Upload PPO LunarLander-v2 trained agent for Unit 1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_unit1.zip +3 -0
- ppo-LunarLander-v2_unit1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_unit1/data +93 -0
- ppo-LunarLander-v2_unit1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_unit1/policy.pth +3 -0
- ppo-LunarLander-v2_unit1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_unit1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.96 +/- 23.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f51e4fb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f51e4fc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f51e4fca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f51e4fd30>", "_build": "<function ActorCriticPolicy._build at 0x7f7f51e4fdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f51e4fe50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f51e4fee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f51e4ff70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f51e54040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f51e540d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f51e54160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f51e4d360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678320798.2386088, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3WDbwUyJO6rYiGur2+tDw5iLq6gHqbPQAAgD8AAIA/mv6tvPZrMbyOCT+85JzDPO00tr06h549AACAPwAAgD+azHs96mg8Pv130jsw5Uu+dM2jPaC/lr0AAAAAAAAAAJq5iLvXZBQ/6BOVPRzkjr58ApU7DmtKPQAAAAAAAAAAzW5VvRWKmD89AMu971oRv4TI1b3quCc8AAAAAAAAAACayfC7rgWEuqa5EjoCywu2So1OOafHKrkAAIA/AACAP7qyUz5YACo/kmmRvTNwx77tucI9pV2kvQAAAAAAAAAAzb7jPD3qKTyW2ws+XP4KvtzM4D2OUQq/AAAAAAAAgD8GDkI+Z7rgPjFBF76dia6+zh63PfU7VLwAAAAAAAAAAM1MhzmJtrI/irM1vLBmpL4jGn69GOPVOwAAAAAAAAAAzVJrPcORc7puowc16xtCL6e+1LprH2m0AACAPwAAgD8ziki97tG6P2x6Lb9Ri2o+94bfPO5X07wAAAAAAAAAAM4Anb70HMY+rXNdPnMUzb6AqFq+vC/GPQAAAAAAAAAAAAXlPE9uD7wV0Ou70UyyPPO2bD0aLJO9AACAPwAAgD9NAAs+S1pfPz7rHD7cXuW+73emPYZrMrsAAAAAAAAAADOQYT5Lx7M+YcCEvg+RkL6szqG6BZ8jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITl5kAn6ucUCUhpRSlIwBbJRNJAGMAXSUR0Cl6SaFmFrVdX2UKGgGaAloD0MIvceZJmzpcECUhpRSlGgVS+toFkdApepn0kGA1HV9lChoBmgJaA9DCGgj100pc29AlIaUUpRoFU0JAWgWR0Cl6oVTBInSdX2UKGgGaAloD0MIOXtntBVtcUCUhpRSlGgVTQsBaBZHQKXq+RfWtlt1fZQoaAZoCWgPQwgPC7WmedVyQJSGlFKUaBVL/mgWR0Cl6vjbJwKjdX2UKGgGaAloD0MIAfp9/+ZecUCUhpRSlGgVTQwBaBZHQKXrjD/lyR11fZQoaAZoCWgPQwgSZ0XUhHVwQJSGlFKUaBVNWAFoFkdApewOyNXHR3V9lChoBmgJaA9DCA9eu7Th1G9AlIaUUpRoFU0oAWgWR0Cl7GkJ0GNadX2UKGgGaAloD0MIDCO9qJ0vcUCUhpRSlGgVTQgBaBZHQKXspgMMI/t1fZQoaAZoCWgPQwg/4IEBhBJtQJSGlFKUaBVNJAFoFkdApe2Lr7fpEHV9lChoBmgJaA9DCNZYwtpYEXFAlIaUUpRoFU0gAWgWR0Cl7wCY1He8dX2UKGgGaAloD0MIyuAoebWWcUCUhpRSlGgVTTMBaBZHQKXvjGus90R1fZQoaAZoCWgPQwhqpRDIpZtxQJSGlFKUaBVL9GgWR0Cl78O89Oh1dX2UKGgGaAloD0MIS1tc4zOsckCUhpRSlGgVS/toFkdApe/zZWaMJnV9lChoBmgJaA9DCG6/fLLiQ3NAlIaUUpRoFUv3aBZHQKXwOfwqiGp1fZQoaAZoCWgPQwhS1Jl7yKZxQJSGlFKUaBVNcwFoFkdApfCeMOwxFnV9lChoBmgJaA9DCEFJgQWwfHBAlIaUUpRoFU0eAWgWR0Cl8sHTiKixdX2UKGgGaAloD0MIbHak+o62cUCUhpRSlGgVS+BoFkdApfMEWGh24nV9lChoBmgJaA9DCO7sKw/SCXBAlIaUUpRoFUv0aBZHQKXzIh8IAwR1fZQoaAZoCWgPQwhUNxd/W2NyQJSGlFKUaBVNBwFoFkdApfOvBacI7nV9lChoBmgJaA9DCEtWRbhJOW9AlIaUUpRoFU0kAWgWR0Cl9Dg1FYuCdX2UKGgGaAloD0MI+s+aH//fcUCUhpRSlGgVTSEBaBZHQKX18uU2UB51fZQoaAZoCWgPQwiFzmvsEvNtQJSGlFKUaBVNOAFoFkdApfZniWE9MnV9lChoBmgJaA9DCLsO1ZSkfHJAlIaUUpRoFU13AWgWR0Cl9u68Hv+gdX2UKGgGaAloD0MIcsKE0WxMcUCUhpRSlGgVTTsBaBZHQKX3I6DGtIV1fZQoaAZoCWgPQwiGrG71HMpxQJSGlFKUaBVL92gWR0Cl9y3AmAskdX2UKGgGaAloD0MINV8lH/u+cUCUhpRSlGgVTSUBaBZHQKX3QGO+7Dl1fZQoaAZoCWgPQwiCdRw/VA9uQJSGlFKUaBVNCAFoFkdApfhSA6Mir3V9lChoBmgJaA9DCGqlEMglsnBAlIaUUpRoFU0xAWgWR0Cl+oUwaisXdX2UKGgGaAloD0MIswsG11xKbkCUhpRSlGgVTUQBaBZHQKX6pSOR1YB1fZQoaAZoCWgPQwgs8YCyKc1yQJSGlFKUaBVNTQFoFkdApfshbr1M/XV9lChoBmgJaA9DCBRf7SgOIHNAlIaUUpRoFU07AWgWR0Cl+0cn3L3cdX2UKGgGaAloD0MIrJFdaVkRcUCUhpRSlGgVTQYBaBZHQKX7/1QIldF1fZQoaAZoCWgPQwiaYDjXsIZyQJSGlFKUaBVNEgFoFkdApfwQGt6ol3V9lChoBmgJaA9DCHaqfM/IX21AlIaUUpRoFU0lAWgWR0Cl/P3531SPdX2UKGgGaAloD0MI6BVPPVJAckCUhpRSlGgVTQYBaBZHQKX9QUQCjlB1fZQoaAZoCWgPQwgQ6EzaFMJxQJSGlFKUaBVNLAFoFkdApf3hKzzErHV9lChoBmgJaA9DCA6GOqxwEm1AlIaUUpRoFUvwaBZHQKX+OT+vQnh1fZQoaAZoCWgPQwjuk6MA0b5tQJSGlFKUaBVL8WgWR0Cl/yCQDFIedX2UKGgGaAloD0MI4/xNKMSDcUCUhpRSlGgVTQkBaBZHQKYALYaHbh51fZQoaAZoCWgPQwhYVMTpZJdyQJSGlFKUaBVNFwFoFkdApgCWpVCHAXV9lChoBmgJaA9DCEUNpmH4X3JAlIaUUpRoFU0ZAWgWR0CmAMTQ3PzGdX2UKGgGaAloD0MIIsfWM0SPcECUhpRSlGgVTVYBaBZHQKY1J0knkT91fZQoaAZoCWgPQwhy3ZTy2ldxQJSGlFKUaBVL72gWR0CmNicxbjcVdX2UKGgGaAloD0MIjqz8Mhgib0CUhpRSlGgVTT8BaBZHQKY2JOu7pV11fZQoaAZoCWgPQwgEcR5OYPdxQJSGlFKUaBVL8GgWR0CmOC5+pfhNdX2UKGgGaAloD0MI8gaY+c7hckCUhpRSlGgVS+VoFkdApjjm8f3evnV9lChoBmgJaA9DCB6n6EguHm5AlIaUUpRoFU0BAWgWR0CmOQ0qQRwqdX2UKGgGaAloD0MIeeblsPs7cECUhpRSlGgVTSwBaBZHQKY5YDPnjhl1fZQoaAZoCWgPQwhZbf5fdbZwQJSGlFKUaBVNRwFoFkdApjmMFnqVyHV9lChoBmgJaA9DCHjUmBAzFnFAlIaUUpRoFU1CAWgWR0CmOiNCAtnPdX2UKGgGaAloD0MIZFdaRmq3b0CUhpRSlGgVTXoBaBZHQKY6cThYNiJ1fZQoaAZoCWgPQwjHRiBe1zBvQJSGlFKUaBVNGAFoFkdApjrLe40/GHV9lChoBmgJaA9DCLkANEqXCkxAlIaUUpRoFUu6aBZHQKY7e1rqMWJ1fZQoaAZoCWgPQwhO0vwxLT1xQJSGlFKUaBVL/GgWR0CmO8Sk9ECvdX2UKGgGaAloD0MI2lcepCfIc0CUhpRSlGgVTQUBaBZHQKY8uj0th/l1fZQoaAZoCWgPQwhv1XWopvNxQJSGlFKUaBVNPgFoFkdApj0E5p8F6nV9lChoBmgJaA9DCE+UhETa8HJAlIaUUpRoFU0VAWgWR0CmPRuM2m52dX2UKGgGaAloD0MI5C8t6hNscUCUhpRSlGgVS/5oFkdApj666jFhonV9lChoBmgJaA9DCFAcQL9vvHBAlIaUUpRoFU0pAWgWR0CmQC1og3cYdX2UKGgGaAloD0MI7NlzmRokc0CUhpRSlGgVS/RoFkdApkBCm2sq8XV9lChoBmgJaA9DCPjii/Y49nBAlIaUUpRoFUvuaBZHQKZBV57gKnh1fZQoaAZoCWgPQwg09bpF4LlvQJSGlFKUaBVL+mgWR0CmQZoduHerdX2UKGgGaAloD0MIpfYi2k7jcUCUhpRSlGgVTQMBaBZHQKZBpIpYs/Z1fZQoaAZoCWgPQwi+27xx0o5tQJSGlFKUaBVNDgFoFkdApkMdRBNVR3V9lChoBmgJaA9DCHKMZI9Qnm5AlIaUUpRoFU0YAWgWR0CmQ9FQuVX4dX2UKGgGaAloD0MIs89jlCcucUCUhpRSlGgVS/toFkdApkP1RJmNBHV9lChoBmgJaA9DCH1Z2ql5S3JAlIaUUpRoFUvzaBZHQKZE6Axzq8l1fZQoaAZoCWgPQwieBgySvtNvQJSGlFKUaBVNCgFoFkdApkYvI6r/83V9lChoBmgJaA9DCDyE8dN4IXFAlIaUUpRoFU2lAWgWR0CmRzPuw5eadX2UKGgGaAloD0MIU+knnN2jbkCUhpRSlGgVS/VoFkdApkdRGvwEyXV9lChoBmgJaA9DCDeLFwtDu3FAlIaUUpRoFU1QAWgWR0CmR1UNKAavdX2UKGgGaAloD0MI9ntinerFcECUhpRSlGgVTS4BaBZHQKZHXH09QoF1fZQoaAZoCWgPQwhYrOEi9yhwQJSGlFKUaBVNcQFoFkdApkdgJkXk53