0xkrm commited on
Commit
1220dff
1 Parent(s): 95b54f5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -14.96 +/- 19.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f074e47ab00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f074e47ab90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f074e47ac20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f074e47acb0>", "_build": "<function ActorCriticPolicy._build at 0x7f074e47ad40>", "forward": "<function ActorCriticPolicy.forward at 0x7f074e47add0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f074e47ae60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f074e47aef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f074e47af80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f074e481050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f074e4810e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f074e4c59c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667522008733894761, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOBEPT4SJuM8i5xHOW7dHTgucno+m26huAAAgD8AAIA/w5CRPoFd3rzxjRG7kM+BOb3YQb7HrTM6AACAPwAAgD/mguc9IO+zPsMatb2jRxu+xoOuPc7km7wAAAAAAAAAAHoRJL76A/8+RYExvtlAO75xFaM8hWf1vQAAAAAAAAAAM7S9PKJ9aT9wpk89JuxBvr/7QT34oiS9AAAAAAAAAADzkWA+h07DPgaAjj0AK2m+pC2oPfohnz0AAAAAAAAAAM1+TbwpgGm6+B6Pu8Z4F7Y5SNs6LyWHNQAAgD8AAIA/MwNBPhLVuDwpFjO7eguvublkRz7HvL+6AACAPwAAgD+GqdI+0XgKvbnoujsnQOq5pCDzvSnEo7kAAIA/AACAP7oxuD4tTzm9+tDOuiG/PTl9+y2+pucAOgAAgD8AAIA/M45RvVKw6rlaJLs3RgXEMjUTbjpdktW2AACAPwAAgD8AsLO99iRCur7strugbN04YmqZOcbMEjoAAAAAAACAPyADNr4fV5I6Nx2ZO9VnXLgxUXG8JimwugAAgD8AAIA/XWTFPqNXDz9Y3ow9J2z9vXZ8rj1+CM09AAAAAAAAAADqMXy+vxMWPwjkmr1SHBG+jcl7vQKMZrwAAAAAAAAAADODrLpBj+g+viBHPLBdLr7zzcM8Vq1nvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY0Z4exAiPMCUhpRSlIwBbJRNRwGMAXSUR0B7HW2WpqASdX2UKGgGaAloD0MIU7RyLzAZV0CUhpRSlGgVTegDaBZHQHsrSvs7dSF1fZQoaAZoCWgPQwjwiuB/K49ZQJSGlFKUaBVN6ANoFkdAez3BUJfICHV9lChoBmgJaA9DCCO9qN2vyF9AlIaUUpRoFU3oA2gWR0B7Td3aBZp0dX2UKGgGaAloD0MILJ0PzxJOWkCUhpRSlGgVTegDaBZHQHtiUbDMvAZ1fZQoaAZoCWgPQwj6CtKMRdpQwJSGlFKUaBVN9gFoFkdAe2Np3X7LuHV9lChoBmgJaA9DCGt9kdCWMyNAlIaUUpRoFUvmaBZHQHtlJBsyi251fZQoaAZoCWgPQwgpmDEFayZXQJSGlFKUaBVN6ANoFkdAe2eW8h9srXV9lChoBmgJaA9DCIqQup19pf2/lIaUUpRoFU0yAWgWR0B7aNZQpF1CdX2UKGgGaAloD0MIKChFK/cfUkCUhpRSlGgVTegDaBZHQHvOIHkcS5B1fZQoaAZoCWgPQwg8Ei9P53FTQJSGlFKUaBVN6ANoFkdAe9o7SApazXV9lChoBmgJaA9DCH0kJT0MFUtAlIaUUpRoFU3oA2gWR0B73WFUQ04zdX2UKGgGaAloD0MIl8eakUEsZECUhpRSlGgVTbUDaBZHQHwDNNJvo/11fZQoaAZoCWgPQwg826M33GtDwJSGlFKUaBVNVwFoFkdAfAN/CIk7fnV9lChoBmgJaA9DCFvPEI5ZthzAlIaUUpRoFU1iAWgWR0B8DLQeFL39dX2UKGgGaAloD0MIiV+xhgurYUCUhpRSlGgVTegDaBZHQHw4NGy5Zr51fZQoaAZoCWgPQwgXRQ98jIdkQJSGlFKUaBVN6ANoFkdAfD/eSjgydnV9lChoBmgJaA9DCDvl0Y2w9VpAlIaUUpRoFU3oA2gWR0B8Vcmv4dp7dX2UKGgGaAloD0MIb/Wc9L4jRUCUhpRSlGgVS/9oFkdAfFvV6/qPfnV9lChoBmgJaA9DCBeARunSwl9AlIaUUpRoFU3oA2gWR0B8Xa9f1HvudX2UKGgGaAloD0MIW+832nGUXECUhpRSlGgVTegDaBZHQHxpmn889wF1fZQoaAZoCWgPQwhjDKzj+MFWQJSGlFKUaBVN6ANoFkdAfJ1dQfp2U3V9lChoBmgJaA9DCKyowTQMhGHAlIaUUpRoFU2GAWgWR0B8rohY/3WXdX2UKGgGaAloD0MIlN43vvYHVECUhpRSlGgVTegDaBZHQHyyq77Kq4p1fZQoaAZoCWgPQwh154nnbA9XQJSGlFKUaBVN6ANoFkdAfMlY9gWrO3V9lChoBmgJaA9DCFrVko5yp2RAlIaUUpRoFU3oA2gWR0B8zKBxxT86dX2UKGgGaAloD0MI6EoEqn/LXECUhpRSlGgVTegDaBZHQHzPiy+pOvd1fZQoaAZoCWgPQwj68CxBRhZZQJSGlFKUaBVN6ANoFkdAfT0gdfb9InV9lChoBmgJaA9DCBoziXrBtyjAlIaUUpRoFUv0aBZHQH1GRDCxeLN1fZQoaAZoCWgPQwjL94xEaExIQJSGlFKUaBVN6ANoFkdAfUpuy/sVtXV9lChoBmgJaA9DCNz2Peqvc1NAlIaUUpRoFU3oA2gWR0B9Tb+IdlundX2UKGgGaAloD0MIqvBneLPSSMCUhpRSlGgVTXgBaBZHQH1WTfzjFQ51fZQoaAZoCWgPQwjmIOhoVZdfQJSGlFKUaBVN6ANoFkdAfXJcOskpqnV9lChoBmgJaA9DCKX5Y1qb7FtAlIaUUpRoFU3oA2gWR0B9cqj3225QdX2UKGgGaAloD0MImBWKdD+SWkCUhpRSlGgVTegDaBZHQH2oZ/G2kSF1fZQoaAZoCWgPQwhos+pztY9UQJSGlFKUaBVN6ANoFkdAfbyUFB6a9nV9lChoBmgJaA9DCDgwuVFk8FdAlIaUUpRoFU3oA2gWR0B9wjyYoiLVdX2UKGgGaAloD0MIh01k5gIjT0CUhpRSlGgVTegDaBZHQH3EAd8zAN51fZQoaAZoCWgPQwgqqRPQRLFgQJSGlFKUaBVN6ANoFkdAfdOmDDjzZ3V9lChoBmgJaA9DCNNKIZBLel1AlIaUUpRoFU3oA2gWR0B+NmT5ftx/dX2UKGgGaAloD0MIya8fYoOdL0CUhpRSlGgVTXQBaBZHQH5WRJ7LMcJ1fZQoaAZoCWgPQwgpIVhVL6ZeQJSGlFKUaBVN6ANoFkdAfltSn+AEuHV9lChoBmgJaA9DCAddwqG3vDxAlIaUUpRoFU3oA2gWR0B+YEu3+dbxdX2UKGgGaAloD0MIQIf58gIXVkCUhpRSlGgVTegDaBZHQH5kQTdtVJd1fZQoaAZoCWgPQwhw7NlzmVtUQJSGlFKUaBVN6ANoFkdAftEOH31zyXV9lChoBmgJaA9DCGfSpuoecFlAlIaUUpRoFU3oA2gWR0B+2YWfseGPdX2UKGgGaAloD0MI/Wg4ZW5rVECUhpRSlGgVTegDaBZHQH7dkHMUypJ1fZQoaAZoCWgPQwh/h6JAnxJeQJSGlFKUaBVN6ANoFkdAfuCQtBfKIXV9lChoBmgJaA9DCC2xMhp5wWJAlIaUUpRoFU3oA2gWR0B+6BWsA/9pdX2UKGgGaAloD0MIVFbT9UQBWUCUhpRSlGgVTegDaBZHQH8Bxa9sabZ1fZQoaAZoCWgPQwgQPSmTGrVaQJSGlFKUaBVN6ANoFkdAfwIMRHww03V9lChoBmgJaA9DCPMeZ5qw5UvAlIaUUpRoFU1oAWgWR0B/AkPrfLs9dX2UKGgGaAloD0MIgQTFjzFJUMCUhpRSlGgVTVQBaBZHQH8C7SuyNXJ1fZQoaAZoCWgPQwgdk8X9R049wJSGlFKUaBVNXAFoFkdAfzCaMrEtNHV9lChoBmgJaA9DCBzr4jaaAmFAlIaUUpRoFU3oA2gWR0B/MKHh0hePdX2UKGgGaAloD0MIzEBl/Pv6WECUhpRSlGgVTegDaBZHQH9Iisr/bTN1fZQoaAZoCWgPQwjcK/NWXRpcQJSGlFKUaBVN6ANoFkdAf0pSCOFQEnV9lChoBmgJaA9DCNdNKa+VT2ZAlIaUUpRoFU2pAmgWR0B/VS1rqMWHdX2UKGgGaAloD0MIYwlrY+w6YUCUhpRSlGgVTegDaBZHQH9WBew9q1x1fZQoaAZoCWgPQwglkuhlFPs4wJSGlFKUaBVNUAFoFkdAf50ffXPJJXV9lChoBmgJaA9DCAcHexPDwmRAlIaUUpRoFU3oA2gWR0B/piRlpXZHdX2UKGgGaAloD0MIvayJBb5SFsCUhpRSlGgVTY4BaBZHQH+uzOC5Etx1fZQoaAZoCWgPQwjMY83IID8gQJSGlFKUaBVNLAFoFkdAf7l5jYqXnnV9lChoBmgJaA9DCMGopE5A4lRAlIaUUpRoFU3oA2gWR0B/w+Rq46OpdX2UKGgGaAloD0MIcM6I0t42XUCUhpRSlGgVTegDaBZHQIAZLyUcGTt1fZQoaAZoCWgPQwjgLvt1J9liQJSGlFKUaBVN6ANoFkdAgB5BAv+OwXV9lChoBmgJaA9DCIsWoG01r0pAlIaUUpRoFU3oA2gWR0CAIJKfWcz7dX2UKGgGaAloD0MIxv1HpkMuWECUhpRSlGgVTegDaBZHQIAnr2nKnvV1fZQoaAZoCWgPQwhrfvylRSRbQJSGlFKUaBVN6ANoFkdAgDnXJYDDCXV9lChoBmgJaA9DCHMs76oH8l1AlIaUUpRoFU3oA2gWR0CAOgcLjPv8dX2UKGgGaAloD0MIhel7DcHqWUCUhpRSlGgVTegDaBZHQIA6I065oXd1fZQoaAZoCWgPQwh5ILJIE9lbQJSGlFKUaBVN6ANoFkdAgDqWn889wHV9lChoBmgJaA9DCGWnH9RFAmJAlIaUUpRoFU3XA2gWR0CAYBFQVKwqdX2UKGgGaAloD0MIza/mAMHtX0CUhpRSlGgVTegDaBZHQIBhzreIl+p1fZQoaAZoCWgPQwhBZfz7jKlTQJSGlFKUaBVN6ANoFkdAgGg3SBshxHV9lChoBmgJaA9DCDquRnal1T9AlIaUUpRoFU3oA2gWR0CAh5vc8DB/dX2UKGgGaAloD0MIjdDP1Ou7XECUhpRSlGgVTegDaBZHQICMonYxtYV1fZQoaAZoCWgPQwiq8dJNYgRcQJSGlFKUaBVN6ANoFkdAgJGafzz3AXV9lChoBmgJaA9DCD25pkBmTllAlIaUUpRoFU3oA2gWR0CAl1vegte2dX2UKGgGaAloD0MIP5EnSdfWWUCUhpRSlGgVTegDaBZHQICc7iS7oSt1fZQoaAZoCWgPQwisjbETXkhcQJSGlFKUaBVN6ANoFkdAgNNEzO5avHV9lChoBmgJaA9DCNuIJ7uZD2BAlIaUUpRoFU3oA2gWR0CA1+37UG3XdX2UKGgGaAloD0MI6x1uh4Y0XkCUhpRSlGgVTegDaBZHQIDZ72Dg62h1fZQoaAZoCWgPQwjM1CR4QyNUQJSGlFKUaBVN6ANoFkdAgOA5UDMeOnV9lChoBmgJaA9DCFipoKLqUzFAlIaUUpRoFU1lAWgWR0CA4M51/