Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .bashrc +107 -0
- .cache/pip/http-v2/0/1/f/2/0/01f2082df50502ba9492d64e69db99d1fdb5730707a16c6264b355b8 +0 -0
- .cache/pip/http-v2/0/2/f/8/e/02f8e820ca8231526982c4a2b93baef519d0948ff85c925acd226f06 +0 -0
- .cache/pip/http-v2/0/5/8/9/6/0589682f53f4c502330bc0fa01138806ce0467c549c2af469b6afb31.body +0 -0
- .cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9 +0 -0
- .cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9.body +0 -0
- .cache/pip/http-v2/0/6/7/2/6/06726d442b7e33afe35f1740674b6dee72357a95eef3aca0ef7abf21.body +0 -0
- .cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4 +0 -0
- .cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4.body +0 -0
- .cache/pip/http-v2/1/0/e/d/c/10edc2fedb88f9a82f91dc7f8666c74a4e7067dbd945b9923a040482.body +0 -0
- .cache/pip/http-v2/1/6/9/3/2/1693297fb9daf7bfe370bf51d371acfeb8ff40759bf8650dfd404ba4.body +0 -0
- .cache/pip/http-v2/1/8/e/e/a/18eea207de73c88bb45229bed4bcc74fbcbddadf2aa9f49e4df1f66a +0 -0
- .cache/pip/http-v2/1/a/9/9/5/1a995e0685d0b5c5a3f3321cda9ebcbc376a9137828d1c100a493532 +0 -0
- .cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80 +0 -0
- .cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80.body +0 -0
- .cache/pip/http-v2/1/d/8/a/2/1d8a24cdff71edbc3f733b6b4d52640c1c1129289938aa4d1c7adcf5 +0 -0
- .cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22 +0 -0
- .cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22.body +0 -0
- .cache/pip/http-v2/4/2/f/8/a/42f8a0202dbbd3a131c6443d28a5b01775c53d41dec7e7928a8b5a4c.body +140 -0
- .cache/pip/http-v2/4/5/9/c/7/459c78bacdedb04c7e03d152081522ecf0ff46e1d14e7503997ea6c8.body +0 -0
- .cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7 +0 -0
- .cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7.body +0 -0
- .cache/pip/http-v2/4/d/2/7/2/4d272e6453941ce8b0a37a02cdb1685fc612c33441fa74691fb40656 +0 -0
- .cache/pip/http-v2/7/1/b/9/d/71b9df22187d5c54f1147d4ac0849d1438ec19aedc20363a3478b854 +0 -0
- .cache/pip/http-v2/7/2/2/9/f/7229fb50bdca3f16cb03ca953b540cb67fb07fb971b675db32ae3239 +0 -0
- .cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5 +0 -0
- .cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5.body +212 -0
- .cache/pip/http-v2/7/7/6/7/2/7767287c95ec4491394e4204f2ba3be9eb9e3ed9ca0ffd45d421b772.body +0 -0
- .cache/pip/http-v2/7/c/4/b/8/7c4b8a19f4f69494c22868b76649cd91120de17447e4ff71fb7a7f10.body +0 -0
- .cache/pip/http-v2/7/e/1/d/d/7e1dd8fd372b5a4d9dab3a30df124fb3e1f8789a9ab79f867640876a.body +0 -0
- .cache/pip/http-v2/a/6/6/7/4/a6674e44f8dbb270324765d1fb568b86858877aed299a2428f81e802 +0 -0
- .cache/pip/http-v2/a/b/7/2/8/ab7286aff652f0ea3cc68322991122267ea675cbb86a9b1ccfe4ace3 +0 -0
- .cache/pip/http-v2/a/d/e/c/9/adec97b9b98035179c2f2a0370fc49fcf626678705d2f38c1dcdafa7 +0 -0
- .cache/pip/http-v2/b/6/8/7/d/b687d90e2a44328db9c9ecd9af0a9c577a4e68f9d239bbb73aebc319.body +62 -0
- .cache/pip/http-v2/b/8/b/f/4/b8bf4a44dbb1c5e59b2500975b68a4301d11f85878b612151a649c3d +0 -0
- .cache/pip/http-v2/b/f/c/a/5/bfca522eaf7404612287f82a4ec69fbc52a846f5a5757f91528163da +0 -0
- .cache/pip/http-v2/b/f/d/6/3/bfd6322b8f4c82d6b7ed54608512187e126478b3b0851b74973f4adc.body +0 -0
- .launchpadlib/api.launchpad.net/cache/api.launchpad.net,devel,-application,json,fc4e1e3a03117146fb1e9d492ab76690 +19 -0
- .local/share/Trash/info/train_001.bin.trashinfo +3 -0
- .local/share/Trash/info/train_003.bin.trashinfo +3 -0
- .local/share/Trash/info/train_006.bin.trashinfo +3 -0
- .local/share/Trash/info/train_007.bin.trashinfo +3 -0
- .local/share/jupyter/nbextensions/skip-traceback/icon.png +0 -0
- .local/share/jupyter/nbextensions/skip-traceback/skip-traceback.png +0 -0
- .local/share/jupyter/nbextensions/snippets_menu/main.js +292 -0
- .local/share/jupyter/nbextensions/snippets_menu/screenshot3.png +0 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenu_python.js +24 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy.js +620 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy_special.js +2198 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/sympy_assumptions.js +109 -0
.bashrc
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ~/.bashrc: executed by bash(1) for non-login shells.
|
2 |
+
# see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
|
3 |
+
# for examples
|
4 |
+
|
5 |
+
# If not running interactively, don't do anything
|
6 |
+
[ -z "$PS1" ] && return
|
7 |
+
|
8 |
+
# don't put duplicate lines in the history. See bash(1) for more options
|
9 |
+
# ... or force ignoredups and ignorespace
|
10 |
+
HISTCONTROL=ignoredups:ignorespace
|
11 |
+
|
12 |
+
# append to the history file, don't overwrite it
|
13 |
+
shopt -s histappend
|
14 |
+
|
15 |
+
# for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
|
16 |
+
HISTSIZE=1000
|
17 |
+
HISTFILESIZE=2000
|
18 |
+
|
19 |
+
# check the window size after each command and, if necessary,
|
20 |
+
# update the values of LINES and COLUMNS.
|
21 |
+
shopt -s checkwinsize
|
22 |
+
|
23 |
+
# make less more friendly for non-text input files, see lesspipe(1)
|
24 |
+
[ -x /usr/bin/lesspipe ] && eval "$(SHELL=/bin/sh lesspipe)"
|
25 |
+
|
26 |
+
# set variable identifying the chroot you work in (used in the prompt below)
|
27 |
+
if [ -z "$debian_chroot" ] && [ -r /etc/debian_chroot ]; then
|
28 |
+
debian_chroot=$(cat /etc/debian_chroot)
|
29 |
+
fi
|
30 |
+
|
31 |
+
# set a fancy prompt (non-color, unless we know we "want" color)
|
32 |
+
case "$TERM" in
|
33 |
+
xterm-color) color_prompt=yes;;
|
34 |
+
esac
|
35 |
+
|
36 |
+
# uncomment for a colored prompt, if the terminal has the capability; turned
|
37 |
+
# off by default to not distract the user: the focus in a terminal window
|
38 |
+
# should be on the output of commands, not on the prompt
|
39 |
+
#force_color_prompt=yes
|
40 |
+
|
41 |
+
if [ -n "$force_color_prompt" ]; then
|
42 |
+
if [ -x /usr/bin/tput ] && tput setaf 1 >&/dev/null; then
|
43 |
+
# We have color support; assume it's compliant with Ecma-48
|
44 |
+
# (ISO/IEC-6429). (Lack of such support is extremely rare, and such
|
45 |
+
# a case would tend to support setf rather than setaf.)
|
46 |
+
color_prompt=yes
|
47 |
+
else
|
48 |
+
color_prompt=
|
49 |
+
fi
|
50 |
+
fi
|
51 |
+
|
52 |
+
if [ "$color_prompt" = yes ]; then
|
53 |
+
PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ '
|
54 |
+
else
|
55 |
+
PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '
|
56 |
+
fi
|
57 |
+
unset color_prompt force_color_prompt
|
58 |
+
|
59 |
+
# If this is an xterm set the title to user@host:dir
|
60 |
+
case "$TERM" in
|
61 |
+
xterm*|rxvt*)
|
62 |
+
PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1"
|
63 |
+
;;
|
64 |
+
*)
|
65 |
+
;;
|
66 |
+
esac
|
67 |
+
|
68 |
+
# enable color support of ls and also add handy aliases
|
69 |
+
if [ -x /usr/bin/dircolors ]; then
|
70 |
+
test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)"
|
71 |
+
alias ls='ls --color=auto'
|
72 |
+
#alias dir='dir --color=auto'
|
73 |
+
#alias vdir='vdir --color=auto'
|
74 |
+
|
75 |
+
alias grep='grep --color=auto'
|
76 |
+
alias fgrep='fgrep --color=auto'
|
77 |
+
alias egrep='egrep --color=auto'
|
78 |
+
fi
|
79 |
+
|
80 |
+
# some more ls aliases
|
81 |
+
alias ll='ls -alF'
|
82 |
+
alias la='ls -A'
|
83 |
+
alias l='ls -CF'
