0xid commited on
Commit
33830fc
1 Parent(s): 10c89ce

Upload PPO LunarLander-v2 trained agent for Unit 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.96 +/- 23.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f51e4fb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f51e4fc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f51e4fca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f51e4fd30>", "_build": "<function ActorCriticPolicy._build at 0x7f7f51e4fdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f51e4fe50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f51e4fee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f51e4ff70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f51e54040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f51e540d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f51e54160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f51e4d360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678320798.2386088, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3WDbwUyJO6rYiGur2+tDw5iLq6gHqbPQAAgD8AAIA/mv6tvPZrMbyOCT+85JzDPO00tr06h549AACAPwAAgD+azHs96mg8Pv130jsw5Uu+dM2jPaC/lr0AAAAAAAAAAJq5iLvXZBQ/6BOVPRzkjr58ApU7DmtKPQAAAAAAAAAAzW5VvRWKmD89AMu971oRv4TI1b3quCc8AAAAAAAAAACayfC7rgWEuqa5EjoCywu2So1OOafHKrkAAIA/AACAP7qyUz5YACo/kmmRvTNwx77tucI9pV2kvQAAAAAAAAAAzb7jPD3qKTyW2ws+XP4KvtzM4D2OUQq/AAAAAAAAgD8GDkI+Z7rgPjFBF76dia6+zh63PfU7VLwAAAAAAAAAAM1MhzmJtrI/irM1vLBmpL4jGn69GOPVOwAAAAAAAAAAzVJrPcORc7puowc16xtCL6e+1LprH2m0AACAPwAAgD8ziki97tG6P2x6Lb9Ri2o+94bfPO5X07wAAAAAAAAAAM4Anb70HMY+rXNdPnMUzb6AqFq+vC/GPQAAAAAAAAAAAAXlPE9uD7wV0Ou70UyyPPO2bD0aLJO9AACAPwAAgD9NAAs+S1pfPz7rHD7cXuW+73emPYZrMrsAAAAAAAAAADOQYT5Lx7M+YcCEvg+RkL6szqG6BZ8jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITl5kAn6ucUCUhpRSlIwBbJRNJAGMAXSUR0Cl6SaFmFrVdX2UKGgGaAloD0MIvceZJmzpcECUhpRSlGgVS+toFkdApepn0kGA1HV9lChoBmgJaA9DCGgj100pc29AlIaUUpRoFU0JAWgWR0Cl6oVTBInSdX2UKGgGaAloD0MIOXtntBVtcUCUhpRSlGgVTQsBaBZHQKXq+RfWtlt