2CedX2UKGgGaAloD0MIXW4w1GEaYkCUhpRSlGgVTegDaBZHQIDs7nX/YJ51fZQoaAZoCWgPQwhzvth7cdNiQJSGlFKUaBVN6ANoFkdAgO0QBHTZx3V9lChoBmgJaA9DCAu0O6QYvF1AlIaUUpRoFU3oA2gWR0CA7Soa1kUcdX2UKGgGaAloD0MI7GexFMkKYUCUhpRSlGgVTegDaBZHQIDtgqgAZKp1fZQoaAZoCWgPQwgmcVZETeZTwJSGlFKUaBVNUwFoFkdAgPsUtRNypHV9lChoBmgJaA9DCMxgjEgUMmBAlIaUUpRoFU3oA2gWR0CBDiDB/I8ydX2UKGgGaAloD0MIUitM32sxWUCUhpRSlGgVTegDaBZHQIEPpew9q1x1fZQoaAZoCWgPQwgdkloomWdjQJSGlFKUaBVN6ANoFkdAgRVgeA/cFnV9lChoBmgJaA9DCEDfFizVhQbAlIaUUpRoFUv1aBZHQIEvmrIYFaB1fZQoaAZoCWgPQwjovpzZrudRQJSGlFKUaBVN6ANoFkdAgTXZQpF1CHV9lChoBmgJaA9DCPmgZ7Pqw1ZAlIaUUpRoFU3oA2gWR0CBOhWI42jxdX2UKGgGaAloD0MIqmVrfdH6cECUhpRSlGgVTc8CaBZHQIE73CKrJbN1fZQoaAZoCWgPQwgapyGq8CcRwJSGlFKUaBVNRAFoFkdAgTv0ZeiSJXV9lChoBmgJaA9DCDVG66hqrlFAlIaUUpRoFU3oA2gWR0CBPqsEq2BrdX2UKGgGaAloD0MIv2VOl8UgXkCUhpRSlGgVTegDaBZHQIFCd5UtI091ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61fd84a9201fa7adc8579d2e7b68c33643c33925637d5fbd570051181820bb49
3
+ size 147150
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f074e47ab00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f074e47ab90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f074e47ac20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f074e47acb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f074e47ad40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f074e47add0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f074e47ae60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f074e47aef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f074e47af80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f074e481050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f074e4810e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f074e4c59c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1667522008733894761,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOBEPT4SJuM8i5xHOW7dHTgucno+m26huAAAgD8AAIA/w5CRPoFd3rzxjRG7kM+BOb3YQb7HrTM6AACAPwAAgD/mguc9IO+zPsMatb2jRxu+xoOuPc7km7wAAAAAAAAAAHoRJL76A/8+RYExvtlAO75xFaM8hWf1vQAAAAAAAAAAM7S9PKJ9aT9wpk89JuxBvr/7QT34oiS9AAAAAAAAAADzkWA+h07DPgaAjj0AK2m+pC2oPfohnz0AAAAAAAAAAM1+TbwpgGm6+B6Pu8Z4F