|
84 |
+
|
85 |
+
# Alias definitions.
|
86 |
+
# You may want to put all your additions into a separate file like
|
87 |
+
# ~/.bash_aliases, instead of adding them here directly.
|
88 |
+
# See /usr/share/doc/bash-doc/examples in the bash-doc package.
|
89 |
+
|
90 |
+
if [ -f ~/.bash_aliases ]; then
|
91 |
+
. ~/.bash_aliases
|
92 |
+
fi
|
93 |
+
|
94 |
+
# enable programmable completion features (you don't need to enable
|
95 |
+
# this, if it's already enabled in /etc/bash.bashrc and /etc/profile
|
96 |
+
# sources /etc/bash.bashrc).
|
97 |
+
#if [ -f /etc/bash_completion ] && ! shopt -oq posix; then
|
98 |
+
# . /etc/bash_completion
|
99 |
+
#fi
|
100 |
+
cat /etc/runpod.txt
|
101 |
+
echo -e "\nFor detailed documentation and guides, please visit:\n\033[1;34mhttps://docs.runpod.io/\033[0m and \033[1;34mhttps://blog.runpod.io/\033[0m\n\n"
|
102 |
+
PATH='/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
|
103 |
+
VAST_CONTAINERLABEL="$(cat ~/.vast_containerlabel)"
|
104 |
+
PS1="\[\e]0;\u@$VAST_CONTAINERLABEL: \w\a\]\[\e[01;34m\]\u\[\e[m\e[01m\]@\[\e[01;36m\]$VAST_CONTAINERLABEL\[\e[m\e[01m\]:\[\e[01;37m\]\w\$\[\e[m\] " ; if [ ! -e "$HOME/.no_auto_tmux" ] && [[ -z "$TMUX" ]] && [ "$SSH_CONNECTION" != "" ] && [ "$TMUX_STARTED" = "" ]; then tmux attach-session -t ssh_tmux || tmux new-session -s ssh_tmux; exit; elif ! [[ -z "$TMUX" ]]; then echo 'Welcome to your vast.ai container! This session is running in `tmux`.'; echo 'To disconnect without closing your processes, press ctrl+b, release, then d.'; echo 'To disable auto-tmux, run `touch ~/.no_auto_tmux` and reconnect. See also https://tmuxcheatsheet.com/'; fi;
|
105 |
+
DIRECT_PORT_START=0
|
106 |
+
DIRECT_PORT_END=0
|
107 |
+
VAST_CONTAINERLABEL=C.12728823
|
.cache/pip/http-v2/0/1/f/2/0/01f2082df50502ba9492d64e69db99d1fdb5730707a16c6264b355b8
ADDED
Binary file (1.13 kB). View file
|
|
.cache/pip/http-v2/0/2/f/8/e/02f8e820ca8231526982c4a2b93baef519d0948ff85c925acd226f06
ADDED
Binary file (1.82 kB). View file
|
|
.cache/pip/http-v2/0/5/8/9/6/0589682f53f4c502330bc0fa01138806ce0467c549c2af469b6afb31.body
ADDED
Binary file (64.9 kB). View file
|
|
.cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9
ADDED
Binary file (1.11 kB). View file
|
|
.cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9.body
ADDED
Binary file (24.3 kB). View file
|
|
.cache/pip/http-v2/0/6/7/2/6/06726d442b7e33afe35f1740674b6dee72357a95eef3aca0ef7abf21.body
ADDED
Binary file (7.81 kB). View file
|
|
.cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4
ADDED
Binary file (1.81 kB). View file
|
|
.cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4.body
ADDED
Binary file (66.6 kB). View file
|
|
.cache/pip/http-v2/1/0/e/d/c/10edc2fedb88f9a82f91dc7f8666c74a4e7067dbd945b9923a040482.body
ADDED
Binary file (133 kB). View file
|
|
.cache/pip/http-v2/1/6/9/3/2/1693297fb9daf7bfe370bf51d371acfeb8ff40759bf8650dfd404ba4.body
ADDED
Binary file (273 kB). View file
|
|
.cache/pip/http-v2/1/8/e/e/a/18eea207de73c88bb45229bed4bcc74fbcbddadf2aa9f49e4df1f66a
ADDED
Binary file (1.19 kB). View file
|
|
.cache/pip/http-v2/1/a/9/9/5/1a995e0685d0b5c5a3f3321cda9ebcbc376a9137828d1c100a493532
ADDED
Binary file (1.81 kB). View file
|
|
.cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80
ADDED
Binary file (1.82 kB). View file
|
|
.cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80.body
ADDED
Binary file (23.4 kB). View file
|
|
.cache/pip/http-v2/1/d/8/a/2/1d8a24cdff71edbc3f733b6b4d52640c1c1129289938aa4d1c7adcf5
ADDED
Binary file (1.15 kB). View file
|
|
.cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22
ADDED
Binary file (1.81 kB). View file
|
|
.cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22.body
ADDED
Binary file (5.58 kB). View file
|
|
.cache/pip/http-v2/4/2/f/8/a/42f8a0202dbbd3a131c6443d28a5b01775c53d41dec7e7928a8b5a4c.body
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: multidict
|
3 |
+
Version: 6.1.0
|
4 |
+
Summary: multidict implementation
|
5 |
+
Home-page: https://github.com/aio-libs/multidict
|
6 |
+
Author: Andrew Svetlov
|
7 |
+
Author-email: andrew.svetlov@gmail.com
|
8 |
+
License: Apache 2
|
9 |
+
Project-URL: Chat: Matrix, https://matrix.to/#/#aio-libs:matrix.org
|
10 |
+
Project-URL: Chat: Matrix Space, https://matrix.to/#/#aio-libs-space:matrix.org
|
11 |
+
Project-URL: CI: GitHub, https://github.com/aio-libs/multidict/actions
|
12 |
+
Project-URL: Code of Conduct, https://github.com/aio-libs/.github/blob/master/CODE_OF_CONDUCT.md
|
13 |
+
Project-URL: Coverage: codecov, https://codecov.io/github/aio-libs/multidict
|
14 |
+
Project-URL: Docs: Changelog, https://multidict.aio-libs.org/en/latest/changes/
|
15 |
+
Project-URL: Docs: RTD, https://multidict.aio-libs.org
|
16 |
+
Project-URL: GitHub: issues, https://github.com/aio-libs/multidict/issues
|
17 |
+
Project-URL: GitHub: repo, https://github.com/aio-libs/multidict
|
18 |
+
Classifier: Development Status :: 5 - Production/Stable
|
19 |
+
Classifier: Intended Audience :: Developers
|
20 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
21 |
+
Classifier: Programming Language :: Python
|
22 |
+
Classifier: Programming Language :: Python :: 3
|
23 |
+
Classifier: Programming Language :: Python :: 3.8
|
24 |
+
Classifier: Programming Language :: Python :: 3.9
|
25 |
+
Classifier: Programming Language :: Python :: 3.10
|
26 |
+
Classifier: Programming Language :: Python :: 3.11
|
27 |
+
Classifier: Programming Language :: Python :: 3.12
|
28 |
+
Classifier: Programming Language :: Python :: 3.13
|
29 |
+
Requires-Python: >=3.8
|
30 |
+
Description-Content-Type: text/x-rst
|
31 |
+
License-File: LICENSE
|
32 |
+
Requires-Dist: typing-extensions >=4.1.0 ; python_version < "3.11"
|
33 |
+
|
34 |
+
=========
|
35 |
+
multidict
|
36 |
+
=========
|
37 |
+
|
38 |
+
.. image:: https://github.com/aio-libs/multidict/actions/workflows/ci-cd.yml/badge.svg
|
39 |
+
:target: https://github.com/aio-libs/multidict/actions
|
40 |
+
:alt: GitHub status for master branch
|
41 |
+
|
42 |
+
.. image:: https://codecov.io/gh/aio-libs/multidict/branch/master/graph/badge.svg
|
43 |
+
:target: https://codecov.io/gh/aio-libs/multidict
|
44 |
+
:alt: Coverage metrics
|
45 |
+
|
46 |
+
.. image:: https://img.shields.io/pypi/v/multidict.svg
|
47 |
+
:target: https://pypi.org/project/multidict
|
48 |
+
:alt: PyPI
|
49 |
+
|
50 |
+
.. image:: https://readthedocs.org/projects/multidict/badge/?version=latest
|
51 |
+
:target: https://multidict.aio-libs.org
|
52 |
+
:alt: Read The Docs build status badge
|
53 |
+
|
54 |
+
.. image:: https://img.shields.io/pypi/pyversions/multidict.svg
|
55 |
+
:target: https://pypi.org/project/multidict
|
56 |
+
:alt: Python versions
|
57 |
+
|
58 |
+
.. image:: https://img.shields.io/matrix/aio-libs:matrix.org?label=Discuss%20on%20Matrix%20at%20%23aio-libs%3Amatrix.org&logo=matrix&server_fqdn=matrix.org&style=flat
|
59 |
+
:target: https://matrix.to/#/%23aio-libs:matrix.org
|
60 |
+
:alt: Matrix Room — #aio-libs:matrix.org
|
61 |
+
|
62 |
+
.. image:: https://img.shields.io/matrix/aio-libs-space:matrix.org?label=Discuss%20on%20Matrix%20at%20%23aio-libs-space%3Amatrix.org&logo=matrix&server_fqdn=matrix.org&style=flat
|
63 |
+
:target: https://matrix.to/#/%23aio-libs-space:matrix.org
|
64 |
+
:alt: Matrix Space — #aio-libs-space:matrix.org
|
65 |
+
|
66 |
+
Multidict is dict-like collection of *key-value pairs* where key
|
67 |
+
might occur more than once in the container.
|
68 |
+
|
69 |
+
Introduction
|
70 |
+
------------
|
71 |
+
|
72 |
+
*HTTP Headers* and *URL query string* require specific data structure:
|
73 |
+
*multidict*. It behaves mostly like a regular ``dict`` but it may have
|
74 |
+
several *values* for the same *key* and *preserves insertion ordering*.
|
75 |
+
|
76 |
+
The *key* is ``str`` (or ``istr`` for case-insensitive dictionaries).
|
77 |
+
|
78 |
+
``multidict`` has four multidict classes:
|
79 |
+
``MultiDict``, ``MultiDictProxy``, ``CIMultiDict``
|
80 |
+
and ``CIMultiDictProxy``.
|
81 |
+
|
82 |
+
Immutable proxies (``MultiDictProxy`` and
|
83 |
+
``CIMultiDictProxy``) provide a dynamic view for the
|
84 |
+
proxied multidict, the view reflects underlying collection changes. They
|
85 |
+
implement the ``collections.abc.Mapping`` interface.
|
86 |
+
|
87 |
+
Regular mutable (``MultiDict`` and ``CIMultiDict``) classes
|
88 |
+
implement ``collections.abc.MutableMapping`` and allows them to change
|
89 |
+
their own content.
|
90 |
+
|
91 |
+
|
92 |
+
*Case insensitive* (``CIMultiDict`` and
|
93 |
+
``CIMultiDictProxy``) assume the *keys* are case
|
94 |
+
insensitive, e.g.::
|
95 |
+
|
96 |
+
>>> dct = CIMultiDict(key='val')
|
97 |
+
>>> 'Key' in dct
|
98 |
+
True
|
99 |
+
>>> dct['Key']
|
100 |
+
'val'
|
101 |
+
|
102 |
+
*Keys* should be ``str`` or ``istr`` instances.
|
103 |
+
|
104 |
+
The library has optional C Extensions for speed.
|
105 |
+
|
106 |
+
|
107 |
+
License
|
108 |
+
-------
|
109 |
+
|
110 |
+
Apache 2
|
111 |
+
|
112 |
+
Library Installation
|
113 |
+
--------------------
|
114 |
+
|
115 |
+
.. code-block:: bash
|
116 |
+
|
117 |
+
$ pip install multidict
|
118 |
+
|
119 |
+
The library is Python 3 only!
|
120 |
+
|
121 |
+
PyPI contains binary wheels for Linux, Windows and MacOS. If you want to install
|
122 |
+
``multidict`` on another operating system (or *Alpine Linux* inside a Docker) the
|
123 |
+
tarball will be used to compile the library from source. It requires a C compiler and
|
124 |
+
Python headers to be installed.
|
125 |
+
|
126 |
+
To skip the compilation, please use the `MULTIDICT_NO_EXTENSIONS` environment variable,
|
127 |
+
e.g.:
|
128 |
+
|
129 |
+
.. code-block:: bash
|
130 |
+
|
131 |
+
$ MULTIDICT_NO_EXTENSIONS=1 pip install multidict
|
132 |
+
|
133 |
+
Please note, the pure Python (uncompiled) version is about 20-50 times slower depending on
|
134 |
+
the usage scenario!!!
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
Changelog
|
139 |
+
---------
|
140 |
+
See `RTD page <http://multidict.aio-libs.org/en/latest/changes>`_.
