kanwal-mehreen18
commited on
Commit
•
d56315c
1
Parent(s):
f791334
Update README.md
Browse files
README.md
CHANGED
@@ -25,185 +25,226 @@ language:
|
|
25 |
- vi
|
26 |
- zh
|
27 |
---
|
28 |
-
# Model
|
29 |
-
|
30 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
31 |
-
|
32 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
33 |
|
34 |
## Model Details
|
35 |
|
36 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
- **Developed by:** [More Information Needed]
|
43 |
-
- **Funded by [optional]:** [More Information Needed]
|
44 |
-
- **Shared by [optional]:** [More Information Needed]
|
45 |
-
- **Model type:** [More Information Needed]
|
46 |
-
- **Language(s) (NLP):** [More Information Needed]
|
47 |
-
- **License:** [More Information Needed]
|
48 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
49 |
-
|
50 |
-
### Model Sources [optional]
|
51 |
-
|
52 |
-
<!-- Provide the basic links for the model. -->
|
53 |
-
|
54 |
-
- **Repository:** [More Information Needed]
|
55 |
-
- **Paper [optional]:** [More Information Needed]
|
56 |
-
- **Demo [optional]:** [More Information Needed]
|
57 |
|
58 |
## Uses
|
59 |
-
|
60 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
61 |
-
|
62 |
-
### Direct Use
|
63 |
-
|
64 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
65 |
-
|
66 |
-
[More Information Needed]
|
67 |
-
|
68 |
-
### Downstream Use [optional]
|
69 |
-
|
70 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
71 |
-
|
72 |
-
[More Information Needed]
|
73 |
-
|
74 |
-
### Out-of-Scope Use
|
75 |
-
|
76 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
-
|
80 |
-
## Bias, Risks, and Limitations
|
81 |
-
|
82 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
### Recommendations
|
87 |
-
|
88 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
89 |
-
|
90 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
91 |
-
|
92 |
-
## How to Get Started with the Model
|
93 |
-
|
94 |
-
Use the code below to get started with the model.
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
|
98 |
## Training Details
|
99 |
-
|
100 |
-
### Training Data
|
101 |
-
|
102 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
103 |
-
|
104 |
-
[More Information Needed]
|
105 |
-
|
106 |
-
### Training Procedure
|
107 |
-
|
108 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
109 |
-
|
110 |
-
#### Preprocessing [optional]
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
|
115 |
-
#### Training Hyperparameters
|
116 |
-
|
117 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
118 |
-
|
119 |
-
#### Speeds, Sizes, Times [optional]
|
120 |
-
|
121 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
|
125 |
## Evaluation
|
126 |
|
127 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
128 |
-
|
129 |
### Testing Data, Factors & Metrics
|
130 |
-
|
131 |
-
#### Testing Data
|
132 |
-
|
133 |
-
<!-- This should link to a Dataset Card if possible. -->
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
#### Factors
|
138 |
-
|
139 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
#### Metrics
|
144 |
-
|
145 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
|
149 |
### Results
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
- vi
|
26 |
- zh
|
27 |
---
|
28 |
+
# Model Checkpoints for Multilingual Machine-Generated Text Portion Detection
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Model Details
|
31 |
|
32 |
### Model Description
|
33 |
+
- Developed by: 1-800-SHARED-TASKS
|
34 |
+
- Funded by: Cohere's Research Compute Grant (July 2024)
|
35 |
+
- Model type: Transformer-based for multilingual text portion detection
|
36 |
+
- Languages (NLP): 23 languages (expanding to 102)
|
37 |
+