7Y5SNs6LyWHNQAAgD8AAIA/MwNBPhLVuDwpFjO7eguvublkRz7HvL+6AACAPwAAgD+GqdI+0XgKvbnoujsnQOq5pCDzvSnEo7kAAIA/AACAP7oxuD4tTzm9+tDOuiG/PTl9+y2+pucAOgAAgD8AAIA/M45RvVKw6rlaJLs3RgXEMjUTbjpdktW2AACAPwAAgD8AsLO99iRCur7strugbN04YmqZOcbMEjoAAAAAAACAPyADNr4fV5I6Nx2ZO9VnXLgxUXG8JimwugAAgD8AAIA/XWTFPqNXDz9Y3ow9J2z9vXZ8rj1+CM09AAAAAAAAAADqMXy+vxMWPwjkmr1SHBG+jcl7vQKMZrwAAAAAAAAAADODrLpBj+g+viBHPLBdLr7zzcM8Vq1nvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY0Z4exAiPMCUhpRSlIwBbJRNRwGMAXSUR0B7HW2WpqASdX2UKGgGaAloD0MIU7RyLzAZV0CUhpRSlGgVTegDaBZHQHsrSvs7dSF1fZQoaAZoCWgPQwjwiuB/K49ZQJSGlFKUaBVN6ANoFkdAez3BUJfICHV9lChoBmgJaA9DCCO9qN2vyF9AlIaUUpRoFU3oA2gWR0B7Td3aBZp0dX2UKGgGaAloD0MILJ0PzxJOWkCUhpRSlGgVTegDaBZHQHtiUbDMvAZ1fZQoaAZoCWgPQwj6CtKMRdpQwJSGlFKUaBVN9gFoFkdAe2Np3X7LuHV9lChoBmgJaA9DCGt9kdCWMyNAlIaUUpRoFUvmaBZHQHtlJBsyi251fZQoaAZoCWgPQwgpmDEFayZXQJSGlFKUaBVN6ANoFkdAe2eW8h9srXV9lChoBmgJaA9DCIqQup19pf2/lIaUUpRoFU0yAWgWR0B7aNZQpF1CdX2UKGgGaAloD0MIKChFK/cfUkCUhpRSlGgVTegDaBZHQHvOIHkcS5B1fZQoaAZoCWgPQwg8Ei9P53FTQJSGlFKUaBVN6ANoFkdAe9o7SApazXV9lChoBmgJaA9DCH0kJT0MFUtAlIaUUpRoFU3oA2gWR0B73WFUQ04zdX2UKGgGaAloD0MIl8eakUEsZECUhpRSlGgVTbUDaBZHQHwDNNJvo/11fZQoaAZoCWgPQwg826M33GtDwJSGlFKUaBVNVwFoFkdAfAN/CIk7fnV9lChoBmgJaA9DCFvPEI5ZthzAlIaUUpRoFU1iAWgWR0B8DLQeFL39dX2UKGgGaAloD0MIiV+xhgurYUCUhpRSlGgVTegDaBZHQHw4NGy5Zr51fZQoaAZoCWgPQwgXRQ98jIdkQJSGlFKUaBVN6ANoFkdAfD/eSjgydnV9lChoBmgJaA9DCDvl0Y2w9VpAlIaUUpRoFU3oA2gWR0B8Vcmv4dp7dX2UKGgGaAloD0MIb/Wc9L4jRUCUhpRSlGgVS/9oFkdAfFvV6/qPfnV9lChoBmgJaA9DCBeARunSwl9AlIaUUpRoFU3oA2gWR0B8Xa9f1HvudX2UKGgGaAloD0MIW+832nGUXECUhpRSlGgVTegDaBZHQHxpmn889wF1fZQoaAZoCWgPQwhjDKzj+MFWQJSGlFKUaBVN6ANoFkdAfJ1dQfp2U3V9lChoBmgJaA9DCKyowTQMhGHAlIaUUpRoFU2GAWgWR0B8rohY/3WXdX2UKGgGaAloD0MIlN43vvYHVECUhpRSlGgVTegDaBZHQHyyq77Kq4p1fZQoaAZoCWgPQwh154nnbA9XQJSGlFKUaBVN6ANoFkdAfMlY9gWrO3V9lChoBmgJaA9DCFrVko5yp2RAlIaUUpRoFU3oA2gWR0B8zKBxxT86dX2UKGgGaAloD0MI6EoEqn/LXECUhpRSlGgVTegDaBZHQHzPiy+pOvd1fZQoaAZoCWgPQwj68CxBRhZZQJSGlFKUaBVN6ANoFkdAfT0gdfb9InV9lChoBmgJaA9DCBoziXrBtyjAlIaUUpRoFUv0aBZHQH1GRDCxeLN1fZQoaAZoCWgPQwjL94xEaExIQJSGlFKUaBVN6ANoFkdAfUpuy/sVtXV9lChoBmgJaA9DCNz2Peqvc1NAlIaUUpRoFU3oA2gWR0B9Tb+