|
.cache/pip/http-v2/4/5/9/c/7/459c78bacdedb04c7e03d152081522ecf0ff46e1d14e7503997ea6c8.body
ADDED
Binary file (508 kB). View file
|
|
.cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7
ADDED
Binary file (1.15 kB). View file
|
|
.cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7.body
ADDED
Binary file (62.7 kB). View file
|
|
.cache/pip/http-v2/4/d/2/7/2/4d272e6453941ce8b0a37a02cdb1685fc612c33441fa74691fb40656
ADDED
Binary file (1.82 kB). View file
|
|
.cache/pip/http-v2/7/1/b/9/d/71b9df22187d5c54f1147d4ac0849d1438ec19aedc20363a3478b854
ADDED
Binary file (1.18 kB). View file
|
|
.cache/pip/http-v2/7/2/2/9/f/7229fb50bdca3f16cb03ca953b540cb67fb07fb971b675db32ae3239
ADDED
Binary file (1.17 kB). View file
|
|
.cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5
ADDED
Binary file (1.19 kB). View file
|
|
.cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5.body
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: pytest
|
3 |
+
Version: 8.3.3
|
4 |
+
Summary: pytest: simple powerful testing with Python
|
5 |
+
Author: Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, Florian Bruhin, Others (See AUTHORS)
|
6 |
+
License: MIT
|
7 |
+
Project-URL: Changelog, https://docs.pytest.org/en/stable/changelog.html
|
8 |
+
Project-URL: Homepage, https://docs.pytest.org/en/latest/
|
9 |
+
Project-URL: Source, https://github.com/pytest-dev/pytest
|
10 |
+
Project-URL: Tracker, https://github.com/pytest-dev/pytest/issues
|
11 |
+
Project-URL: Twitter, https://twitter.com/pytestdotorg
|
12 |
+
Keywords: test,unittest
|
13 |
+
Classifier: Development Status :: 6 - Mature
|
14 |
+
Classifier: Intended Audience :: Developers
|
15 |
+
Classifier: License :: OSI Approved :: MIT License
|
16 |
+
Classifier: Operating System :: MacOS
|
17 |
+
Classifier: Operating System :: Microsoft :: Windows
|
18 |
+
Classifier: Operating System :: POSIX
|
19 |
+
Classifier: Operating System :: Unix
|
20 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
21 |
+
Classifier: Programming Language :: Python :: 3.8
|
22 |
+
Classifier: Programming Language :: Python :: 3.9
|
23 |
+
Classifier: Programming Language :: Python :: 3.10
|
24 |
+
Classifier: Programming Language :: Python :: 3.11
|
25 |
+
Classifier: Programming Language :: Python :: 3.12
|
26 |
+
Classifier: Topic :: Software Development :: Libraries
|
27 |
+
Classifier: Topic :: Software Development :: Testing
|
28 |
+
Classifier: Topic :: Utilities
|
29 |
+
Requires-Python: >=3.8
|
30 |
+
Description-Content-Type: text/x-rst
|
31 |
+
License-File: LICENSE
|
32 |
+
License-File: AUTHORS
|
33 |
+
Requires-Dist: iniconfig
|
34 |
+
Requires-Dist: packaging
|
35 |
+
Requires-Dist: pluggy <2,>=1.5
|
36 |
+
Requires-Dist: exceptiongroup >=1.0.0rc8 ; python_version < "3.11"
|
37 |
+
Requires-Dist: tomli >=1 ; python_version < "3.11"
|
38 |
+
Requires-Dist: colorama ; sys_platform == "win32"
|
39 |
+
Provides-Extra: dev
|
40 |
+
Requires-Dist: argcomplete ; extra == 'dev'
|
41 |
+
Requires-Dist: attrs >=19.2 ; extra == 'dev'
|
42 |
+
Requires-Dist: hypothesis >=3.56 ; extra == 'dev'
|
43 |
+
Requires-Dist: mock ; extra == 'dev'
|
44 |
+
Requires-Dist: pygments >=2.7.2 ; extra == 'dev'
|
45 |
+
Requires-Dist: requests ; extra == 'dev'
|
46 |
+
Requires-Dist: setuptools ; extra == 'dev'
|
47 |
+
Requires-Dist: xmlschema ; extra == 'dev'
|
48 |
+
|
49 |
+
.. image:: https://github.com/pytest-dev/pytest/raw/main/doc/en/img/pytest_logo_curves.svg
|
50 |
+
:target: https://docs.pytest.org/en/stable/
|
51 |
+
:align: center
|
52 |
+
:height: 200
|
53 |
+
:alt: pytest
|
54 |
+
|
55 |
+
|
56 |
+
------
|
57 |
+
|
58 |
+
.. image:: https://img.shields.io/pypi/v/pytest.svg
|
59 |
+
:target: https://pypi.org/project/pytest/
|
60 |
+
|
61 |
+
.. image:: https://img.shields.io/conda/vn/conda-forge/pytest.svg
|
62 |
+
:target: https://anaconda.org/conda-forge/pytest
|
63 |
+
|
64 |
+
.. image:: https://img.shields.io/pypi/pyversions/pytest.svg
|
65 |
+
:target: https://pypi.org/project/pytest/
|
66 |
+
|
67 |
+
.. image:: https://codecov.io/gh/pytest-dev/pytest/branch/main/graph/badge.svg
|
68 |
+
:target: https://codecov.io/gh/pytest-dev/pytest
|
69 |
+
:alt: Code coverage Status
|
70 |
+
|
71 |
+
.. image:: https://github.com/pytest-dev/pytest/actions/workflows/test.yml/badge.svg
|
72 |
+
:target: https://github.com/pytest-dev/pytest/actions?query=workflow%3Atest
|
73 |
+
|
74 |
+
.. image:: https://results.pre-commit.ci/badge/github/pytest-dev/pytest/main.svg
|
75 |
+
:target: https://results.pre-commit.ci/latest/github/pytest-dev/pytest/main
|
76 |
+
:alt: pre-commit.ci status
|
77 |
+
|
78 |
+
.. image:: https://www.codetriage.com/pytest-dev/pytest/badges/users.svg
|
79 |
+
:target: https://www.codetriage.com/pytest-dev/pytest
|
80 |
+
|
81 |
+
.. image:: https://readthedocs.org/projects/pytest/badge/?version=latest
|
82 |
+
:target: https://pytest.readthedocs.io/en/latest/?badge=latest
|
83 |
+
:alt: Documentation Status
|
84 |
+
|
85 |
+
.. image:: https://img.shields.io/badge/Discord-pytest--dev-blue
|
86 |
+
:target: https://discord.com/invite/pytest-dev
|
87 |
+
:alt: Discord
|
88 |
+
|
89 |
+
.. image:: https://img.shields.io/badge/Libera%20chat-%23pytest-orange
|
90 |
+
:target: https://web.libera.chat/#pytest
|
91 |
+
:alt: Libera chat
|
92 |
+
|
93 |
+
|
94 |
+
The ``pytest`` framework makes it easy to write small tests, yet
|
95 |
+
scales to support complex functional testing for applications and libraries.
|
96 |
+
|
97 |
+
An example of a simple test:
|
98 |
+
|
99 |
+
.. code-block:: python
|
100 |
+
|
101 |
+
# content of test_sample.py
|
102 |
+
def inc(x):
|
103 |
+
return x + 1
|
104 |
+
|
105 |
+
|
106 |
+
def test_answer():
|
107 |
+
assert inc(3) == 5
|
108 |
+
|
109 |
+
|
110 |
+
To execute it::
|
111 |
+
|
112 |
+
$ pytest
|
113 |
+
============================= test session starts =============================
|
114 |
+
collected 1 items
|
115 |
+
|
116 |
+
test_sample.py F
|
117 |
+
|
118 |
+
================================== FAILURES ===================================
|
119 |
+
_________________________________ test_answer _________________________________
|
120 |
+
|
121 |
+
def test_answer():
|
122 |
+
> assert inc(3) == 5
|
123 |
+
E assert 4 == 5
|
124 |
+
E + where 4 = inc(3)
|
125 |
+
|
126 |
+
test_sample.py:5: AssertionError
|
127 |
+
========================== 1 failed in 0.04 seconds ===========================
|
128 |
+
|
129 |
+
|
130 |
+
Due to ``pytest``'s detailed assertion introspection, only plain ``assert`` statements are used. See `getting-started <https://docs.pytest.org/en/stable/getting-started.html#our-first-test-run>`_ for more examples.
|
131 |
+
|
132 |
+
|
133 |
+
Features
|
134 |
+
--------
|
135 |
+
|
136 |
+
- Detailed info on failing `assert statements <https://docs.pytest.org/en/stable/how-to/assert.html>`_ (no need to remember ``self.assert*`` names)
|
137 |
+
|
138 |
+
- `Auto-discovery
|
139 |
+
<https://docs.pytest.org/en/stable/explanation/goodpractices.html#python-test-discovery>`_
|
140 |
+
of test modules and functions
|
141 |
+
|
142 |
+
- `Modular fixtures <https://docs.pytest.org/en/stable/explanation/fixtures.html>`_ for
|
143 |
+
managing small or parametrized long-lived test resources
|
144 |
+
|
145 |
+
- Can run `unittest <https://docs.pytest.org/en/stable/how-to/unittest.html>`_ (or trial)
|
146 |
+
test suites out of the box
|
147 |
+
|
148 |
+
- Python 3.8+ or PyPy3
|
149 |
+
|
150 |
+
- Rich plugin architecture, with over 1300+ `external plugins <https://docs.pytest.org/en/latest/reference/plugin_list.html>`_ and thriving community
|
151 |
+
|
152 |
+
|
153 |
+
Documentation
|
154 |
+
-------------
|
155 |
+
|
156 |
+
For full documentation, including installation, tutorials and PDF documents, please see https://docs.pytest.org/en/stable/.
|
157 |
+
|
158 |
+
|
159 |
+
Bugs/Requests
|
160 |
+
-------------
|
161 |
+
|
162 |
+
Please use the `GitHub issue tracker <https://github.com/pytest-dev/pytest/issues>`_ to submit bugs or request features.
|
163 |
+
|
164 |
+
|
165 |
+
Changelog
|
166 |
+
---------
|
167 |
+
|
168 |
+
Consult the `Changelog <https://docs.pytest.org/en/stable/changelog.html>`__ page for fixes and enhancements of each version.
|
169 |
+
|
170 |
+
|
171 |
+
Support pytest
|
172 |
+
--------------
|
173 |
+
|
174 |
+
`Open Collective`_ is an online funding platform for open and transparent communities.
|
175 |
+
It provides tools to raise money and share your finances in full transparency.
|
176 |
+
|
177 |
+
It is the platform of choice for individuals and companies that want to make one-time or
|
178 |
+
monthly donations directly to the project.
|
179 |
+
|
180 |
+
See more details in the `pytest collective`_.
|
181 |
+
|
182 |
+
.. _Open Collective: https://opencollective.com
|
183 |
+
.. _pytest collective: https://opencollective.com/pytest
|
184 |
+
|
185 |
+
|
186 |
+
pytest for enterprise
|
187 |
+
---------------------
|
188 |
+
|
189 |
+
Available as part of the Tidelift Subscription.
|
190 |
+
|
191 |
+
The maintainers of pytest and thousands of other packages are working with Tidelift to deliver commercial support and
|
192 |
+
maintenance for the open source dependencies you use to build your applications.
|
193 |
+
Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use.
|
194 |
+
|
195 |
+
`Learn more. <https://tidelift.com/subscription/pkg/pypi-pytest?utm_source=pypi-pytest&utm_medium=referral&utm_campaign=enterprise&utm_term=repo>`_
|
196 |
+
|
197 |
+
Security
|
198 |
+
^^^^^^^^
|
199 |
+
|
200 |
+
pytest has never been associated with a security vulnerability, but in any case, to report a
|
201 |
+
security vulnerability please use the `Tidelift security contact <https://tidelift.com/security>`_.
|
202 |
+
Tidelift will coordinate the fix and disclosure.
|
203 |
+
|
204 |
+
|
205 |
+
License
|
206 |
+
-------
|
207 |
+
|
208 |
+
Copyright Holger Krekel and others, 2004.
|
209 |
+
|
210 |
+
Distributed under the terms of the `MIT`_ license, pytest is free and open source software.