- License: Non-commercial; derivatives must remain non-commercial with proper attribution
|
38 |
|
39 |
+
### Model Sources
|
40 |
+
- **Code Repository:** [Github Placeholder]
|
41 |
+
- **Paper:** [ACL Anthology Placeholder]
|
42 |
+
- **Presentation:** [Multi-lingual Machine-Generated Text Portion(s) Detection](https://static1.squarespace.com/static/659ac5de66fdf20e1d607f2e/t/66d977a49597da76b6c260a1/1725527974250/MMGTD-Cohere.pdf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
## Uses
|
45 |
+
The dataset is suitable for machine-generated text portion detection, token classification tasks, and other linguistic tasks. The methods applied here aim to improve the accuracy of detecting which portions of text are machine-generated, particularly in multilingual contexts. The dataset could be beneficial for research and development in areas like AI-generated text moderation, natural language processing, and understanding the integration of AI in content generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
## Training Details
|
48 |
+
The model was trained on a dataset consisting of approximately 330k text samples from LLMs Command-R-Plus (100k) and Aya-23-35B (230k). The dataset includes 10k samples per language for each LLM, with a distribution of 10% fully human-written texts, 10% entirely machine-generated texts, and 80% mixed cases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
## Evaluation
|
51 |
|
|
|
|
|
52 |
### Testing Data, Factors & Metrics
|
53 |
+
The model was evaluated on a multilingual dataset covering 23 languages. Metrics include Accuracy, Precision, Recall, and F1 Score at the word level (character level for Japanese and Chinese).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
### Results
|
56 |
+
Here are the word-level metrics for each language and ** character-level metrics for Japanese (JPN) and Chinese (ZHO):
|
57 |
+
|
58 |
+
<table>
|
59 |
+
<tr>
|
60 |
+
<th>Language</th>
|
61 |
+
<th>Accuracy</th>
|
62 |
+
<th>Precision</th>
|
63 |
+
<th>Recall</th>
|
64 |
+
<th>F1 Score</th>
|
65 |
+
</tr>
|
66 |
+
<tr>
|
67 |
+
<td>ARA</td>
|
68 |
+
<td>0.923</td>
|
69 |
+
<td>0.832</td>
|
70 |
+
<td style="background-color: #e0e0e0;">0.992</td>
|
71 |
+
<td>0.905</td>
|
72 |
+
</tr>
|
73 |
+
<tr>
|
74 |
+
<td>CES</td>
|
75 |
+
<td>0.884</td>
|
76 |
+
<td>0.869</td>
|
77 |
+
<td style="background-color: #e0e0e0;">0.975</td>
|
78 |
+
<td>0.919</td>
|
79 |
+
</tr>
|
80 |
+
<tr>
|
81 |
+
<td>DEU</td>
|
82 |
+
<td>0.917</td>
|
83 |
+
<td>0.895</td>
|
84 |
+
<td style="background-color: #e0e0e0;">0.983</td>
|
85 |
+
<td>0.937</td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td>ELL</td>
|
89 |
+
<td>0.929</td>
|
90 |
+
<td>0.905</td>
|
91 |
+
<td style="background-color: #e0e0e0;">0.984</td>
|
92 |
+
<td>0.943</td>
|
93 |
+
</tr>
|
94 |
+
<tr>
|
95 |
+
<td>ENG</td>
|
96 |
+
<td>0.917</td>
|
97 |
+
<td>0.818</td>
|
98 |
+
<td style="background-color: #e0e0e0;">0.986</td>
|
99 |
+
<td>0.894</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>FRA</td>
|
103 |
+
<td>0.927</td>
|
104 |
+
<td>0.929</td>
|
105 |
+
<td style="background-color: #e0e0e0;">0.966</td>
|
106 |
+
<td>0.947</td>
|
107 |
+
</tr>
|
108 |
+
<tr>
|
109 |
+
<td>HEB</td>
|
110 |
+
<td>0.963</td>
|
111 |
+
<td>0.961</td>
|
112 |
+
<td style="background-color: #e0e0e0;">0.988</td>
|
113 |
+
<td>0.974</td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td>HIN</td>
|
117 |
+
<td>0.890</td>
|
118 |
+
<td>0.736</td>
|
119 |
+
<td style="background-color: #e0e0e0;">0.975</td>
|
120 |
+
<td>0.839</td>
|
121 |
+
</tr>
|
122 |
+
<tr>
|
123 |
+
<td>IND</td>
|
124 |
+
<td>0.861</td>
|
125 |
+
<td>0.794</td>
|
126 |
+
<td style="background-color: #e0e0e0;">0.988</td>
|
127 |
+
<td>0.881</td>
|
128 |