1fZQoaAZoCWgPQwgPC7WmedVyQJSGlFKUaBVL/mgWR0Cl6vjbJwKjdX2UKGgGaAloD0MIAfp9/+ZecUCUhpRSlGgVTQwBaBZHQKXrjD/lyR11fZQoaAZoCWgPQwgSZ0XUhHVwQJSGlFKUaBVNWAFoFkdApewOyNXHR3V9lChoBmgJaA9DCA9eu7Th1G9AlIaUUpRoFU0oAWgWR0Cl7GkJ0GNadX2UKGgGaAloD0MIDCO9qJ0vcUCUhpRSlGgVTQgBaBZHQKXspgMMI/t1fZQoaAZoCWgPQwg/4IEBhBJtQJSGlFKUaBVNJAFoFkdApe2Lr7fpEHV9lChoBmgJaA9DCNZYwtpYEXFAlIaUUpRoFU0gAWgWR0Cl7wCY1He8dX2UKGgGaAloD0MIyuAoebWWcUCUhpRSlGgVTTMBaBZHQKXvjGus90R1fZQoaAZoCWgPQwhqpRDIpZtxQJSGlFKUaBVL9GgWR0Cl78O89Oh1dX2UKGgGaAloD0MIS1tc4zOsckCUhpRSlGgVS/toFkdApe/zZWaMJnV9lChoBmgJaA9DCG6/fLLiQ3NAlIaUUpRoFUv3aBZHQKXwOfwqiGp1fZQoaAZoCWgPQwhS1Jl7yKZxQJSGlFKUaBVNcwFoFkdApfCeMOwxFnV9lChoBmgJaA9DCEFJgQWwfHBAlIaUUpRoFU0eAWgWR0Cl8sHTiKixdX2UKGgGaAloD0MIbHak+o62cUCUhpRSlGgVS+BoFkdApfMEWGh24nV9lChoBmgJaA9DCO7sKw/SCXBAlIaUUpRoFUv0aBZHQKXzIh8IAwR1fZQoaAZoCWgPQwhUNxd/W2NyQJSGlFKUaBVNBwFoFkdApfOvBacI7nV9lChoBmgJaA9DCEtWRbhJOW9AlIaUUpRoFU0kAWgWR0Cl9Dg1FYuCdX2UKGgGaAloD0MI+s+aH//fcUCUhpRSlGgVTSEBaBZHQKX18uU2UB51fZQoaAZoCWgPQwiFzmvsEvNtQJSGlFKUaBVNOAFoFkdApfZniWE9MnV9lChoBmgJaA9DCLsO1ZSkfHJAlIaUUpRoFU13AWgWR0Cl9u68Hv+gdX2UKGgGaAloD0MIcsKE0WxMcUCUhpRSlGgVTTsBaBZHQKX3I6DGtIV1fZQoaAZoCWgPQwiGrG71HMpxQJSGlFKUaBVL92gWR0Cl9y3AmAskdX2UKGgGaAloD0MINV8lH/u+cUCUhpRSlGgVTSUBaBZHQKX3QGO+7Dl1fZQoaAZoCWgPQwiCdRw/VA9uQJSGlFKUaBVNCAFoFkdApfhSA6Mir3V9lChoBmgJaA9DCGqlEMglsnBAlIaUUpRoFU0xAWgWR0Cl+oUwaisXdX2UKGgGaAloD0MIswsG11xKbkCUhpRSlGgVTUQBaBZHQKX6pSOR1YB1fZQoaAZoCWgPQwgs8YCyKc1yQJSGlFKUaBVNTQFoFkdApfshbr1M/XV9lChoBmgJaA9DCBRf7SgOIHNAlIaUUpRoFU07AWgWR0Cl+0cn3L3cdX2UKGgGaAloD0MIrJFdaVkRcUCUhpRSlGgVTQYBaBZHQKX7/1QIldF1fZQoaAZoCWgPQwiaYDjXsIZyQJSGlFKUaBVNEgFoFkdApfwQGt6ol3V9lChoBmgJaA9DCHaqfM/IX21AlIaUUpRoFU0lAWgWR0Cl/P3531SPdX2UKGgGaAloD0MI6BVPPVJAckCUhpRSlGgVTQYBaBZHQKX9QUQCjlB1fZQoaAZoCWgPQwgQ6EzaFMJxQJSGlFKUaBVNLAFoFkdApf3hKzzErHV9lChoBmgJaA9DCA6GOqxwEm1AlIaUUpRoFUvwaBZHQKX+OT+vQnh1fZQoaAZoCWgPQwjuk6MA0b5tQJSGlFKUaBVL8WgWR0Cl/yCQDFIedX2UKGgGaAloD0MI4/xNKMSDcUCUhpRSlGgVTQkBaBZHQKYALYaHbh51fZQoaAZoCWgPQwhYVMTpZJdyQJSGlFKUaBVNFwFoFkdApgCWpVCHAXV9lChoBmgJaA9DCEUNpmH4X3JAlIaUUpRoFU0ZAWgWR0CmAMTQ3PzGdX2UKGgGaAloD0MIIsfWM0SPcECUhpRSlGgVTVYBaBZHQKY1J0knkT91fZQoaAZoCWgPQwhy3ZTy2ldxQJSGlFKUaBVL72gWR0CmNicxbjcVdX2UKGgGaAloD0MIjqz8Mhgib0CUhpRSlGgVTT8BaBZHQKY2JOu7pV11fZQoaAZoCWgPQwgEcR5OYPdxQJSGlFKUaBVL8GgWR0CmOC5+pfhNdX2UKGgGaAloD0MI8gaY+c7hckCUhpRSlGgVS+VoFkdApjjm8f3evnV9lChoBmgJaA9DCB6n6EguHm5AlIaUUpRoFU0BAWgWR0CmOQ0qQRwqdX2UKGgGaAloD0MIeeblsPs7cECUhpRSlGgVTSwBaBZHQKY5YDPnjhl1fZQoaAZoCWgPQwhZbf5fdbZwQJSGlFKUaBVNRwFoFkdApjmMFnqVyHV9lChoBmgJaA9DCHjUmBAzFnFAlIaUUpRoFU1CAWgWR0CmOiNCAtnPdX2UKGgGaAloD0MIZFdaRmq3b0CUhpRSlGgVTXoBaBZHQKY6cThYNiJ1fZQoaAZoCWgPQwjHRiBe1zBvQJSGlFKUaBVNGAFoFkdApjrLe40/GHV9lChoBmgJaA9DCLkANEqXCkxAlIaUUpRoFUu6aBZHQKY7e1rqMWJ1fZQoaAZoCWgPQwhO0vwxLT1xQJSGlFKUaBVL/GgWR0CmO8Sk9ECvdX2UKGgGaAloD0MI2lcepCfIc0CUhpRSlGgVTQUBaBZHQKY8uj0th/l1fZQoaAZoCWgPQwhv1XWopvNxQJSGlFKUaBVNPgFoFkdApj0E5p8F6nV9lChoBmgJaA9DCE+UhETa8HJAlIaUUpRoFU0VAWgWR0CmPRuM2m52dX2UKGgGaAloD0MI5C8t6hNscUCUhpRSlGgVS/5oFkdApj666jFhonV9lChoBmgJaA9DCFAcQL9vvHBAlIaUUpRoFU0pAWgWR0CmQC1og3cYdX2UKGgGaAloD0MI7NlzmRokc0CUhpRSlGgVS/RoFkdApkBCm2sq8XV9lChoBmgJaA9DCPjii/Y49nBAlIaUUpRoFUvuaBZHQKZBV57gKnh1fZQoaAZoCWgPQwg09bpF4LlvQJSGlFKUaBVL+mgWR0CmQZoduHerdX2UKGgGaAloD0MIpfYi2k7jcUCUhpRSlGgVTQMBaBZHQKZBpIpYs/Z1fZQoaAZoCWgPQwi+27xx0o5tQJSGlFKUaBVNDgFoFkdApkMdRBNVR3V9lChoBmgJaA9DCHKMZI9Qnm5AlIaUUpRoFU0YAWgWR0CmQ9FQuVX4dX2UKGgGaAloD0MIs89jlCcucUCUhpRSlGgVS/toFkdApkP1RJmNBHV9lChoBmgJaA9DCH1Z2ql5S3JAlIaUUpRoFUvzaBZHQKZE6Axzq8l1fZQoaAZoCWgPQwieBgySvtNvQJSGlFKUaBVNCgFoFkdApkYvI6r/83V9lChoBmgJaA9DCDyE8dN4IXFAlIaUUpRoFU2lAWgWR0CmRzPuw5eadX2UKGgGaAloD0MIU+knnN2jbkCUhpRSlGgVS/VoFkdApkdRGvwEyXV9lChoBmgJaA9DCDeLFwtDu3FAlIaUUpRoFU1QAWgWR0CmR1UNKAavdX2UKGgGaAloD0MI9ntinerFcECUhpRSlGgVTS4BaBZHQKZHXH09QoF1fZQoaAZoCWgPQwhYrOEi9yhwQJSGlFKUaBVNcQFoFkdApkdgJkXk53V9lChoBmgJaA9DCPcBSG2iRXJAlIaUUpRoFU0NA2gWR0CmSDGQr+YMdX2UKGgGaAloD0MIjPfj9oskckCUhpRSlGgVS/1oFkdApkj+TLW7OHV9lChoBmgJaA9DCFqD91V5vnBAlIaUUpRoFU0gAWgWR0CmSgD4HoovdX2UKGgGaAloD0MI1edqK/Yxb0CUhpRSlGgVS/xoFkdApkoyF23az3V9lChoBmgJaA9DCLtE9dYAvHFAlIaUUpRoFU0IAWgWR0CmSlS8zyjIdX2UKGgGaAloD0MIQdMSK2OQckCUhpRSlGgVS95oFkdApktbKeTV2HV9lChoBmgJaA9DCCZRL/g0c3BAlIaUUpRoFUv4aBZHQKZLkxnFo+R1fZQoaAZoCWgPQwjh7UEIiHxwQJSGlFKUaBVNOAFoFkdApkwn49HMEHV9lChoBmgJaA9DCMr8o2+SPHBAlIaUUpRoFU0KAWgWR0CmTOCyIHkcdX2UKGgGaAloD0MICKuxhDWwcUCUhpRSlGgVS/FoFkdApkz/NX5nDnV9lChoBmgJaA9DCIenV8pyI3JAlIaUUpRoFUv3aBZHQKZONH4oJAt1fZQoaAZoCWgPQwgno8owbnxtQJSGlFKUaBVL9WgWR0CmT0XVbzK+dX2UKGgGaAloD0MImG4SgwAgcECUhpRSlGgVS/doFkdApk9RR8+ianV9lChoBmgJaA9DCPXVVYGalnBAlIaUUpRoFUvuaBZHQKZQBtLteD51fZQoaAZoCWgPQwiRup195XJvQJSGlFKUaBVNGAFoFkdAplCVzltCRnV9lChoBmgJaA9DCIYA4NjzPXJAlIaUUpRoFU06AWgWR0CmUXaS1Vo6dX2UKGgGaAloD0MIhxQDJBqMb0CUhpRSlGgVS/loFkdAplJTURWcSXV9lChoBmgJaA9DCBu5bko5z3FAlIaUUpRoFUv3aBZHQKZSZNtZV4p1fZQoaAZoCWgPQwjGMZI9ghlyQJSGlFKUaBVNMgFoFkdAplMMWsRxtHV9lChoBmgJaA9DCGIs0y/RD3NAlIaUUpRoFU0QAWgWR0CmU1cVHnU2dX2UKGgGaAloD0MI6dSVz/KHckCUhpRSlGgVS/5oFkdAplPSQ7tAs3V9lChoBmgJaA9DCHef46MFq3BAlIaUUpRoFU2KAWgWR0CmVD8P4EfUdX2UKGgGaAloD0MIQS0GD1PNc0CUhpRSlGgVTRsBaBZHQKZUl7Jnxrl1fZQoaAZoCWgPQwitFthjon5wQJSGlFKUaBVNHwFoFkdAplWt5prULHV9lChoBmgJaA9DCKTEru3tK3JAlIaUUpRoFU0UAWgWR0CmVhX6ZYxMdX2UKGgGaAloD0MIbxEY69vecECUhpRSlGgVS/xoFkdAplaetwJgLXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-104-generic-x86_64-with-glibc2.27 #118~18.04.1-Ubuntu SMP Thu Mar 3 13:53:15 UTC 2022", "Python": "3.8.16+", "Stable-Baselines3": "1.4.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.17.3"}}
ppo-LunarLander-v2_unit1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3490865b3d9ac90a2f044c4e648a8961463540f407824227d745b80336892717
3
+ size 147231
ppo-LunarLander-v2_unit1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.4.0