|
211 |
+
|
212 |
+
.. _`MIT`: https://github.com/pytest-dev/pytest/blob/main/LICENSE
|
.cache/pip/http-v2/7/7/6/7/2/7767287c95ec4491394e4204f2ba3be9eb9e3ed9ca0ffd45d421b772.body
ADDED
Binary file (307 kB). View file
|
|
.cache/pip/http-v2/7/c/4/b/8/7c4b8a19f4f69494c22868b76649cd91120de17447e4ff71fb7a7f10.body
ADDED
Binary file (1.39 kB). View file
|
|
.cache/pip/http-v2/7/e/1/d/d/7e1dd8fd372b5a4d9dab3a30df124fb3e1f8789a9ab79f867640876a.body
ADDED
Binary file (65.4 kB). View file
|
|
.cache/pip/http-v2/a/6/6/7/4/a6674e44f8dbb270324765d1fb568b86858877aed299a2428f81e802
ADDED
Binary file (1.81 kB). View file
|
|
.cache/pip/http-v2/a/b/7/2/8/ab7286aff652f0ea3cc68322991122267ea675cbb86a9b1ccfe4ace3
ADDED
Binary file (1.19 kB). View file
|
|
.cache/pip/http-v2/a/d/e/c/9/adec97b9b98035179c2f2a0370fc49fcf626678705d2f38c1dcdafa7
ADDED
Binary file (1.16 kB). View file
|
|
.cache/pip/http-v2/b/6/8/7/d/b687d90e2a44328db9c9ecd9af0a9c577a4e68f9d239bbb73aebc319.body
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: wheel
|
3 |
+
Version: 0.42.0
|
4 |
+
Summary: A built-package format for Python
|
5 |
+
Keywords: wheel,packaging
|
6 |
+
Author-email: Daniel Holth <dholth@fastmail.fm>
|
7 |
+
Maintainer-email: Alex Grönholm <alex.gronholm@nextday.fi>
|
8 |
+
Requires-Python: >=3.7
|
9 |
+
Description-Content-Type: text/x-rst
|
10 |
+
Classifier: Development Status :: 5 - Production/Stable
|
11 |
+
Classifier: Intended Audience :: Developers
|
12 |
+
Classifier: Topic :: System :: Archiving :: Packaging
|
13 |
+
Classifier: License :: OSI Approved :: MIT License
|
14 |
+
Classifier: Programming Language :: Python
|
15 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
16 |
+
Classifier: Programming Language :: Python :: 3.7
|
17 |
+
Classifier: Programming Language :: Python :: 3.8
|
18 |
+
Classifier: Programming Language :: Python :: 3.9
|
19 |
+
Classifier: Programming Language :: Python :: 3.10
|
20 |
+
Classifier: Programming Language :: Python :: 3.11
|
21 |
+
Classifier: Programming Language :: Python :: 3.12
|
22 |
+
Requires-Dist: pytest >= 6.0.0 ; extra == "test"
|
23 |
+
Requires-Dist: setuptools >= 65 ; extra == "test"
|
24 |
+
Project-URL: Changelog, https://wheel.readthedocs.io/en/stable/news.html
|
25 |
+
Project-URL: Documentation, https://wheel.readthedocs.io/
|
26 |
+
Project-URL: Issue Tracker, https://github.com/pypa/wheel/issues
|
27 |
+
Project-URL: Source, https://github.com/pypa/wheel
|
28 |
+
Provides-Extra: test
|
29 |
+
|
30 |
+
wheel
|
31 |
+
=====
|
32 |
+
|
33 |
+
This library is the reference implementation of the Python wheel packaging
|
34 |
+
standard, as defined in `PEP 427`_.
|
35 |
+
|
36 |
+
It has two different roles:
|
37 |
+
|
38 |
+
#. A setuptools_ extension for building wheels that provides the
|
39 |
+
``bdist_wheel`` setuptools command
|
40 |
+
#. A command line tool for working with wheel files
|
41 |
+
|
42 |
+
It should be noted that wheel is **not** intended to be used as a library, and
|
43 |
+
as such there is no stable, public API.
|
44 |
+
|
45 |
+
.. _PEP 427: https://www.python.org/dev/peps/pep-0427/
|
46 |
+
.. _setuptools: https://pypi.org/project/setuptools/
|
47 |
+
|
48 |
+
Documentation
|
49 |
+
-------------
|
50 |
+
|
51 |
+
The documentation_ can be found on Read The Docs.
|
52 |
+
|
53 |
+
.. _documentation: https://wheel.readthedocs.io/
|
54 |
+
|
55 |
+
Code of Conduct
|
56 |
+
---------------
|
57 |
+
|
58 |
+
Everyone interacting in the wheel project's codebases, issue trackers, chat
|
59 |
+
rooms, and mailing lists is expected to follow the `PSF Code of Conduct`_.
|
60 |
+
|
61 |
+
.. _PSF Code of Conduct: https://github.com/pypa/.github/blob/main/CODE_OF_CONDUCT.md
|
62 |
+
|
.cache/pip/http-v2/b/8/b/f/4/b8bf4a44dbb1c5e59b2500975b68a4301d11f85878b612151a649c3d
ADDED
Binary file (1.82 kB). View file
|
|
.cache/pip/http-v2/b/f/c/a/5/bfca522eaf7404612287f82a4ec69fbc52a846f5a5757f91528163da
ADDED
Binary file (1.15 kB). View file
|
|
.cache/pip/http-v2/b/f/d/6/3/bfd6322b8f4c82d6b7ed54608512187e126478b3b0851b74973f4adc.body
ADDED
Binary file (299 kB). View file
|
|
.launchpadlib/api.launchpad.net/cache/api.launchpad.net,devel,-application,json,fc4e1e3a03117146fb1e9d492ab76690
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
status: 200
|
2 |
+
date: Mon, 05 Feb 2024 23:25:35 GMT
|
3 |
+
server: Apache/2.4.41 (Ubuntu)
|
4 |
+
content-location: index.json
|
5 |
+
vary: negotiate,accept,Accept-Encoding
|
6 |
+
tcn: choice
|
7 |
+
last-modified: Wed, 31 Jan 2024 08:46:52 GMT
|
8 |
+
etag: "8fa-61039eb973700-gzip"
|
9 |
+
accept-ranges: bytes
|
10 |
+
content-type: application/json; qs=0.9
|
11 |
+
x-cache: MISS from juju-98d295-prod-launchpad-30
|
12 |
+
x-cache-lookup: MISS from juju-98d295-prod-launchpad-30:3128
|
13 |
+
via: 1.1 juju-98d295-prod-launchpad-30 (squid/4.10)
|
14 |
+
content-length: 2298
|
15 |
+
-content-encoding: gzip
|
16 |
+
-varied-accept: application/json
|
17 |
+
-varied-accept-encoding: gzip, deflate
|
18 |
+
|
19 |
+
{"resource_type_link": "https://api.launchpad.net/devel/#service-root", "temporary_blobs_collection_link": "https://api.launchpad.net/devel/temporary-blobs", "countries_collection_link": "https://api.launchpad.net/devel/+countries", "languages_collection_link": "https://api.launchpad.net/devel/+languages", "questions_collection_link": "https://api.launchpad.net/devel/questions", "specifications_collection_link": "https://api.launchpad.net/devel/", "bug_trackers_collection_link": "https://api.launchpad.net/devel/bugs/bugtrackers", "cves_collection_link": "https://api.launchpad.net/devel/bugs/cve", "bugs_collection_link": "https://api.launchpad.net/devel/bugs", "builders_collection_link": "https://api.launchpad.net/devel/builders", "processors_collection_link": "https://api.launchpad.net/devel/+processors", "charm_bases_collection_link": "https://api.launchpad.net/devel/+charm-bases", "charm_recipes_collection_link": "https://api.launchpad.net/devel/+charm-recipes", "branches_collection_link": "https://api.launchpad.net/devel/branches", "git_repositories_collection_link": "https://api.launchpad.net/devel/+git", "snap_bases_collection_link": "https://api.launchpad.net/devel/+snap-bases", "snaps_collection_link": "https://api.launchpad.net/devel/+snaps", "snappy_serieses_collection_link": "https://api.launchpad.net/devel/+snappy-series", "archives_collection_link": "https://api.launchpad.net/devel/archives", "livefses_collection_link": "https://api.launchpad.net/devel/livefses", "packagesets_collection_link": "https://api.launchpad.net/devel/package-sets", "translation_groups_collection_link": "https://api.launchpad.net/devel/+groups", "translation_import_queue_entries_collection_link": "https://api.launchpad.net/devel/+imports", "distributions_collection_link": "https://api.launchpad.net/devel/distros", "people_collection_link": "https://api.launchpad.net/devel/people", "polls_collection_link": "https://api.launchpad.net/devel/+polls", "projects_collection_link": "https://api.launchpad.net/devel/projects", "project_groups_collection_link": "https://api.launchpad.net/devel/projectgroups", "services_link": "https://api.launchpad.net/devel/services", "pillars_link": "https://api.launchpad.net/devel/pillars", "me_link": "https://api.launchpad.net/devel/people/+me"}
|
.local/share/Trash/info/train_001.bin.trashinfo
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[Trash Info]
|
2 |
+
Path=/root/data/fineweb/train_001.bin
|
3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/Trash/info/train_003.bin.trashinfo
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[Trash Info]
|
2 |
+
Path=/root/data/fineweb/train_003.bin
|
3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/Trash/info/train_006.bin.trashinfo
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[Trash Info]
|
2 |
+
Path=/root/data/fineweb/train_006.bin
|
3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/Trash/info/train_007.bin.trashinfo
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[Trash Info]
|
2 |
+
Path=/root/data/fineweb/train_007.bin
|
3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/jupyter/nbextensions/skip-traceback/icon.png
ADDED
.local/share/jupyter/nbextensions/skip-traceback/skip-traceback.png
ADDED
.local/share/jupyter/nbextensions/snippets_menu/main.js
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
define([
|
2 |
+
"require",
|
3 |
+
"jquery",
|
4 |
+
"base/js/namespace",
|
5 |
+
"./snippets_submenu_python",
|
6 |
+
"./snippets_submenu_markdown",
|
7 |
+
], function (requirejs, $, Jupyter, python, markdown) {
|
8 |
+
"use strict";
|
9 |
+
|
10 |
+
var mod_name = 'snippets_menu';
|
11 |
+
var mod_log_prefix = mod_name + '[' + mod_name + ']';
|
12 |
+
|
13 |
+
var python_menus = [
|
14 |
+
python.numpy,
|
15 |
+
python.scipy,
|
16 |
+
python.matplotlib,
|
17 |
+
python.sympy,
|
18 |
+
python.pandas,
|
19 |
+
python.astropy,
|
20 |
+
python.h5py,
|
21 |
+
python.numba,
|
22 |
+
python.python,
|
23 |
+
];
|
24 |
+
|
25 |
+
var default_menus = [
|
26 |
+
{
|
27 |
+
'name' : 'Snippets',
|
28 |
+
'sub-menu-direction' : 'left',
|
29 |
+
'sub-menu' : python_menus.concat([markdown]),
|
30 |
+
},
|
31 |
+
];
|
32 |
+
var options = {
|
33 |
+
sibling: undefined, // if undefined, set by cfg.sibling_selector
|
34 |
+
menus : [],
|
35 |
+
hooks: {
|
36 |
+
pre_config: undefined,
|
37 |
+
post_config: undefined,
|
38 |
+
}
|
39 |
+
};
|
40 |
+
|
41 |
+
var includable_submenu_keys = [
|
42 |
+
"numpy",
|
43 |
+
"scipy",
|
44 |
+
"matplotlib",
|
45 |
+
"sympy",
|
46 |
+
"pandas",
|
47 |
+
"astropy",
|
48 |
+
"h5py",
|
49 |
+
"numba",
|
50 |
+
"python",
|
51 |
+
"markdown",
|
52 |
+
];
|
53 |
+
// default parameters
|
54 |
+
var cfg = {
|
55 |
+
insert_as_new_cell: false,
|
56 |
+
insert_before_sibling: false,
|
57 |
+
include_custom_menu: false,
|
58 |
+
include_submenu: {}, // default set after this definition
|
59 |
+
sibling_selector: '#help_menu',
|
60 |
+
top_level_submenu_goes_left: true,
|
61 |
+
// The default has to be included here as well as config.yaml
|
62 |
+
// because the configurator will not store the default given
|
63 |
+
// in config.yaml unless it is changed. That means that this
|
64 |
+
// should be kept up-to-date with whatever goes in
|
65 |
+
// config.yaml.