+
</tr>
|
129 |
+
<tr>
|
130 |
+
<td>ITA</td>
|
131 |
+
<td>0.941</td>
|
132 |
+
<td>0.906</td>
|
133 |
+
<td style="background-color: #e0e0e0;">0.989</td>
|
134 |
+
<td>0.946</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td>JPN**</td>
|
138 |
+
<td>0.832</td>
|
139 |
+
<td>0.747</td>
|
140 |
+
<td style="background-color: #e0e0e0;">0.965</td>
|
141 |
+
<td>0.842</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>KOR</td>
|
145 |
+
<td>0.937</td>
|
146 |
+
<td>0.918</td>
|
147 |
+
<td style="background-color: #e0e0e0;">0.992</td>
|
148 |
+
<td>0.954</td>
|
149 |
+
</tr>
|
150 |
+
<tr>
|
151 |
+
<td>NLD</td>
|
152 |
+
<td>0.916</td>
|
153 |
+
<td>0.872</td>
|
154 |
+
<td style="background-color: #e0e0e0;">0.985</td>
|
155 |
+
<td>0.925</td>
|
156 |
+
</tr>
|
157 |
+
<tr>
|
158 |
+
<td>PES</td>
|
159 |
+
<td>0.822</td>
|
160 |
+
<td>0.668</td>
|
161 |
+
<td style="background-color: #e0e0e0;">0.972</td>
|
162 |
+
<td>0.792</td>
|
163 |
+
</tr>
|
164 |
+
<tr>
|
165 |
+
<td>POL</td>
|
166 |
+
<td>0.903</td>
|
167 |
+
<td>0.884</td>
|
168 |
+
<td style="background-color: #e0e0e0;">0.986</td>
|
169 |
+
<td>0.932</td>
|
170 |
+
</tr>
|
171 |
+
<tr>
|
172 |
+
<td>POR</td>
|
173 |
+
<td>0.805</td>
|
174 |
+
<td>0.679</td>
|
175 |
+
<td style="background-color: #e0e0e0;">0.987</td>
|
176 |
+
<td>0.804</td>
|
177 |
+
</tr>
|
178 |
+
<tr>
|
179 |
+
<td>RON</td>
|
180 |
+
<td>0.931</td>
|
181 |
+
<td>0.924</td>
|
182 |
+
<td style="background-color: #e0e0e0;">0.985</td>
|
183 |
+
<td>0.953</td>
|
184 |
+
</tr>
|
185 |
+
<tr>
|
186 |
+
<td>RUS</td>
|
187 |
+
<td>0.885</td>
|
188 |
+
<td>0.818</td>
|
189 |
+
<td style="background-color: #e0e0e0;">0.971</td>
|
190 |
+
<td>0.888</td>
|
191 |
+
</tr>
|
192 |
+
<tr>
|
193 |
+
<td>SPA</td>
|
194 |
+
<td>0.888</td>
|
195 |
+
<td>0.809</td>
|
196 |
+
<td style="background-color: #e0e0e0;">0.990</td>
|
197 |
+
<td>0.890</td>
|
198 |
+
</tr>
|
199 |
+
<tr>
|
200 |
+
<td>TUR</td>
|
201 |
+
<td>0.849</td>
|
202 |
+
<td>0.735</td>
|
203 |
+
<td style="background-color: #e0e0e0;">0.981</td>
|
204 |
+
<td>0.840</td>
|
205 |
+
</tr>
|
206 |
+
<tr>
|
207 |
+
<td>UKR</td>
|
208 |
+
<td>0.768</td>
|
209 |
+
<td>0.637</td>
|
210 |
+
<td style="background-color: #e0e0e0;">0.987</td>
|
211 |
+
<td>0.774</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td>VIE</td>
|
215 |
+
<td>0.866</td>
|
216 |
+
<td>0.757</td>
|
217 |
+
<td style="background-color: #e0e0e0;">0.975</td>
|
218 |
+
<td>0.853</td>
|
219 |
+
</tr>
|
220 |
+
<tr>
|
221 |
+
<td>ZHO**</td>
|
222 |
+
<td>0.803</td>
|
223 |
+
<td>0.698</td>
|
224 |
+
<td style="background-color: #e0e0e0;">0.976</td>
|
225 |
+
<td>0.814</td>
|
226 |
+
</tr>
|
227 |
+
</table>
|
228 |
+
|
229 |
+
## **Authors**
|
230 |
+
|
231 |
+
**Core Contributors**
|
232 |
+
|
233 |
+
- Ram Kadiyala [[contact@rkadiyala.com](mailto:contact@rkadiyala.com)]
|
234 |
+
- Siddartha Pullakhandam [[pullakh2@uwm.edu](mailto:pullakh2@uwm.edu)]
|
235 |
+
- Kanwal Mehreen [[kanwal@traversaal.ai](mailto:kanwal@traversaal.ai)]
|
236 |
+
- Ashay Srivastava [[ashays06@umd.edu](mailto:ashays06@umd.edu)]
|
237 |
+
- Subhasya TippaReddy [[subhasyat@usf.edu](mailto:subhasyat@usf.edu)]
|
238 |
+
|
239 |
+
|
240 |
+
**Extended Crew**
|
241 |
+
- Arvind Reddy Bobbili [[abobbili@cougarnet.uh.edu](mailto:abobbili@cougarnet.uh.edu)]
|
242 |
+
- Drishti Sharma [ ]
|
243 |
+
- Suraj Chandrashekhar [[stelugar@umd.edu](mailto:stelugar@umd.edu)]
|
244 |
+
- Modabbir Adeeb [[madeeb@umd.edu](mailto:madeeb@umd.edu)]
|
245 |
+
- Srinadh Vura [ ]
|
246 |
+
|
247 |
+
|
248 |
+
## **Contact**
|
249 |
+
|
250 |
+
[![Gmail](https://img.shields.io/badge/Gmail-D14836?style=for-the-badge&logo=gmail&logoColor=white)](mailto:contact@rkadiyala.com)
|