
"epoch": 1.57, |
|
"learning_rate": 1.550763701707098e-05, |
|
"loss": 3.7291, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.8529032258064516, |
|
"eval_loss": 1.6777656078338623, |
|
"eval_runtime": 2.436, |
|
"eval_samples_per_second": 1272.578, |
|
"eval_steps_per_second": 26.683, |
|
"step": 636 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.9058064516129032, |
|
"eval_loss": 0.9034197926521301, |
|
"eval_runtime": 2.544, |
|
"eval_samples_per_second": 1218.553, |
|
"eval_steps_per_second": 25.55, |
|
"step": 954 |
|
}, |
|
{ |
|
"epoch": 3.14, |
|
"learning_rate": 1.101527403414196e-05, |
|
"loss": 1.4651, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 4.0, |
|
"eval_accuracy": 0.9283870967741935, |
|
"eval_loss": 0.5764979124069214, |
|
"eval_runtime": 2.477, |
|
"eval_samples_per_second": 1251.514, |
|
"eval_steps_per_second": 26.241, |
|
"step": 1272 |
|
}, |
|
{ |
|
"epoch": 4.72, |
|
"learning_rate": 6.522911051212939e-06, |
|
"loss": 0.5782, |
|
"step": 1500 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 2226, |
|
"num_train_epochs": 7, |
|
"save_steps": 500, |
|
"total_flos": 472108083521340.0, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.9093370096712147, |
|
"num_train_epochs": 7, |
|
"temperature": 18 |
|
} |
|
} |
|
|