|
66 |
+
custom_menu_content: JSON.stringify({
|
67 |
+
"name" : "My favorites",
|
68 |
+
"sub-menu" : [{
|
69 |
+
"name" : "Menu item text",
|
70 |
+
"snippet" : [
|
71 |
+
"import something",
|
72 |
+
"",
|
73 |
+
"new_command(3.14)",
|
74 |
+
"other_new_code_on_new_line('with a string!')",
|
75 |
+
"stringy(\"if you need them, escape double quotes with a single backslash\")",
|
76 |
+
"backslashy('This \\ appears as just one backslash in the output')",
|
77 |
+
"backslashy2('Here \\\\ are two backslashes')"
|
78 |
+
]}, {
|
79 |
+
"name" : "TeX can be written in menu labels $\\alpha_W e\\int_0 \\mu \\epsilon$",
|
80 |
+
"snippet" : [
|
81 |
+
"another_new_command(2.78)"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
]
|
85 |
+
})
|
86 |
+
};
|
87 |
+
for (var ii=0; ii< includable_submenu_keys.length; ii++) {
|
88 |
+
cfg.include_submenu[includable_submenu_keys[ii]] = true;
|
89 |
+
}
|
90 |
+
|
91 |
+
function config_loaded_callback () {
|
92 |
+
if (options['pre_config_hook'] !== undefined) {
|
93 |
+
options['pre_config_hook']();
|
94 |
+
}
|
95 |
+
|
96 |
+
// true => deep
|
97 |
+
cfg = $.extend(true, cfg, Jupyter.notebook.config.data.snippets);
|
98 |
+
|
99 |
+
if (cfg.insert_as_new_cell) {
|
100 |
+
console.log(mod_log_prefix, "Insertions will insert new cell");
|
101 |
+
}
|
102 |
+
|
103 |
+
// If `options.menus` had elements added in custom.js, skip all of this and ignore all remaining options
|
104 |
+
if (options.menus.length > 0) {
|
105 |
+
console.log(mod_log_prefix, '`options.menus` was created in custom.js; skipping all other configuration.');
|
106 |
+
}
|
107 |
+
else {
|
108 |
+
options.menus = [
|
109 |
+
{
|
110 |
+
'name' : 'Snippets',
|
111 |
+
'sub-menu-direction' : cfg.top_level_submenu_goes_left ? 'left' : 'right',
|
112 |
+
'sub-menu' : [],
|
113 |
+
},
|
114 |
+
];
|
115 |
+
|
116 |
+
if (cfg.include_custom_menu) {
|
117 |
+
var custom_menu_content = JSON.parse(cfg.custom_menu_content);
|
118 |
+
console.log(mod_log_prefix,
|
119 |
+
"Inserting custom", custom_menu_content.name, "sub-menu");
|
120 |
+
options.menus[0]['sub-menu'].push(custom_menu_content);
|
121 |
+
}
|
122 |
+
|
123 |
+
for (var ii=0; ii < includable_submenu_keys.length; ii++) {
|
124 |
+
var key = includable_submenu_keys[ii];
|
125 |
+
if (cfg.include_submenu[key]) {
|
126 |
+
console.log(mod_log_prefix,
|
127 |
+
"Inserting default", key, "sub-menu");
|
128 |
+
options.menus[0]['sub-menu'].push(key === "markdown" ? markdown : python[key]);
|
129 |
+
}
|
130 |
+
}
|
131 |
+
}
|
132 |
+
|
133 |
+
if (options.hooks.post_config !== undefined) {
|
134 |
+
options.hooks.post_config();
|
135 |
+
}
|
136 |
+
|
137 |
+
// select correct sibling
|
138 |
+
if (options.sibling === undefined) {
|
139 |
+
options.sibling = $(cfg.sibling_selector).parent();
|
140 |
+
if (options.sibling.length < 1) {
|
141 |
+
options.sibling = $("#help_menu").parent();
|
142 |
+
}
|
143 |
+
}
|
144 |
+
}
|
145 |
+
|
146 |
+
function insert_snippet_code (snippet_code) {
|
147 |
+
if (cfg.insert_as_new_cell) {
|
148 |
+
var new_cell = Jupyter.notebook.insert_cell_above('code');
|
149 |
+
new_cell.set_text(snippet_code);
|
150 |
+
new_cell.focus_cell();
|
151 |
+
}
|
152 |
+
else {
|
153 |
+
var selected_cell = Jupyter.notebook.get_selected_cell();
|
154 |
+
Jupyter.notebook.edit_mode();
|
155 |
+
selected_cell.code_mirror.replaceSelection(snippet_code, 'around');
|
156 |
+
}
|
157 |
+
}
|
158 |
+
|
159 |
+
function callback_insert_snippet (evt) {
|
160 |
+
// this (or event.currentTarget, see below) always refers to the DOM
|
161 |
+
// element the listener was attached to - see
|
162 |
+
// http://stackoverflow.com/questions/12077859
|
163 |
+
insert_snippet_code($(evt.currentTarget).data('snippet-code'));
|
164 |
+
}
|
165 |
+
|
166 |
+
function build_menu_element (menu_item_spec, direction) {
|
167 |
+
// Create the menu item html element
|
168 |
+
var element = $('<li/>');
|
169 |
+
|
170 |
+
if (typeof menu_item_spec == 'string') {
|
171 |
+
if (menu_item_spec != '---') {
|
172 |
+
console.log(mod_log_prefix,
|
173 |
+
'Don\'t understand sub-menu string "' + menu_item_spec + '"');
|
174 |
+
return null;
|
175 |
+
}
|
176 |
+
return element.addClass('divider');
|
177 |
+
}
|
178 |
+
|
179 |
+
var a = $('<a/>')
|
180 |
+
.attr('href', '#')
|
181 |
+
.html(menu_item_spec.name)
|
182 |
+
.appendTo(element);
|
183 |
+
if (menu_item_spec.hasOwnProperty('snippet')) {
|
184 |
+
var snippet = menu_item_spec.snippet;
|
185 |
+
if (typeof snippet == 'string' || snippet instanceof String) {
|
186 |
+
snippet = [snippet];
|
187 |
+
}
|
188 |
+
a.attr({
|
189 |
+
'title' : "", // Do not remove this, even though it's empty!
|
190 |
+
'data-snippet-code' : snippet.join('\n'),
|
191 |
+
})
|
192 |
+
.on('click', callback_insert_snippet)
|
193 |
+
.addClass('snippet');
|
194 |
+
}
|
195 |
+
else if (menu_item_spec.hasOwnProperty('internal-link')) {
|
196 |
+
a.attr('href', menu_item_spec['internal-link']);
|
197 |
+
}
|
198 |
+
else if (menu_item_spec.hasOwnProperty('external-link')) {
|
199 |
+
a.empty();
|
200 |
+
a.attr({
|
201 |
+
'target' : '_blank',
|
202 |
+
'title' : 'Opens in a new window',
|
203 |
+
'href' : menu_item_spec['external-link'],
|
204 |
+
});
|
205 |
+
$('<i class="fa fa-external-link menu-icon pull-right"/>').appendTo(a);
|
206 |
+
$('<span/>').html(menu_item_spec.name).appendTo(a);
|
207 |
+
}
|
208 |
+
|
209 |
+
if (menu_item_spec.hasOwnProperty('sub-menu')) {
|
210 |
+
element
|
211 |
+
.addClass('dropdown-submenu')
|
212 |
+
.toggleClass('dropdown-submenu-left', direction === 'left');
|
213 |
+
var sub_element = $('<ul class="dropdown-menu"/>')
|
214 |
+
.toggleClass('dropdown-menu-compact', menu_item_spec.overlay === true) // For space-saving menus
|
215 |
+
.appendTo(element);
|
216 |
+
|
217 |
+
var new_direction = (menu_item_spec['sub-menu-direction'] === 'left') ? 'left' : 'right';
|
218 |
+
for (var j=0; j<menu_item_spec['sub-menu'].length; ++j) {
|
219 |
+
var sub_menu_item_spec = build_menu_element(menu_item_spec['sub-menu'][j], new_direction);
|
220 |
+
if(sub_menu_item_spec !== null) {
|
221 |
+
sub_menu_item_spec.appendTo(sub_element);
|
222 |
+
}
|
223 |
+
}
|
224 |
+
}
|
225 |
+
|
226 |
+
return element;
|
227 |
+
}
|
228 |
+
|
229 |
+
function menu_setup (menu_item_specs, sibling, insert_before_sibling) {
|
230 |
+
for (var i=0; i<menu_item_specs.length; ++i) {
|
231 |
+
var menu_item_spec;
|
232 |
+
if (insert_before_sibling) {
|
233 |
+
menu_item_spec = menu_item_specs[i];
|
234 |
+
} else {
|
235 |
+
menu_item_spec = menu_item_specs[menu_item_specs.length-1-i];
|
236 |
+
}
|
237 |
+
var direction = (menu_item_spec['menu-direction'] == 'left') ? 'left' : 'right';
|
238 |
+
var menu_element = build_menu_element(menu_item_spec, direction);
|
239 |
+
// We need special properties if this item is in the navbar
|
240 |
+
if ($(sibling).parent().is('ul.nav.navbar-nav')) {
|
241 |
+
menu_element
|
242 |
+
.addClass('dropdown')
|
243 |
+
.removeClass('dropdown-submenu dropdown-submenu-left');
|
244 |
+
menu_element.children('a')
|
245 |
+
.addClass('dropdown-toggle')
|
246 |
+
.attr({
|
247 |
+
'data-toggle' : 'dropdown',
|
248 |
+
'aria-expanded' : 'false'
|
249 |
+
});
|
250 |
+
}
|
251 |
+
|
252 |
+
// Insert the menu element into DOM
|
253 |
+
menu_element[insert_before_sibling ? 'insertBefore': 'insertAfter'](sibling);
|
254 |
+
|
255 |
+
// Make sure MathJax will typeset this menu
|
256 |
+
window.MathJax.Hub.Queue(["Typeset", window.MathJax.Hub, menu_element[0]]);
|
257 |
+
}
|
258 |
+
}
|
259 |
+
|
260 |
+
function load_ipython_extension () {
|
261 |
+
// Add our css to the notebook's head
|
262 |
+
$('<link/>', {
|
263 |
+
rel: 'stylesheet',
|
264 |
+
type:'text/css',
|
265 |
+
href: requirejs.toUrl('./snippets_menu.css')
|
266 |
+
}).appendTo('head');
|
267 |
+
|
268 |
+
// Arrange the menus as given by the configuration
|
269 |
+
Jupyter.notebook.config.loaded.then(
|
270 |
+
config_loaded_callback
|
271 |
+
).then(function () {
|
272 |
+
// Parse and insert the menu items
|
273 |
+
menu_setup(options.menus, options.sibling, cfg.insert_before_sibling);
|
274 |
+
});
|
275 |
+
}
|
276 |
+
|
277 |
+
return {
|
278 |
+
// Handy functions
|
279 |
+
load_ipython_extension : load_ipython_extension,
|
280 |
+
menu_setup : menu_setup,
|
281 |
+
|
282 |
+
// Default menus
|
283 |
+
python : python,
|
284 |
+
python_menus : python_menus,
|
285 |
+
markdown : markdown,
|
286 |
+
default_menus : default_menus,
|
287 |
+
|
288 |
+
// Items that could be useful for customization
|
289 |
+
options : options,
|
290 |
+
};
|
291 |
+
|
292 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/screenshot3.png