V9lChoBmgJaA9DCPcBSG2iRXJAlIaUUpRoFU0NA2gWR0CmSDGQr+YMdX2UKGgGaAloD0MIjPfj9oskckCUhpRSlGgVS/1oFkdApkj+TLW7OHV9lChoBmgJaA9DCFqD91V5vnBAlIaUUpRoFU0gAWgWR0CmSgD4HoovdX2UKGgGaAloD0MI1edqK/Yxb0CUhpRSlGgVS/xoFkdApkoyF23az3V9lChoBmgJaA9DCLtE9dYAvHFAlIaUUpRoFU0IAWgWR0CmSlS8zyjIdX2UKGgGaAloD0MIQdMSK2OQckCUhpRSlGgVS95oFkdApktbKeTV2HV9lChoBmgJaA9DCCZRL/g0c3BAlIaUUpRoFUv4aBZHQKZLkxnFo+R1fZQoaAZoCWgPQwjh7UEIiHxwQJSGlFKUaBVNOAFoFkdApkwn49HMEHV9lChoBmgJaA9DCMr8o2+SPHBAlIaUUpRoFU0KAWgWR0CmTOCyIHkcdX2UKGgGaAloD0MICKuxhDWwcUCUhpRSlGgVS/FoFkdApkz/NX5nDnV9lChoBmgJaA9DCIenV8pyI3JAlIaUUpRoFUv3aBZHQKZONH4oJAt1fZQoaAZoCWgPQwgno8owbnxtQJSGlFKUaBVL9WgWR0CmT0XVbzK+dX2UKGgGaAloD0MImG4SgwAgcECUhpRSlGgVS/doFkdApk9RR8+ianV9lChoBmgJaA9DCPXVVYGalnBAlIaUUpRoFUvuaBZHQKZQBtLteD51fZQoaAZoCWgPQwiRup195XJvQJSGlFKUaBVNGAFoFkdAplCVzltCRnV9lChoBmgJaA9DCIYA4NjzPXJAlIaUUpRoFU06AWgWR0CmUXaS1Vo6dX2UKGgGaAloD0MIhxQDJBqMb0CUhpRSlGgVS/loFkdAplJTURWcSXV9lChoBmgJaA9DCBu5bko5z3FAlIaUUpRoFUv3aBZHQKZSZNtZV4p1fZQoaAZoCWgPQwjGMZI9ghlyQJSGlFKUaBVNMgFoFkdAplMMWsRxtHV9lChoBmgJaA9DCGIs0y/RD3NAlIaUUpRoFU0QAWgWR0CmU1cVHnU2dX2UKGgGaAloD0MI6dSVz/KHckCUhpRSlGgVS/5oFkdAplPSQ7tAs3V9lChoBmgJaA9DCHef46MFq3BAlIaUUpRoFU2KAWgWR0CmVD8P4EfUdX2UKGgGaAloD0MIQS0GD1PNc0CUhpRSlGgVTRsBaBZHQKZUl7Jnxrl1fZQoaAZoCWgPQwitFthjon5wQJSGlFKUaBVNHwFoFkdAplWt5prULHV9lChoBmgJaA9DCKTEru3tK3JAlIaUUpRoFU0UAWgWR0CmVhX6ZYxMdX2UKGgGaAloD0MIbxEY69vecECUhpRSlGgVS/xoFkdAplaetwJgLXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-104-generic-x86_64-with-glibc2.27 #118~18.04.1-Ubuntu SMP Thu Mar 3 13:53:15 UTC 2022", "Python": "3.8.16+", "Stable-Baselines3": "1.4.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.17.3"}}
|
ppo-LunarLander-v2_unit1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3490865b3d9ac90a2f044c4e648a8961463540f407824227d745b80336892717
|
3 |
+
size 147231
|
ppo-LunarLander-v2_unit1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.4.0
|
ppo-LunarLander-v2_unit1/data