ppo-LunarLander-v2_unit1/data ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f51e4fb80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f51e4fc10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f51e4fca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f51e4fd30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7f51e4fdc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7f51e4fe50>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f51e4fee0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7f51e4ff70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f51e54040>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f51e540d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f51e54160>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7f51e4d360>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
+ "n": 4,
40
+ "shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1678320798.2386088,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3WDbwUyJO6rYiGur2+tDw5iLq6gHqbPQAAgD8AAIA/mv6tvPZrMbyOCT+85JzDPO00tr06h549AACAPwAAgD+azHs96mg8Pv130jsw5Uu+dM2jPaC/lr0AAAAAAAAAAJq5iLvXZBQ/6BOVPRzkjr58ApU7DmtKPQAAAAAAAAAAzW5VvRWKmD89AMu971oRv4TI1b3quCc8AAAAAAAAAACayfC7rgWEuqa5EjoCywu2So1OOafHKrkAAIA/AACAP7qyUz5YACo/kmmRvTNwx77tucI9pV2kvQAAAAAAAAAAzb7jPD3qKTyW2ws+XP4KvtzM4D2OUQq/AAAAAAAAgD8GDkI+Z7rgPjFBF76dia6+zh63PfU7VLwAAAAAAAAAAM1MhzmJtrI/irM1vLBmpL4jGn69GOPVOwAAAAAAAAAAzVJrPcORc7puowc16xtCL6e+1LprH2m0AACAPwAAgD8ziki97tG6P2x6Lb9Ri2o+94bfPO5X07wAAAAAAAAAAM4Anb70HMY+rXNdPnMUzb6AqFq+vC/GPQAAAAAAAAAAAAXlPE9uD7wV0Ou70UyyPPO2bD0aLJO9AACAPwAAgD9NAAs+S1pfPz7rHD7cXuW+73emPYZrMrsAAAAAAAAAADOQYT5Lx7M+YcCEvg+RkL6szqG6BZ8jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITl5kAn6ucUCUhpRSlIwBbJRNJAGMAXSUR0Cl6SaFmFrVdX2UKGgGaAloD0MIvceZJmzpcECUhpRSlGgVS+toFkdApepn0kGA1HV9lChoBmgJaA9DCGgj100pc29AlIaUUpRoFU0JAWgWR0Cl6oVTBInSdX2UKGgGaAloD0MIOXtntBVtcUCUhpRSlGgVTQsBaBZHQKXq+RfWtlt1fZQoaAZoCWgPQwgPC7WmedVyQJSGlFKUaBVL/mgWR0Cl6vjbJwKjdX2UKGgGaAloD0MIAfp9/+ZecUCUhpRSlGgVTQwBaBZHQKXrjD/lyR11fZQoaAZoCWgPQwgSZ0XUhHVwQJSGlFKUaBVNWAFoFkdApewOyNXHR3V9lChoBmgJaA9DCA9eu7Th1G9AlIaUUpRoFU0oAWgWR0Cl7GkJ0GNadX2UKGgGaAloD0MIDCO9qJ0vcUCUhpRSlGgVTQgBaBZHQKXspgMMI/t1fZQoaAZoCWgPQwg/4IEBhBJtQJSGlFKUaBVNJAFoFkdApe2Lr7fpEHV9lChoBmgJaA9DCNZYwtpYEXFAlIaUUpRoFU0gAWgWR0Cl7wCY1He8dX2UKGgGaAloD0MIyuAoebWWcUCUhpRSlGgVTTMBaBZHQKXvjGus90R1fZQoaAZoCWgPQwhqpRDIpZtxQJSGlFKUaBVL9GgWR0Cl78O89Oh1dX2UKGgGaAloD0MIS1tc4zOsckCUhpRSlGgVS/toFkdApe/zZWaMJnV9lChoBmgJaA9DCG6/fLLiQ3NAlIaUUpRoFUv3aBZHQKXwOfwqiGp1fZQoaAZoCWgPQwhS1Jl7yKZxQJSGlFKUaBVNcwFoFkdApfCeMOwxFnV9lChoBmgJaA9DCEFJgQWwfHBAlIaUUpRoFU0eAWgWR0Cl8sHTiKixdX2UKGgGaAloD0MIbHak+o62cUCUhpRSlGgVS+BoFkdApfMEWGh24nV9lChoBmgJaA9DCO7sKw/SCXBAlIaUUpRoFUv0aBZHQKXzIh8IAwR1fZQoaAZoCWgPQwhUNxd/W2NyQJSGlFKUaBVNBwFoFkdApfOvBacI7nV9lChoBmgJaA9DCEtWRbhJOW9AlIaUUpRoFU0kAWgWR0Cl9Dg1FYuCdX2UKGgGaAloD0MI+s+aH//fcUCUhpRSlGgVTSEBaBZHQKX18uU2UB51fZQoaAZoCWgPQwiFzmvsEvNtQJSGlFKUaBVNOAFoFkdApfZniWE9MnV9lChoBmgJaA9DCLsO1ZSkfHJAlIaUUpRoFU13AWgWR0Cl9u68Hv+gdX2UKGgGaAloD0MIcsKE0WxMcUCUhpRSlGgVTTsBaBZHQKX3I6DGtIV1fZQoaAZoCWgPQwiGrG71HMpxQJSGlFKUaBVL92gWR0Cl9y3AmAskdX2UKGgGaAloD0MINV8lH/u+cUCUhpRSlGgVTSUBaBZHQKX3QGO+7Dl1fZQoaAZoCWgPQwiCdRw/VA9uQJSGlFKUaBVNCAFoFkdApfhSA6Mir3V9lChoBmgJaA9DCGqlEMglsnBAlIaUUpRoFU0xAWgWR0Cl+oUwaisXdX2UKGgGaAloD0MIswsG11xKbkCUhpRSlGgVTUQBaBZHQKX6pSOR1YB1fZQoaAZoCWgPQwgs8YCyKc1yQJSGlFKUaBVNTQFoFkdApfshbr1M/XV9lChoBmgJaA9DCBRf7SgOIHNAlIaUUpRoFU07AWgWR0Cl+0cn3L3cdX2UKGgGaAloD0MIrJFdaVkRcUCUhpRSlGgVTQYBaBZHQKX7/1QIldF1fZQoaAZoCWgPQwiaYDjXsIZyQJSGlFKUaBVNEgFoFkdApfwQGt6ol3V9lChoBmgJaA9DCHaqfM/IX21AlIaUUpRoFU0lAWgWR0Cl/P3531SPdX2UKGgGaAloD0MI6BVPPVJAckCUhpRSlGgVTQYBaBZHQKX9QUQCjlB1fZQoaAZoCWgPQwgQ6EzaFMJxQJSGlFKUaBVNLAFoFkdApf3hKzzErHV9lChoBmgJaA9DCA6GOqxwEm1AlIaUUpRoFUvwaBZHQKX+OT+vQnh1fZQoaAZoCWgPQwjuk6MA0b5tQJSGlFKUaBVL8WgWR0Cl/yCQDFIedX2UKGgGaAloD0MI4/xNKMSDcUCUhpRSlGgVTQkBaBZHQKYALYaHbh51fZQoaAZoCWgPQwhYVMTpZJdyQJSGlFKUaBVNFwFoFkdApgCWpVCHAXV9lChoBmgJaA9DCEUNpmH4X3JAlIaUUpRoFU0ZAWgWR0CmAMTQ3PzGdX2UKGgGaAloD0MIIsfWM0SPcECUhpRSlGgVTVYBaBZHQKY1J0knkT91fZQoaAZoCWgPQwhy3ZTy2ldxQJSGlFKUaBVL72gWR0CmNicxbjcVdX2UKGgGaAloD0MIjqz8Mhgib0CUhpRSlGgVTT8BaBZHQKY2JOu7pV11fZQoaAZoCWgPQwgEcR5OYPdxQJSGlFKUaBVL8GgWR0CmOC5+pfhNdX2UKGgGaAloD0MI8gaY+c7hckCUhpRSlGgVS+VoFkdApjjm8f3evnV9lChoBmgJaA9DCB6n6EguHm5AlIaUUpRoFU0BAWgWR0CmOQ0qQRwqdX2UKGgGaAloD0MIeeblsPs7cECUhpRSlGgVTSwBaBZHQKY5YDPnjhl1fZQoaAZoCWgPQwhZbf5fdbZwQJSGlFKUaBVNRwFoFkdApjmMFnqVyHV9lChoBmgJaA9DCHjUmBAzFnFAlIaUUpRoFU1CAWgWR0CmOiNCAtnPdX2UKGgGaAloD0MIZFdaRmq3b0CUhpRSlGgVTXoBaBZHQKY6cThYNiJ1fZQoaAZoCWgPQwjHRiBe1zBvQJSGlFKUaBVNGAFoFkdApjrLe40/GHV9lChoBmgJaA9DCLkANEqXCkxAlIaUUpRoFUu6aBZHQKY7e1rqMWJ1fZQoaAZoCWgPQwhO0vwxLT1xQJSGlFKUaBVL/GgWR0CmO8Sk9ECvdX2UKGgGaAloD0MI2lcepCfIc0CUhpRSlGgVTQUBaBZHQKY8uj0th/l1fZQoaAZoCWgPQwhv1XWopvNxQJSGlFKUaBVNPgFoFkdApj0E5p8F6nV9lChoBmgJaA9DCE+UhETa8HJAlIaUUpRoFU0VAWgWR0CmPRuM2m52dX2UKGgGaAloD0MI5C8t6hNscUCUhpRSlGgVS/5oFkdApj666jFhonV9lChoBmgJaA9DCFAcQL9vvHBAlIaUUpRoFU0pAWgWR0CmQC1og3cYdX2UKGgGaAloD0MI7NlzmRokc0CUhpRSlGgVS/RoFkdApkBCm2sq8XV9lChoBmgJaA9DCPjii/Y49nBAlIaUUpRoFUvuaBZHQKZBV57gKnh1fZQoaAZoCWgPQwg09bpF4LlvQJSGlFKUaBVL+mgWR0CmQZoduHerdX2UKGgGaAloD0MIpfYi2k7jcUCUhpRSlGgVTQMBaBZHQKZBpIpYs/Z1fZQoaAZoCWgPQwi+27xx0o5tQJSGlFKUaBVNDgFoFkdApkMdRBNVR3V9lChoBmgJaA9DCHKMZI9Qnm5AlIaUUpRoFU0YAWgWR0CmQ9FQuVX4dX2UKGgGaAloD0MIs89jlCcucUCUhpRSlGgVS/toFkdApkP1RJmNBHV9lChoBmgJaA9DCH1Z2ql5S3JAlIaUUpRoFUvzaBZHQKZE6Axzq8l1fZQoaAZoCWgPQwieBgySvtNvQJSGlFKUaBVNCgFoFkdApkYvI6r/83V9lChoBmgJaA9DCDyE8dN4IXFAlIaUUpRoFU2lAWgWR0CmRzPuw5eadX2UKGgGaAloD0MIU+knnN2jbkCUhpRSlGgVS/VoFkdApkdRGvwEyXV9lChoBmgJaA9DCDeLFwtDu3FAlIaUUpRoFU1QAWgWR0CmR1UNKAavdX2UKGgGaAloD0MI9ntinerFcECUhpRSlGgVTS4BaBZHQKZHXH09QoF1fZQoaAZoCWgPQwhYrOEi9yhwQJSGlFKUaBVNcQFoFkdApkdgJkXk53V9lChoBmgJaA9DCPcBSG2iRXJAlIaUUpRoFU0NA2gWR0CmSDGQr+YMdX2UKGgGaAloD0MIjPfj9oskckCUhpRSlGgVS/1oFkdApkj+TLW7OHV9lChoBmgJaA9DCFqD91V5vnBAlIaUUpRoFU0gAWgWR0CmSgD4HoovdX2UKGgGaAloD0MI1edqK/Yxb0CUhpRSlGgVS/xoFkdApkoyF23az3V9lChoBmgJaA9DCLtE9dYAvHFAlIaUUpRoFU0IAWgWR0CmSlS8zyjIdX2UKGgGaAloD0MIQdMSK2OQckCUhpRSlGgVS95oFkdApktbKeTV2HV9lChoBmgJaA9DCCZRL/g0c3BAlIaUUpRoFUv4aBZHQKZLkxnFo+R1fZQoaAZoCWgPQwjh7UEIiHxwQJSGlFKUaBVNOAFoFkdApkwn49HMEHV9lChoBmgJaA9DCMr8o2+SPHBAlIaUUpRoFU0KAWgWR0CmTOCyIHkcdX2UKGgGaAloD0MICKuxhDWwcUCUhpRSlGgVS/FoFkdApkz/NX5nDnV9lChoBmgJaA9DCIenV8pyI3JAlIaUUpRoFUv3aBZHQKZONH4oJAt1fZQoaAZoCWgPQwgno8owbnxtQJSGlFKUaBVL9WgWR0CmT0XVbzK+dX2UKGgGaAloD0MImG4SgwAgcECUhpRSlGgVS/doFkdApk9RR8+ianV9lChoBmgJaA9DCPXVVYGalnBAlIaUUpRoFUvuaBZHQKZQBtLteD51fZQoaAZoCWgPQwiRup195XJvQJSGlFKUaBVNGAFoFkdAplCVzltCRnV9lChoBmgJaA9DCIYA4NjzPXJAlIaUUpRoFU06AWgWR0CmUXaS1Vo6dX2UKGgGaAloD0MIhxQDJBqMb0CUhpRSlGgVS/loFkdAplJTURWcSXV9lChoBmgJaA9DCBu5bko5z3FAlIaUUpRoFUv3aBZHQKZSZNtZV4p1fZQoaAZoCWgPQwjGMZI9ghlyQJSGlFKUaBVNMgFoFkdAplMMWsRxtHV9lChoBmgJaA9DCGIs0y/RD3NAlIaUUpRoFU0QAWgWR0CmU1cVHnU2dX2UKGgGaAloD0MI6dSVz/KHckCUhpRSlGgVS/5oFkdAplPSQ7tAs3V9lChoBmgJaA9DCHef46MFq3BAlIaUUpRoFU2KAWgWR0CmVD8P4EfUdX2UKGgGaAloD0MIQS0GD1PNc0CUhpRSlGgVTRsBaBZHQKZUl7Jnxrl1fZQoaAZoCWgPQwitFthjon5wQJSGlFKUaBVNHwFoFkdAplWt5prULHV9lChoBmgJaA9DCKTEru3tK3JAlIaUUpRoFU0UAWgWR0CmVhX6ZYxMdX2UKGgGaAloD0MIbxEY69vecECUhpRSlGgVS/xoFkdAplaetwJgLXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "target_kl": null
93
+ }
ppo-LunarLander-v2_unit1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b22aec8da3fd9199ec724b0acd185809e58b307dc5ccce08b551f1d85dcd3a5
3
+ size 87929
ppo-LunarLander-v2_unit1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4368009c666678d3d2bba762558c215cbb6b7a4043e30c839baef6e3b5b847e1
3
+ size 43201
ppo-LunarLander-v2_unit1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2_unit1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-104-generic-x86_64-with-glibc2.27 #118~18.04.1-Ubuntu SMP Thu Mar 3 13:53:15 UTC 2022
2
+ Python: 3.8.16+
3
+ Stable-Baselines3: 1.4.0
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.17.3
replay.mp4 ADDED
Binary file (202 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.95984291234447, "std_reward": 23.83825632454797, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T02:01:44.223492"}