ADDED
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenu_python.js
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
define([
|
2 |
+
"require",
|
3 |
+
"./snippets_submenus_python/numpy",
|
4 |
+
"./snippets_submenus_python/scipy",
|
5 |
+
"./snippets_submenus_python/matplotlib",
|
6 |
+
"./snippets_submenus_python/sympy",
|
7 |
+
"./snippets_submenus_python/pandas",
|
8 |
+
"./snippets_submenus_python/astropy",
|
9 |
+
"./snippets_submenus_python/h5py",
|
10 |
+
"./snippets_submenus_python/numba",
|
11 |
+
"./snippets_submenus_python/python",
|
12 |
+
], function (requirejs, numpy, scipy, matplotlib, sympy, pandas, astropy, h5py, numba, python) {
|
13 |
+
return {
|
14 |
+
numpy:numpy,
|
15 |
+
scipy:scipy,
|
16 |
+
matplotlib:matplotlib,
|
17 |
+
sympy:sympy,
|
18 |
+
pandas:pandas,
|
19 |
+
astropy:astropy,
|
20 |
+
h5py:h5py,
|
21 |
+
numba:numba,
|
22 |
+
python:python,
|
23 |
+
};
|
24 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy.js
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
define([
|
2 |
+
"require",
|
3 |
+
"./scipy_constants",
|
4 |
+
"./scipy_special",
|
5 |
+
], function (requirejs, scipy_constants, scipy_special) {
|
6 |
+
return {
|
7 |
+
'name' : 'SciPy',
|
8 |
+
'sub-menu' : [
|
9 |
+
{
|
10 |
+
'name' : 'Setup',
|
11 |
+
'snippet' : [
|
12 |
+
'from __future__ import print_function, division',
|
13 |
+
'import numpy as np',
|
14 |
+
'import scipy as sp',
|
15 |
+
],
|
16 |
+
},
|
17 |
+
|
18 |
+
{
|
19 |
+
'name' : 'Documentation',
|
20 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy/reference/',
|
21 |
+
},
|
22 |
+
|
23 |
+
'---',
|
24 |
+
|
25 |
+
// {
|
26 |
+
// 'name' : 'Clustering algorithms',
|
27 |
+
// 'sub-menu' : [
|
28 |
+
// {
|
29 |
+
// 'name' : 'Setup',
|
30 |
+
// 'snippet' : ['from scipy import cluster',],
|
31 |
+
// },
|
32 |
+
// ],
|
33 |
+
// },
|
34 |
+
|
35 |
+
scipy_constants,
|
36 |
+
|
37 |
+
{
|
38 |
+
'name' : 'Fast Fourier Transform routines',
|
39 |
+
'sub-menu' : [
|
40 |
+
{
|
41 |
+
'name' : 'Setup',
|
42 |
+
'snippet' : ['from scipy import fftpack',],
|
43 |
+
},
|
44 |
+
'---',
|
45 |
+
{
|
46 |
+
'name' : 'Docs',
|
47 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/fftpack.html'
|
48 |
+
},
|
49 |
+
],
|
50 |
+
},
|
51 |
+
|
52 |
+
{
|
53 |
+
'name' : 'Integration and ODE solvers',
|
54 |
+
'sub-menu' : [
|
55 |
+
{
|
56 |
+
'name' : 'Setup',
|
57 |
+
'snippet' : ['from scipy import integrate',],
|
58 |
+
},
|
59 |
+
'---',
|
60 |
+
{
|
61 |
+
'name' : 'Integrate given function object',
|
62 |
+
'sub-menu' : [
|
63 |
+
{
|
64 |
+
'name' : 'General-purpose integration',
|
65 |
+
'snippet' : [
|
66 |
+
'from scipy import integrate',
|
67 |
+
'def f(x, a, b):',
|
68 |
+
' return a * x + b',
|
69 |
+
'integral,error = integrate.quad(f, 0, 4.5, args=(2,1)) # integrates 2*x+1',
|
70 |
+
'print(integral, error)',
|
71 |
+
],
|
72 |
+
},
|
73 |
+
{
|
74 |
+
'name' : 'General purpose double integration',
|
75 |
+
'snippet' : [
|
76 |
+
'from scipy import integrate',
|
77 |
+
'def integrand(y, x):',
|
78 |
+
' return x * y**2',
|
79 |
+
'x_lower_lim, x_upper_lim = 0.0, 0.5',
|
80 |
+
'y_lower_lim, y_upper_lim = lambda x:0.0, lambda x:1.0-2.0*x',
|
81 |
+
'# int_{x=0}^{0.5} int_{y=0}^{1-2x} x y dx dy',
|
82 |
+
'integral,error = integrate.dblquad(integrand,',
|
83 |
+
' x_lower_lim, x_upper_lim,',
|
84 |
+
' y_lower_lim, y_upper_lim)',
|
85 |
+
'print(integral, error)',
|
86 |
+
],
|
87 |
+
},
|
88 |
+
{
|
89 |
+
'name' : 'General purpose triple integration',
|
90 |
+
'snippet' : [
|
91 |
+
'from scipy import integrate',
|
92 |
+
'def integrand(z, y, x):',
|
93 |
+
' return x * y**2 + z',
|
94 |
+
'x_lower_lim, x_upper_lim = 0.0, 0.5',
|
95 |
+
'y_lower_lim, y_upper_lim = lambda x:0.0, lambda x:1.0-2.0*x',
|
96 |
+
'z_lower_lim, z_upper_lim = lambda x,y:-1.0, lambda x,y:1.0+2.0*x-y',
|
97 |
+
'# int_{x=0}^{0.5} int_{y=0}^{1-2x} int_{z=-1}^{1+2x-y} (x y**2 + z) dz dy dx',
|
98 |
+
'integral,error = integrate.tplquad(integrand,',
|
99 |
+
' x_lower_lim, x_upper_lim,',
|
100 |
+
' y_lower_lim, y_upper_lim,',
|
101 |
+
' z_lower_lim, z_upper_lim)',
|
102 |
+
'print(integral, error)',
|
103 |
+
],
|
104 |
+
},
|
105 |
+
{
|
106 |
+
'name' : 'General purpose n-fold integration',
|
107 |
+
'snippet' : [
|
108 |
+
'from scipy import integrate',
|
109 |
+
'def integrand(x0, x1, x2):',
|
110 |
+
' return x2 * x1**2 + x0',
|
111 |
+
'x2_lim = (0.0, 0.5)',
|
112 |
+
'x1_lim = lambda x2:(0.0, 1.0-2.0*x2)',
|
113 |
+
'x0_lim = lambda x1,x2:(-1.0, 1.0+2.0*x2-x1)',
|
114 |
+
'# int_{x2=0}^{0.5} int_{x1=0}^{1-2x2} int_{x0=-1}^{1+2x2-x1} (x2 x1**2 + x0) dx0 dx1 dx2',
|
115 |
+
'integral,error = integrate.nquad(integrand, [x0_lim, x1_lim, x2_lim])',
|
116 |
+
'print(integral, error)',
|
117 |
+
],
|
118 |
+
},
|
119 |
+
{
|
120 |
+
'name' : 'Integrate func(x) using Gaussian quadrature of order $n$',
|
121 |
+
'snippet' : [
|
122 |
+
'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)',
|
123 |
+
'a,b = 0,1 # limits of integration',
|
124 |
+
'result,err = integrate.fixed_quad(gaussian, a, b, n=5)',
|
125 |
+
],
|
126 |
+
},
|
127 |
+
{
|
128 |
+
'name' : 'Integrate with given tolerance using Gaussian quadrature',
|
129 |
+
'snippet' : [
|
130 |
+
'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)',
|
131 |
+
'a,b = 0,1 # limits of integration',
|
132 |
+
'result,err = integrate.quadrature(gaussian, a, b, tol=1e-8, rtol=1e-8)',
|
133 |
+
],
|
134 |
+
},
|
135 |
+
{
|
136 |
+
'name' : 'Integrate using Romberg integration',
|
137 |
+
'snippet' : [
|
138 |
+
'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)',
|
139 |
+
'a,b = 0,1 # limits of integration',
|
140 |
+
'result = integrate.romberg(gaussian, a, b, tol=1e-8, rtol=1e-8)',
|
141 |
+
],
|
142 |
+
},
|
143 |
+
],
|
144 |
+
},
|
145 |
+
{
|
146 |
+
'name' : 'Integrate given fixed samples',
|
147 |
+
'sub-menu' : [
|
148 |
+
{
|
149 |
+
'name' : 'Trapezoidal rule to compute integral from samples',
|
150 |
+
'snippet' : [
|
151 |
+
'x = np.linspace(1, 5, num=100)',
|
152 |
+
'y = 3*x**2 + 1',
|
153 |
+
'integrate.trapz(y, x) # Exact value is 128',
|
154 |
+
],
|
155 |
+
},
|
156 |
+
{
|
157 |
+
'name' : 'Trapezoidal rule to cumulatively compute integral from samples',
|
158 |
+
'snippet' : [
|
159 |
+
'x = np.linspace(1, 5, num=100)',
|
160 |
+
'y = 3*x**2 + 1',
|
161 |
+
'integrate.cumtrapz(y, x) # Should range from ~0 to ~128',
|
162 |
+
],
|
163 |
+
},
|
164 |
+
{
|
165 |
+
'name' : "Simpson's rule to compute integral from samples",
|
166 |
+
'snippet' : [
|
167 |
+
'x = np.linspace(1, 5, num=100)',
|
168 |
+
'y = 3*x**2 + 1',
|
169 |
+
'integrate.simps(y, x) # Exact value is 128',
|
170 |
+
],
|
171 |
+
},
|
172 |
+
{
|
173 |
+
'name' : 'Romberg Integration to compute integral from $2^k + 1$ evenly spaced samples',
|
174 |
+
'snippet' : [
|
175 |
+
'x = np.linspace(1, 5, num=2**7+1)',
|
176 |
+
'y = 3*x**2 + 1',
|
177 |
+
'integrate.romb(y, x) # Exact value is 128',
|
178 |
+
],
|
179 |
+
},
|
180 |
+
],
|
181 |
+
},
|
182 |
+
{
|
183 |
+
'name' : 'Numerically integrate ODE systems',
|
184 |
+
'sub-menu' : [
|
185 |
+
{
|
186 |
+
'name' : 'General integration of ordinary differential equations',
|
187 |
+
'snippet' : [
|
188 |
+
'from scipy.special import gamma, airy',
|
189 |
+
'def func(y, t):',
|
190 |
+
' return [t*y[1], y[0]]',
|
191 |
+
'x = np.arange(0, 4.0, 0.01)',
|
192 |
+
'y_0 = [-1.0 / 3**(1.0/3.0) / gamma(1.0/3.0), 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)]',
|
193 |
+
'Ai, Aip, Bi, Bip = airy(x)',
|
194 |
+
'y = odeint(func, y_0, x, rtol=1e-12, atol=1e-12) # Exact answer: (Aip, Ai)',
|
195 |
+
],
|
196 |
+
},
|
197 |
+
{
|
198 |
+
'name' : 'General integration of ordinary differential equations with known gradient',
|
199 |
+
'snippet' : [
|
200 |
+
'from scipy.special import gamma, airy',
|
201 |
+
'def func(y, t):',
|
202 |
+
' return [t*y[1], y[0]]',
|
203 |
+
'def gradient(y, t):',
|
204 |
+
' return [[0,t], [1,0]]',
|
205 |
+
'x = np.arange(0, 4.0, 0.01)',
|
206 |
+
'y_0 = [-1.0 / 3**(1.0/3.0) / gamma(1.0/3.0), 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)]',
|
207 |
+
'Ai, Aip, Bi, Bip = airy(x)',
|
208 |
+
'y = odeint(func, y_0, x, rtol=1e-12, atol=1e-12, Dfun=gradient) # Exact answer: (Aip, Ai)',
|
209 |
+
],
|
210 |
+
},
|
211 |
+
{
|
212 |
+
'name' : 'Integrate ODE using VODE and ZVODE routines',
|
213 |
+
'snippet' : [
|
214 |
+
"def f(t, y, arg1):",
|
215 |
+
" return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]",
|
216 |
+
"def jac(t, y, arg1):",
|
217 |
+
" return [[1j*arg1, 1], [0, -arg1*2*y[1]]]",
|
218 |
+
"y0 = [1.0j, 2.0]",
|
219 |
+
"t0, t1, dt = 0.0, 10.0, 1.0",