IdlundX2UKGgGaAloD0MIqvBneLPSSMCUhpRSlGgVTXgBaBZHQH1WTfzjFQ51fZQoaAZoCWgPQwjmIOhoVZdfQJSGlFKUaBVN6ANoFkdAfXJcOskpqnV9lChoBmgJaA9DCKX5Y1qb7FtAlIaUUpRoFU3oA2gWR0B9cqj3225QdX2UKGgGaAloD0MImBWKdD+SWkCUhpRSlGgVTegDaBZHQH2oZ/G2kSF1fZQoaAZoCWgPQwhos+pztY9UQJSGlFKUaBVN6ANoFkdAfbyUFB6a9nV9lChoBmgJaA9DCDgwuVFk8FdAlIaUUpRoFU3oA2gWR0B9wjyYoiLVdX2UKGgGaAloD0MIh01k5gIjT0CUhpRSlGgVTegDaBZHQH3EAd8zAN51fZQoaAZoCWgPQwgqqRPQRLFgQJSGlFKUaBVN6ANoFkdAfdOmDDjzZ3V9lChoBmgJaA9DCNNKIZBLel1AlIaUUpRoFU3oA2gWR0B+NmT5ftx/dX2UKGgGaAloD0MIya8fYoOdL0CUhpRSlGgVTXQBaBZHQH5WRJ7LMcJ1fZQoaAZoCWgPQwgpIVhVL6ZeQJSGlFKUaBVN6ANoFkdAfltSn+AEuHV9lChoBmgJaA9DCAddwqG3vDxAlIaUUpRoFU3oA2gWR0B+YEu3+dbxdX2UKGgGaAloD0MIQIf58gIXVkCUhpRSlGgVTegDaBZHQH5kQTdtVJd1fZQoaAZoCWgPQwhw7NlzmVtUQJSGlFKUaBVN6ANoFkdAftEOH31zyXV9lChoBmgJaA9DCGfSpuoecFlAlIaUUpRoFU3oA2gWR0B+2YWfseGPdX2UKGgGaAloD0MI/Wg4ZW5rVECUhpRSlGgVTegDaBZHQH7dkHMUypJ1fZQoaAZoCWgPQwh/h6JAnxJeQJSGlFKUaBVN6ANoFkdAfuCQtBfKIXV9lChoBmgJaA9DCC2xMhp5wWJAlIaUUpRoFU3oA2gWR0B+6BWsA/9pdX2UKGgGaAloD0MIVFbT9UQBWUCUhpRSlGgVTegDaBZHQH8Bxa9sabZ1fZQoaAZoCWgPQwgQPSmTGrVaQJSGlFKUaBVN6ANoFkdAfwIMRHww03V9lChoBmgJaA9DCPMeZ5qw5UvAlIaUUpRoFU1oAWgWR0B/AkPrfLs9dX2UKGgGaAloD0MIgQTFjzFJUMCUhpRSlGgVTVQBaBZHQH8C7SuyNXJ1fZQoaAZoCWgPQwgdk8X9R049wJSGlFKUaBVNXAFoFkdAfzCaMrEtNHV9lChoBmgJaA9DCBzr4jaaAmFAlIaUUpRoFU3oA2gWR0B/MKHh0hePdX2UKGgGaAloD0MIzEBl/Pv6WECUhpRSlGgVTegDaBZHQH9Iisr/bTN1fZQoaAZoCWgPQwjcK/NWXRpcQJSGlFKUaBVN6ANoFkdAf0pSCOFQEnV9lChoBmgJaA9DCNdNKa+VT2ZAlIaUUpRoFU2pAmgWR0B/VS1rqMWHdX2UKGgGaAloD0MIYwlrY+w6YUCUhpRSlGgVTegDaBZHQH9WBew9q1x1fZQoaAZoCWgPQwglkuhlFPs4wJSGlFKUaBVNUAFoFkdAf50ffXPJJXV9lChoBmgJaA9DCAcHexPDwmRAlIaUUpRoFU3oA2gWR0B/piRlpXZHdX2UKGgGaAloD0MIvayJBb5SFsCUhpRSlGgVTY4BaBZHQH+uzOC5Etx1fZQoaAZoCWgPQwjMY83IID8gQJSGlFKUaBVNLAFoFkdAf7l5jYqXnnV9lChoBmgJaA9DCMGopE5A4lRAlIaUUpRoFU3oA2gWR0B/w+Rq46OpdX2UKGgGaAloD0MIcM6I0t42XUCUhpRSlGgVTegDaBZHQIAZLyUcGTt1fZQoaAZoCWgPQwjgLvt1J9liQJSGlFKUaBVN6ANoFkdAgB5BAv+OwXV9lChoBmgJaA9DCIsWoG01r0pAlIaUUpRoFU3oA2gWR0CAIJKfWcz7dX2UKGgGaAloD0MIxv1HpkMuWECUhpRSlGgVTegDaBZHQIAnr2nKnvV1fZQoaAZoCWgPQwhrfvylRSRbQJSGlFKUaBVN6ANoFkdAgDnXJYDDCXV9lChoBmgJaA9DCHMs76oH8l1AlIaUUpRoFU3oA2gWR0CAOgcLjPv8dX2UKGgGaAloD0MIhel7DcHqWUCUhpRSlGgVTegDaBZHQIA6I065oXd1fZQoaAZoCWgPQwh5ILJIE9lbQJSGlFKUaBVN6ANoFkdAgDqWn889wHV9lChoBmgJaA9DCGWnH9RFAmJAlIaUUpRoFU3XA2gWR0CAYBFQVKwqdX2UKGgGaAloD0MIza/mAMHtX0CUhpRSlGgVTegDaBZHQIBhzreIl+p1fZQoaAZoCWgPQwhBZfz7jKlTQJSGlFKUaBVN6ANoFkdAgGg3SBshxHV9lChoBmgJaA9DCDquRnal1T9AlIaUUpRoFU3oA2gWR0CAh5vc8DB/dX2UKGgGaAloD0MIjdDP1Ou7XECUhpRSlGgVTegDaBZHQICMonYxtYV1fZQoaAZoCWgPQwiq8dJNYgRcQJSGlFKUaBVN6ANoFkdAgJGafzz3AXV9lChoBmgJaA9DCD25pkBmTllAlIaUUpRoFU3oA2gWR0CAl1vegte2dX2UKGgGaAloD0MIP5EnSdfWWUCUhpRSlGgVTegDaBZHQICc7iS7oSt1fZQoaAZoCWgPQwisjbETXkhcQJSGlFKUaBVN6ANoFkdAgNNEzO5avHV9lChoBmgJaA9DCNuIJ7uZD2BAlIaUUpRoFU3oA2gWR0CA1+37UG3XdX2UKGgGaAloD0MI6x1uh4Y0XkCUhpRSlGgVTegDaBZHQIDZ72Dg62h1fZQoaAZoCWgPQwjM1CR4QyNUQJSGlFKUaBVN6ANoFkdAgOA5UDMeOnV9lChoBmgJaA9DCFipoKLqUzFAlIaUUpRoFU1lAWgWR0CA4M51/2CedX2UKGgGaAloD0MIXW4w1GEaYkCUhpRSlGgVTegDaBZHQIDs7nX/YJ51fZQoaAZoCWgPQwhzvth7cdNiQJSGlFKUaBVN6ANoFkdAgO0QBHTZx3V9lChoBmgJaA9DCAu0O6QYvF1AlIaUUpRoFU3oA2gWR0CA7Soa1kUcdX2UKGgGaAloD0MI7GexFMkKYUCUhpRSlGgVTegDaBZHQIDtgqgAZKp1fZQoaAZoCWgPQwgmcVZETeZTwJSGlFKUaBVNUwFoFkdAgPsUtRNypHV9lChoBmgJaA9DCMxgjEgUMmBAlIaUUpRoFU3oA2gWR0CBDiDB/I8ydX2UKGgGaAloD0MIUitM32sxWUCUhpRSlGgVTegDaBZHQIEPpew9q1x1fZQoaAZoCWgPQwgdkloomWdjQJSGlFKUaBVN6ANoFkdAgRVgeA/cFnV9lChoBmgJaA9DCEDfFizVhQbAlIaUUpRoFUv1aBZHQIEvmrIYFaB1fZQoaAZoCWgPQwjovpzZrudRQJSGlFKUaBVN6ANoFkdAgTXZQpF1CHV9lChoBmgJaA9DCPmgZ7Pqw1ZAlIaUUpRoFU3oA2gWR0CBOhWI42jxdX2UKGgGaAloD0MIqmVrfdH6cECUhpRSlGgVTc8CaBZHQIE73CKrJbN1fZQoaAZoCWgPQwgapyGq8CcRwJSGlFKUaBVNRAFoFkdAgTv0ZeiSJXV9lChoBmgJaA9DCDVG66hqrlFAlIaUUpRoFU3oA2gWR0CBPqsEq2BrdX2UKGgGaAloD0MIv2VOl8UgXkCUhpRSlGgVTegDaBZHQIFCd5UtI091ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a0fe9c93fa27911ebf302a643b9274fb25883491284fdb4aa5b2e1e182c5ca2
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3428257c90c5c5ee8e698257b4487354c80fc15a123bd81ece967298206a6bd
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (248 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -14.95588059538277, "std_reward": 19.44584961853031, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-04T00:43:00.304535"}