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f51e4fb80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f51e4fc10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f51e4fca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f51e4fd30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7f51e4fdc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7f51e4fe50>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f51e4fee0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7f51e4ff70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f51e54040>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f51e540d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f51e54160>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7f51e4d360>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1678320798.2386088,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3WDbwUyJO6rYiGur2+tDw5iLq6gHqbPQAAgD8AAIA/mv6tvPZrMbyOCT+85JzDPO00tr06h549AACAPwAAgD+azHs96mg8Pv130jsw5Uu+dM2jPaC/lr0AAAAAAAAAAJq5iLvXZBQ/6BOVPRzkjr58ApU7DmtKPQAAAAAAAAAAzW5VvRWKmD89AMu971oRv4TI1b3quCc8AAAAAAAAAACayfC7rgWEuqa5EjoCywu2So1OOafHKrkAAIA/AACAP7qyUz5YACo/kmmRvTNwx77tucI9pV2kvQAAAAAAAAAAzb7jPD3qKTyW2ws+XP4KvtzM4D2OUQq/AAAAAAAAgD8GDkI+Z7rgPjFBF76dia6+zh63PfU7VLwAAAAAAAAAAM1MhzmJtrI/irM1vLBmpL4jGn69GOPVOwAAAAAAAAAAzVJrPcORc7puowc16xtCL6e+1LprH2m0AACAPwAAgD8ziki97tG6P2x6Lb9Ri2o+94bfPO5X07wAAAAAAAAAAM4Anb70HMY+rXNdPnMUzb6AqFq+vC/GPQAAAAAAAAAAAAXlPE9uD7wV0Ou70UyyPPO2bD0aLJO9AACAPwAAgD9NAAs+S1pfPz7rHD7cXuW+73emPYZrMrsAAAAAAAAAADOQYT5Lx7M+YcCEvg+RkL6szqG6BZ8jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITl5kAn6ucUCUhpRSlIwBbJRNJAGMAXSUR0Cl6SaFmFrVdX2UKGgGaAloD0MIvceZJmzpcECUhpRSlGgVS+toFkdApepn0kGA1HV9lChoBmgJaA9DCGgj100pc29AlIaUUpRoFU0JAWgWR0Cl6oVTBInSdX2UKGgGaAloD0MIOXtntBVtcUCUhpRSlGgVTQsBaBZHQKXq+RfWtlt1fZQoaAZoCWgPQwgPC7WmedVyQJSGlFKUaBVL/mgWR0Cl6vjbJwKjdX2UKGgGaAloD0MIAfp9/+ZecUCUhpRSlGgVTQwBaBZHQKXrjD/lyR11fZQoaAZoCWgPQwgSZ0XUhHVwQJSGlFKUaBVNWAFoFkdApewOyNXHR3V9lChoBmgJaA9DCA9eu7Th1G9AlIaUUpRoFU0oAWgWR0Cl7GkJ0GNadX2UKGgGaAloD0MIDCO9qJ0vcUCUhpRSlGgVTQgBaBZHQKXspgMMI/t1fZQoaAZoCWgPQwg/4IEBhBJtQJSGlFKUaBVNJAFoFkdApe2Lr7fpEHV9lChoBmgJaA9DCNZYwtpYEXFAlIaUUpRoFU0gAWgWR0Cl7wCY1He8dX2UKGgGaAloD0MIyuAoebWWcUCUhpRSlGgVTTMBaBZHQKXvjGus90R1fZQoaAZoCWgPQwhqpRDIpZtxQJSGlFKUaBVL9GgWR0Cl78O89Oh1dX2UKGgGaAloD0MIS1tc4zOsckCUhpRSlGgVS/toFkdApe/zZWaMJnV9lChoBmgJaA9DCG6/fLLiQ3NAlIaUUpRoFUv3aBZHQKXwOfwqiGp1fZQoaAZoCWgPQwhS1Jl7yKZxQJSGlFKUaBVNcwFoFkdApfCeMOwxFnV9lChoBmgJaA9DCEFJgQWwfHBAlIaUUpRoFU0eAWgWR0Cl8sHTiKixdX2UKGgGaAloD0MIbHak+o62cUCUhpRSlGgVS+BoFkdApfMEWGh24nV9lChoBmgJaA9DCO7sKw/SCXBAlIaUUpRoFUv0aBZHQKXzIh8IAwR1fZQoaAZoCWgPQwhUNxd/W2NyQJSGlFKUaBVNBwFoFkdApfOvBacI7nV9lChoBmgJaA9DCEtWRbhJOW9AlIaUUpRoFU0kAWgWR0Cl9Dg1FYuCdX2UKGgGaAloD0MI+s+aH//fcUCUhpRSlGgVTSEBaBZHQKX18uU2UB51fZQoaAZoCWgPQwiFzmvsEvNtQJSGlFKUaBVNOAFoFkdApfZniWE9MnV9lChoBmgJaA9DCLsO1ZSkfHJAlIaUUpRoFU13AWgWR0Cl9u68Hv+gdX2UKGgGaAloD0MIcsKE0WxMcUCUhpRSlGgVTTsBaBZHQKX3I6DGtIV1fZQoaAZoCWgPQwiGrG71HMpxQJSGlFKUaBVL92gWR0Cl9y3AmAskdX2UKGgGaAloD0MINV8lH/u+cUCUhpRSlGgVTSUBaBZHQKX3QGO+7Dl1fZQoaAZoCWgPQwiCdRw/VA9uQJSGlFKUaBVNCAFoFkdApfhSA6Mir3V9lChoBmgJaA9DCGqlEMglsnBAlIaUUpRoFU0xAWgWR0Cl+oUwaisXdX2UKGgGaAloD0MIswsG11xKbkCUhpRSlGgVTUQBaBZHQKX6pSOR1YB1fZQoaAZoCWgPQwgs8YCyKc1yQJSGlFKUaBVNTQFoFkdApfshbr1M/XV9lChoBmgJaA9DCBRf7SgOIHNAlIaUUpRoFU07AWgWR0Cl+0cn3L3cdX2UKGgGaAloD0MIrJFdaVkRcUCUhpRSlGgVTQYBaBZHQKX7/1QIldF1fZQoaAZoCWgPQwiaYDjXsIZyQJSGlFKUaBVNEgFoFkdApfwQGt6ol3V9lChoBmgJaA9DCHaqfM/IX21AlIaUUpRoFU0lAWgWR0Cl/P3531SPdX2UKGgGaAloD0MI6BVPPVJAckCUhpRSlGgVTQYBaBZHQKX9QUQCjlB1fZQoaAZoCWgPQwgQ6EzaFMJxQJSGlFKUaBVNLAFoFkdApf3hKzzErHV9lChoBmgJaA9DCA6GOqxwEm1AlIaUUpRoFUvwaBZHQKX+OT+vQnh1fZQoaAZoCWgPQwjuk6MA0b5tQJSGlFKUaBVL8WgWR0Cl/yCQDFIedX2UKGgGaAloD0MI4/xNKMSDcUCUhpRSlGgVTQkBaBZHQKYALYaHbh51fZQoaAZoCWgPQwhYVMTpZJdyQJSGlFKUaBVNFwFoFkdApgCWpVCHAXV9lChoBmgJaA9DCEUNpmH4X3JAlIaUUpRoFU0ZAWgWR0CmAMTQ3PzGdX2UKGgGaAloD0MIIsfWM0SPcECUhpRSlGgVTVYBaBZHQKY1J0knkT91fZQoaAZoCWgPQwhy3ZTy2ldxQJSGlFKUaBVL72gWR0CmNicxbjcVdX2UKGgGaAloD0MIjqz8Mhgib0CUhpRSlGgVTT8BaBZHQKY2JOu7pV11fZQoaAZoCWgPQwgEcR5OYPdxQJSGlFKUaBVL8GgWR0CmOC5+pfhNdX2UKGgGaAloD0MI8gaY+c7hckCUhpRSlGgVS+VoFkdApjjm8f3evnV9lChoBmgJaA9DCB6n6EguHm5AlIaUUpRoFU0BAWgWR0CmOQ0qQRwqdX2UKGgGaAloD0MIeeblsPs7cECUhpRSlGgVTSwBaBZHQKY5YDPnjhl1fZQoaAZoCWgPQwhZbf5fdbZwQJSGlFKUaBVNRwFoFkdApjmMFnqVyHV9lChoBmgJaA9DCHjUmBAzFnFAlIaUUpRoFU1CAWgWR0CmOiNCAtnPdX2UKGgGaAloD0MIZFdaRmq3b0CUhpRSlGgVTXoBaBZHQKY6cThYNiJ1fZQoaAZoCWgPQwjHRiBe1zBvQJSGlFKUaBVNGAFoFkdApjrLe40/GHV9lChoBmgJaA9DCLkANEqXCkxAlIaUUpRoFUu6aBZHQKY7e1rqMWJ1fZQoaAZoCWgPQwhO0vwxLT1xQJSGlFKUaBVL/GgWR0CmO8Sk9ECvdX2UKGgGaAloD0MI2lcepCfIc0CUhpRSlGgVTQUBaBZHQKY8uj0th/l1fZQoaAZoCWgPQwhv1XWopvNxQJSGlFKUaBVNPgFoFkdApj0E5p8F6nV9lChoBmgJaA9DCE+UhETa8HJAlIaUUpRoFU0VAWgWR0CmPRuM2m52dX2UKGgGaAloD0MI5C8t6hNscUCUhpRSlGgVS/5oFkdApj666jFhonV9lChoBmgJaA9DCFAcQL9vvHBAlIaUUpRoFU0pAWgWR0CmQC1og3cYdX2UKGgGaAloD0MI7NlzmRokc0CUhpRSlGgVS/RoFkdApkBCm2sq8XV9lChoBmgJaA9DCPjii/Y49nBAlIaUUpRoFUvuaBZHQKZBV57gKnh1fZQoaAZoCWgPQwg09bpF4LlvQJSGlFKUaBVL+mgWR0CmQZoduHerdX2UKGgGaAloD0MIpfYi2k7jcUCUhpRSlGgVTQMBaBZHQKZBpIpYs/Z1fZQoaAZoCWgPQwi+27xx0o5tQJSGlFKUaBVNDgFoFkdApkMdRBNVR3V9lChoBmgJaA9DCHKMZI9Qnm5AlIaUUpRoFU0YAWgWR0CmQ9FQuVX4dX2UKGgGaAloD0MIs89jlCcucUCUhpRSlGgVS/toFkdApkP1RJmNBHV9lChoBmgJaA9DCH1Z2ql5S3JAlIaUUpRoFUvzaBZHQKZE6Axzq8l1fZQoaAZoCWgPQwieBgySvtNvQJSGlFKUaBVNCgFoFkdApkYvI6r/83V9lChoBmgJaA9DCDyE8dN4IXFAlIaUUpRoFU2lAWgWR0CmRzPuw5eadX2UKGgGaAloD0MIU+knnN2jbkCUhpRSlGgVS/VoFkdApkdRGvwEyXV9lChoBmgJaA9DCDeLFwtDu3FAlIaUUpRoFU1QAWgWR0CmR1UNKAavdX2UKGgGaAloD0MI9ntinerFcECUhpRSlGgVTS4BaBZHQKZHXH09QoF1fZQoaAZoCWgPQwhYrOEi9yhwQJSGlFKUaBVNcQFoFkdApkdgJkXk53V9lChoBmgJaA9DCPcBSG2iRXJAlIaUUpRoFU0NA2gWR0CmSDGQr+YMdX2UKGgGaAloD0MIjPfj9oskckCUhpRSlGgVS/1oFkdApkj+TLW7OHV9lChoBmgJaA9DCFqD91V5vnBAlIaUUpRoFU0gAWgWR0CmSgD4HoovdX2UKGgGaAloD0MI1edqK/Yxb0CUhpRSlGgVS/xoFkdApkoyF23az3V9lChoBmgJaA9DCLtE9dYAvHFAlIaUUpRoFU0IAWgWR0CmSlS8zyjIdX2UKGgGaAloD0MIQdMSK2OQckCUhpRSlGgVS95oFkdApktbKeTV2HV9lChoBmgJaA9DCCZRL/g0c3BAlIaUUpRoFUv4aBZHQKZLkxnFo+R1fZQoaAZoCWgPQwjh7UEIiHxwQJSGlFKUaBVNOAFoFkdApkwn49HMEHV9lChoBmgJaA9DCMr8o2+SPHBAlIaUUpRoFU0KAWgWR0CmTOCyIHkcdX2UKGgGaAloD0MICKuxhDWwcUCUhpRSlGgVS/FoFkdApkz/NX5nDnV9lChoBmgJaA9DCIenV8pyI3JAlIaUUpRoFUv3aBZHQKZONH4oJAt1fZQoaAZoCWgPQwgno8owbnxtQJSGlFKUaBVL9WgWR0CmT0XVbzK+dX2UKGgGaAloD0MImG4SgwAgcECUhpRSlGgVS/doFkdApk9RR8+ianV9lChoBmgJaA9DCPXVVYGalnBAlIaUUpRoFUvuaBZHQKZQBtLteD51fZQoaAZoCWgPQwiRup195XJvQJSGlFKUaBVNGAFoFkdAplCVzltCRnV9lChoBmgJaA9DCIYA4NjzPXJAlIaUUpRoFU06AWgWR0CmUXaS1Vo6dX2UKGgGaAloD0MIhxQDJBqMb0CUhpRSlGgVS/loFkdAplJTURWcSXV9lChoBmgJaA9DCBu5bko5z3FAlIaUUpRoFUv3aBZHQKZSZNtZV4p1fZQoaAZoCWgPQwjGMZI9ghlyQJSGlFKUaBVNMgFoFkdAplMMWsRxtHV9lChoBmgJaA9DCGIs0y/RD3NAlIaUUpRoFU0QAWgWR0CmU1cVHnU2dX2UKGgGaAloD0MI6dSVz/KHckCUhpRSlGgVS/5oFkdAplPSQ7tAs3V9lChoBmgJaA9DCHef46MFq3BAlIaUUpRoFU2KAWgWR0CmVD8P4EfUdX2UKGgGaAloD0MIQS0GD1PNc0CUhpRSlGgVTRsBaBZHQKZUl7Jnxrl1fZQoaAZoCWgPQwitFthjon5wQJSGlFKUaBVNHwFoFkdAplWt5prULHV9lChoBmgJaA9DCKTEru3tK3JAlIaUUpRoFU0UAWgWR0CmVhX6ZYxMdX2UKGgGaAloD0MIbxEY69vecECUhpRSlGgVS/xoFkdAplaetwJgLXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGEvaG9tZS9taWNoYS9ub3Rlcy90b3BpY3MvcmwvdmVudjMuOC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxhL2hvbWUvbWljaGEvbm90ZXMvdG9waWNzL3JsL3ZlbnYzLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"target_kl": null
|
93 |
+
}
|
ppo-LunarLander-v2_unit1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b22aec8da3fd9199ec724b0acd185809e58b307dc5ccce08b551f1d85dcd3a5
|
3 |
+
size 87929
|
ppo-LunarLander-v2_unit1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4368009c666678d3d2bba762558c215cbb6b7a4043e30c839baef6e3b5b847e1
|
3 |
+
size 43201
|
ppo-LunarLander-v2_unit1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2_unit1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-104-generic-x86_64-with-glibc2.27 #118~18.04.1-Ubuntu SMP Thu Mar 3 13:53:15 UTC 2022
|
2 |
+
Python: 3.8.16+
|
3 |
+
Stable-Baselines3: 1.4.0
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.17.3
|
replay.mp4
ADDED
Binary file (202 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.95984291234447, "std_reward": 23.83825632454797, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T02:01:44.223492"}
|