|
220 |
+
"r = integrate.ode(f, jac).set_integrator('zvode', method='bdf')",
|
221 |
+
"r.set_initial_value(y0, t0)",
|
222 |
+
"r.set_f_params(2.0)",
|
223 |
+
"r.set_jac_params(2.0)",
|
224 |
+
"while r.successful() and r.t < t1:",
|
225 |
+
" r.integrate(r.t+dt)",
|
226 |
+
" print('{0}: {1}'.format(r.t, r.y))",
|
227 |
+
],
|
228 |
+
},
|
229 |
+
// {
|
230 |
+
// 'name' : 'Integrate complex ODE using VODE and ZVODE routines',
|
231 |
+
// 'snippet' : [
|
232 |
+
// 'integrate.complex_ode',
|
233 |
+
// ],
|
234 |
+
// },
|
235 |
+
],
|
236 |
+
},
|
237 |
+
],
|
238 |
+
},
|
239 |
+
|
240 |
+
{
|
241 |
+
'name' : 'Interpolation and smoothing splines',
|
242 |
+
'sub-menu' : [
|
243 |
+
{
|
244 |
+
'name' : 'Setup',
|
245 |
+
'snippet' : ['from scipy import interpolate',],
|
246 |
+
},
|
247 |
+
'---',
|
248 |
+
{
|
249 |
+
'name' : 'interp1d',
|
250 |
+
'snippet' : [
|
251 |
+
'# NOTE: `interp1d` is very slow; prefer `InterpolatedUnivariateSpline`',
|
252 |
+
'x = np.linspace(0, 10, 10)',
|
253 |
+
'y = np.cos(-x**2/8.0)',
|
254 |
+
"f = interpolate.interp1d(x, y, kind='cubic')",
|
255 |
+
'X = np.linspace(0, 10, 100)',
|
256 |
+
'Y = f(X)',
|
257 |
+
],
|
258 |
+
},
|
259 |
+
{
|
260 |
+
'name' : 'splrep / splrev',
|
261 |
+
'snippet' : [
|
262 |
+
'x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)',
|
263 |
+
'y = np.sin(x)',
|
264 |
+
'tck = interpolate.splrep(x, y, s=0)',
|
265 |
+
'xnew = np.arange(0,2*np.pi,np.pi/50)',
|
266 |
+
'ynew = interpolate.splev(xnew, tck, der=0)',
|
267 |
+
],
|
268 |
+
},
|
269 |
+
{
|
270 |
+
'name' : 'InterpolatedUnivariateSpline',
|
271 |
+
'snippet' : [
|
272 |
+
'x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)',
|
273 |
+
'y = np.sin(x)',
|
274 |
+
's = interpolate.InterpolatedUnivariateSpline(x, y)',
|
275 |
+
'xnew = np.arange(0, 2*np.pi, np.pi/50)',
|
276 |
+
'ynew = s(xnew)',
|
277 |
+
],
|
278 |
+
},
|
279 |
+
{
|
280 |
+
'name' : 'Multivariate interpolation',
|
281 |
+
'sub-menu' : [
|
282 |
+
|
283 |
+
],
|
284 |
+
},
|
285 |
+
{
|
286 |
+
'name' : '2-D Splines',
|
287 |
+
'sub-menu' : [
|
288 |
+
|
289 |
+
],
|
290 |
+
},
|
291 |
+
{
|
292 |
+
'name' : 'Radial basis functions',
|
293 |
+
'sub-menu' : [
|
294 |
+
|
295 |
+
],
|
296 |
+
},
|
297 |
+
],
|
298 |
+
},
|
299 |
+
|
300 |
+
// {
|
301 |
+
// 'name' : 'Input and Output',
|
302 |
+
// 'sub-menu' : [
|
303 |
+
// {
|
304 |
+
// 'name' : 'Setup',
|
305 |
+
// 'snippet' : ['from scipy import io',],
|
306 |
+
// },
|
307 |
+
// '---',
|
308 |
+
// ],
|
309 |
+
// },
|
310 |
+
|
311 |
+
{
|
312 |
+
'name' : 'Linear algebra',
|
313 |
+
'sub-menu' : [
|
314 |
+
{
|
315 |
+
'name' : 'Setup',
|
316 |
+
'snippet' : ['from scipy import linalg',],
|
317 |
+
},
|
318 |
+
'---',
|
319 |
+
{
|
320 |
+
'name' : 'Docs',
|
321 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/linalg.html'
|
322 |
+
},
|
323 |
+
],
|
324 |
+
},
|
325 |
+
|
326 |
+
// {
|
327 |
+
// 'name' : 'Maximum entropy methods',
|
328 |
+
// 'sub-menu' : [
|
329 |
+
// {
|
330 |
+
// 'name' : 'Setup',
|
331 |
+
// 'snippet' : ['from scipy import maxentropy',],
|
332 |
+
// },
|
333 |
+
// '---',
|
334 |
+
// ],
|
335 |
+
// },
|
336 |
+
|
337 |
+
// {
|
338 |
+
// 'name' : 'N-dimensional image processing',
|
339 |
+
// 'sub-menu' : [
|
340 |
+
// {
|
341 |
+
// 'name' : 'Setup',
|
342 |
+
// 'snippet' : ['from scipy import ndimage',],
|
343 |
+
// },
|
344 |
+
// '---',
|
345 |
+
// ],
|
346 |
+
// },
|
347 |
+
|
348 |
+
// {
|
349 |
+
// 'name' : 'Orthogonal distance regression',
|
350 |
+
// 'sub-menu' : [
|
351 |
+
// {
|
352 |
+
// 'name' : 'Setup',
|
353 |
+
// 'snippet' : ['from scipy import odr',],
|
354 |
+
// },
|
355 |
+
// '---',
|
356 |
+
// ],
|
357 |
+
// },
|
358 |
+
|
359 |
+
{
|
360 |
+
'name' : 'Optimization and root-finding routines',
|
361 |
+
'sub-menu' : [
|
362 |
+
{
|
363 |
+
'name' : 'Setup',
|
364 |
+
'snippet' : [
|
365 |
+
'from scipy import optimize',
|
366 |
+
],
|
367 |
+
},
|
368 |
+
'---',
|
369 |
+
{
|
370 |
+
'name' : 'Scalar function minimization',
|
371 |
+
'sub-menu' : [
|
372 |
+
{
|
373 |
+
'name' : 'Unconstrained minimization',
|
374 |
+
'snippet' : [
|
375 |
+
'f = lambda x: (x - 2) * (x + 1)**2',
|
376 |
+
"res = optimize.minimize_scalar(f, method='brent')",
|
377 |
+
'print(res.x)',
|
378 |
+
],
|
379 |
+
},
|
380 |
+
{
|
381 |
+
'name' : 'Bounded minimization',
|
382 |
+
'snippet' : [
|
383 |
+
'from scipy.special import j1 # Test function',
|
384 |
+
"res = optimize.minimize_scalar(j1, bounds=(4, 7), method='bounded')",
|
385 |
+
'print(res.x)',
|
386 |
+
],
|
387 |
+
},
|
388 |
+
],
|
389 |
+
},
|
390 |
+
{
|
391 |
+
'name' : 'General-purpose optimization',
|
392 |
+
'sub-menu' : [
|
393 |
+
{
|
394 |
+
'name' : 'Nelder-Mead Simplex algorithm',
|
395 |
+
'snippet' : [
|
396 |
+
'def rosen(x):',
|
397 |
+
' """The Rosenbrock function"""',
|
398 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
399 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
400 |
+
"res = optimize.minimize(rosen, x0, method='nelder-mead',",
|
401 |
+
" options={'xtol': 1e-8, 'disp': True})",
|
402 |
+
'print(res.x)',],
|
403 |
+
},
|
404 |
+
{
|
405 |
+
'name' : 'Broyden-Fletcher-Goldfarb-Shanno (BFGS), analytical derivative',
|
406 |
+
'snippet' : [
|
407 |
+
'def rosen(x):',
|
408 |
+
' """The Rosenbrock function"""',
|
409 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
410 |
+
'def rosen_der(x):',
|
411 |
+
' """Derivative of the Rosenbrock function"""',
|
412 |
+
' xm = x[1:-1]',
|
413 |
+
' xm_m1 = x[:-2]',
|
414 |
+
' xm_p1 = x[2:]',
|
415 |
+
' der = np.zeros_like(x)',
|
416 |
+
' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)',
|
417 |
+
' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])',
|
418 |
+
' der[-1] = 200*(x[-1]-x[-2]**2)',
|
419 |
+
' return der',
|
420 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
421 |
+
"res = optimize.minimize(rosen, x0, method='BFGS', jac=rosen_der, options={'disp': True})",
|
422 |
+
'print(res.x)',],
|
423 |
+
},
|
424 |
+
{
|
425 |
+
'name' : 'Broyden-Fletcher-Goldfarb-Shanno (BFGS), finite-difference derivative',
|
426 |
+
'snippet' : [
|
427 |
+
'def rosen(x):',
|
428 |
+
' """The Rosenbrock function"""',
|
429 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
430 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
431 |
+
"res = optimize.minimize(rosen, x0, method='BFGS', options={'disp': True})",
|
432 |
+
'print(res.x)',],
|
433 |
+
},
|
434 |
+
{
|
435 |
+
'name' : 'Newton-Conjugate-Gradient, full Hessian',
|
436 |
+
'snippet' : [
|
437 |
+
'def rosen(x):',
|
438 |
+
' """The Rosenbrock function"""',
|
439 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
440 |
+
'def rosen_der(x):',
|
441 |
+
' """Derivative of the Rosenbrock function"""',
|
442 |
+
' xm = x[1:-1]',
|
443 |
+
' xm_m1 = x[:-2]',
|
444 |
+
' xm_p1 = x[2:]',
|
445 |
+
' der = np.zeros_like(x)',
|
446 |
+
' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)',
|
447 |
+
' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])',
|
448 |
+
' der[-1] = 200*(x[-1]-x[-2]**2)',
|
449 |
+
' return der',
|
450 |
+
'def rosen_hess(x):',
|
451 |
+
' x = np.asarray(x)',
|
452 |
+
' H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)',
|
453 |
+
' diagonal = np.zeros_like(x)',
|
454 |
+
' diagonal[0] = 1200*x[0]-400*x[1]+2',
|
455 |
+
' diagonal[-1] = 200',
|
456 |
+
' diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]',
|
457 |
+
' H = H + np.diag(diagonal)',
|
458 |
+
' return H',
|
459 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
460 |
+
"res = optimize.minimize(rosen, x0, method='Newton-CG', jac=rosen_der, hess=rosen_hess,",
|
461 |
+
" options={'xtol': 1e-8, 'disp': True})",
|
462 |
+
'print(res.x)'],
|
463 |
+
},
|
464 |
+
{
|
465 |
+
'name' : 'Newton-Conjugate-Gradient, Hessian product',
|
466 |
+
'snippet' : [
|
467 |
+
'def rosen(x):',
|
468 |
+
' """The Rosenbrock function"""',
|
469 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
470 |
+
'def rosen_der(x):',
|
471 |
+
' """Derivative of the Rosenbrock function"""',
|
472 |
+
' xm = x[1:-1]',
|
473 |
+
' xm_m1 = x[:-2]',
|
474 |
+
' xm_p1 = x[2:]',
|
475 |
+
' der = np.zeros_like(x)',
|
476 |
+
' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)',
|
477 |
+
' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])',
|
478 |
+
' der[-1] = 200*(x[-1]-x[-2]**2)',
|
479 |
+
' return der',
|
480 |
+
'def rosen_hess_p(x,p):',
|
481 |
+
' x = np.asarray(x)',
|
482 |
+
' Hp = np.zeros_like(x)',
|
483 |
+
' Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]',
|
484 |
+
' Hp[1:-1] = (-400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] ',
|
485 |
+
' -400*x[1:-1]*p[2:])',
|
486 |
+
' Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]',
|
487 |
+
' return Hp',
|
488 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
489 |
+
"res = optimize.minimize(rosen, x0, method='Newton-CG', jac=rosen_der, hessp=rosen_hess_p,",
|
490 |
+
" options={'xtol': 1e-8, 'disp': True})",
|
491 |
+
'print(res.x)'],
|
492 |
+
},
|
493 |
+
],
|
494 |
+
},
|
495 |
+
{
|
496 |
+
'name' : 'Constrained multivariate minimization',
|
497 |
+
'sub-menu' : [
|
498 |
+
{
|
499 |
+
'name' : 'Unconstrained Sequential Least SQuares Programming (SLSQP)',
|
500 |
+
'snippet' : [
|
501 |
+
'def func(x, sign=1.0):',
|
502 |
+
' """ Objective function """',
|
503 |
+
' return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)',
|
504 |
+
'def func_deriv(x, sign=1.0):',
|
505 |
+
' """ Derivative of objective function """',
|
506 |
+
' dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)',
|
507 |
+
' dfdx1 = sign*(2*x[0] - 4*x[1])',
|
508 |
+
' return np.array([ dfdx0, dfdx1 ])',
|
509 |
+
"res = optimize.minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,",
|
510 |
+
" method='SLSQP', options={'disp': True})",
|
511 |
+
'print(res.x)',
|
512 |
+
],
|
513 |
+
},
|
514 |
+
{
|
515 |
+
'name' : 'Constrained Sequential Least SQuares Programming (SLSQP)',
|
516 |
+
'snippet' : [
|
517 |
+
'def func(x, sign=1.0):',
|
518 |
+
' """ Objective function """',
|
519 |
+
' return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)',
|
520 |
+
'def func_deriv(x, sign=1.0):',
|
521 |
+
' """ Derivative of objective function """',
|
522 |
+
' dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)',
|
523 |
+
' dfdx1 = sign*(2*x[0] - 4*x[1])',
|
524 |
+
' return np.array([ dfdx0, dfdx1 ])',
|
525 |
+
'# Constraints correspond to x**3-y=0 and y-1>=0, respectively',
|
526 |
+
"cons = ({'type': 'eq',",
|
527 |
+
" 'fun' : lambda x: np.array([x[0]**3 - x[1]]),",
|
528 |
+
" 'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},",
|
529 |
+
" {'type': 'ineq',",
|
530 |
+
" 'fun' : lambda x: np.array([x[1] - 1]),",
|
531 |
+
" 'jac' : lambda x: np.array([0.0, 1.0])})",
|
532 |
+
"res = optimize.minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,",
|
533 |
+
" constraints=cons, method='SLSQP', options={'disp': True})",
|
534 |
+
'print(res.x)',
|
535 |
+
],
|
536 |
+
},
|
537 |
+
],
|
538 |
+
},
|
539 |
+
{
|
540 |
+
'name' : 'Fitting (see also numpy.polynomial)',
|
541 |
+
'sub-menu' : [
|
542 |
+
{
|
543 |
+
'name' : 'Basic function fitting',
|
544 |
+
'snippet' : [
|
545 |
+
'def fitting_function(x, a, b, c):',
|
546 |
+
' return a * np.exp(-b * x) + c',
|
547 |
+
'xdata = np.linspace(0, 4, 50)',
|
548 |
+
'ydata = fitting_function(xdata, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(xdata))',
|
549 |
+
'optimal_parameters, estimated_covariance = optimize.curve_fit(fitting_function, xdata, ydata)',
|
550 |
+
'estimated_std_dev = np.sqrt(np.diag(estimated_covariance))',
|
551 |
+
],
|
552 |
+
},
|
553 |
+
],
|
554 |
+
},
|
555 |
+
],
|
556 |
+
},
|
557 |
+
|
558 |
+
// {
|
559 |
+
// 'name' : 'Signal processing',
|
560 |
+
// 'sub-menu' : [
|
561 |
+
// {
|
562 |
+
// 'name' : 'Setup',
|
563 |
+
// 'snippet' : ['from scipy import signal',],
|
564 |
+
// },
|
565 |
+
// '---',
|
566 |
+
// ],
|
567 |
+
// },
|
568 |
+
|
569 |
+
// {
|
570 |
+
// 'name' : 'Sparse matrices and associated routines',
|
571 |
+
// 'sub-menu' : [
|
572 |
+
// {
|
573 |
+
// 'name' : 'Setup',
|
574 |
+
// 'snippet' : ['from scipy import sparse',],
|
575 |
+
// },
|
576 |
+
// '---',
|
577 |
+
// ],
|
578 |
+
// },
|
579 |
+
|
580 |
+
// {
|
581 |
+
// 'name' : 'Spatial data structures and algorithms',
|
582 |
+
// 'sub-menu' : [
|
583 |
+
// {
|
584 |
+
// 'name' : 'Setup',
|
585 |
+
// 'snippet' : ['from scipy import spatial',],
|
586 |
+
// },
|
587 |
+
// '---',
|
588 |
+
// ],
|
589 |
+
// },
|
590 |
+
|
591 |
+
scipy_special,
|
592 |
+
|
593 |
+
{
|
594 |
+
'name' : 'Statistical distributions and functions',
|
595 |
+
'sub-menu' : [
|
596 |
+
{
|
597 |
+
'name' : 'Setup',
|
598 |
+
'snippet' : ['from scipy import stats',],
|
599 |
+
},
|
600 |
+
'---',
|
601 |
+
{
|
602 |
+
'name' : 'Docs',
|
603 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/stats.html'
|
604 |
+
},
|
605 |
+
],
|
606 |
+
},
|
607 |
+
|
608 |
+
// {
|
609 |
+
// 'name' : 'C/C++ integration',
|
610 |
+
// 'sub-menu' : [
|
611 |
+
// {
|
612 |
+
// 'name' : 'Setup',
|
613 |
+
// 'snippet' : ['from scipy import weave',],
|
614 |
+
// },
|
615 |
+
// '---',
|
616 |
+
// ],
|
617 |
+
// },
|
618 |
+
],
|
619 |
+
};
|
620 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy_special.js
ADDED
@@ -0,0 +1,2198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
define({
|
2 |
+
'name' : 'Special functions',
|
3 |
+
'sub-menu' : [
|
4 |
+
{
|
5 |
+
'name' : 'Setup',
|
6 |
+
'snippet' : ['from scipy import special',],
|
7 |
+
},
|
8 |
+
'---',
|
9 |
+
|
10 |
+
{
|
11 |
+
'name' : 'Airy functions',
|
12 |
+
'sub-menu' : [
|
13 |
+
|
14 |
+
{
|
15 |
+
'name' : 'airy: Airy functions and their derivatives',
|
16 |
+
'snippet' : [
|
17 |
+
'special.airy(z)',
|
18 |
+
],
|
19 |
+
},
|
20 |
+
|
21 |
+
{
|
22 |
+
'name' : 'airye: Exponentially scaled Airy functions and their derivatives',
|
23 |
+
'snippet' : [
|
24 |
+
'special.airye(z)',
|
25 |
+
],
|
26 |
+
},
|
27 |
+
|
28 |
+
{
|
29 |
+
'name' : 'ai_zeros: Compute $n$ zeros $a$ and $a\'$ of $\\mathrm{Ai}(x)$ and $\\mathrm{Ai}\'(x)$, and $\\mathrm{Ai}(a\')$ and $\\mathrm{Ai}\'(a)$',
|
30 |
+
'snippet' : [
|
31 |
+
'special.ai_zeros(n)',
|
32 |
+
],
|
33 |
+
},
|
34 |
+
|
35 |
+
{
|
36 |
+
'name' : 'bi_zeros: Compute $n$ zeros $b$ and $b\'$ of $\\mathrm{Bi}(x)$ and $\\mathrm{Bi}\'(x)$, and $\\mathrm{Bi}(b\')$ and $\\mathrm{Bi}\'(b)$',
|
37 |
+
'snippet' : [
|
38 |
+
'special.bi_zeros(n)',
|
39 |
+
],
|
40 |
+
},
|
41 |
+
|
42 |
+
],
|
43 |
+
},
|
44 |
+
|
45 |
+
{
|
46 |
+
'name' : 'Elliptic Functions',
|
47 |
+
'sub-menu' : [
|
48 |
+
|
49 |
+
{
|
50 |
+
'name' : 'ellipj: Jacobian elliptic functions',
|
51 |
+
'snippet' : [
|
52 |
+
'special.ellipj(u, m)',
|
53 |
+
],
|
54 |
+
},
|
55 |
+
|
56 |
+
{
|
57 |
+
'name' : 'ellipk: Computes the complete elliptic integral of the first kind',
|
58 |
+
'snippet' : [
|
59 |
+
'special.ellipk(m)',
|
60 |
+
],
|
61 |
+
},
|
62 |
+
|
63 |
+
{
|
64 |
+
'name' : 'ellipkm1: The complete elliptic integral of the first kind around m=1',
|
65 |
+
'snippet' : [
|
66 |
+
'special.ellipkm1(p)',
|
67 |
+
],
|
68 |
+
},
|
69 |
+
|
70 |
+
{
|
71 |
+
'name' : 'ellipkinc: Incomplete elliptic integral of the first kind',
|
72 |
+
'snippet' : [
|
73 |
+
'special.ellipkinc(phi, m)',
|
74 |
+
],
|
75 |
+
},
|
76 |
+
|
77 |
+
{
|
78 |
+
'name' : 'ellipe: Complete elliptic integral of the second kind',
|
79 |
+
'snippet' : [
|
80 |
+
'special.ellipe(m)',
|
81 |
+
],
|
82 |
+
},
|
83 |
+
|
84 |
+
{
|
85 |
+
'name' : 'ellipeinc: Incomplete elliptic integral of the second kind',
|
86 |
+
'snippet' : [
|
87 |
+
'special.ellipeinc(phi,m)',
|
88 |
+
],
|
89 |
+
},
|
90 |
+
|
91 |
+
],
|
92 |
+
},
|
93 |
+
|
94 |
+
{
|
95 |
+
'name' : 'Bessel Functions',
|
96 |
+
'sub-menu' : [
|
97 |
+
|
98 |
+
{
|
99 |
+
'name' : 'Bessel Functions',
|
100 |
+
'sub-menu' : [
|
101 |
+
|
102 |
+
{
|
103 |
+
'name' : 'jv: Bessel function of the first kind of real order $v$, $J_v(z)$',
|
104 |
+
'snippet' : [
|
105 |
+
'special.jv(v, z)',
|
106 |
+
],
|
107 |
+
},
|
108 |
+
|
109 |
+
{
|
110 |
+
'name' : 'jve: Exponentially scaled Bessel function of the first kind of order $v$, $J_v(z)\\, e^{-|\\Im{z}|}$',
|
111 |
+
'snippet' : [
|
112 |
+
'special.jve(v, z)',
|
113 |
+
],
|
114 |
+
},
|
115 |
+
|
116 |
+
{
|
117 |
+
'name' : 'yn: Bessel function of the second kind of integer order $n$, $Y_n(x)$',
|
118 |
+
'snippet' : [
|
119 |
+
'special.yn(n,x)',
|
120 |
+
],
|
121 |
+
},
|
122 |
+
|
123 |
+
{
|
124 |
+
'name' : 'yv: Bessel function of the second kind of real order $v$, $Y_v(z)$',
|
125 |
+
'snippet' : [
|
126 |
+
'special.yv(v,z)',
|
127 |
+
],
|
128 |
+
},
|
129 |
+
|
130 |
+
{
|
131 |
+
'name' : 'yve: Exponentially scaled Bessel function of the second kind of real order, $Y_v(z)\\, e^{-|\\Im{z}|}$',
|
132 |
+
'snippet' : [
|
133 |
+
'special.yve(v,z)',
|
134 |
+
],
|
135 |
+
},
|
136 |
+
|
137 |
+
{
|
138 |
+
'name' : 'kn: Modified Bessel function of the second kind of integer order $n$, $K_n(x)$',
|
139 |
+
'snippet' : [
|
140 |
+
'special.kn(n, x)',
|
141 |
+
],
|
142 |
+
},
|
143 |
+
|
144 |
+
{
|
145 |
+
'name' : 'kv: Modified Bessel function of the second kind of real order $v$, $K_v(z)$',
|
146 |
+
'snippet' : [
|
147 |
+
'special.kv(v,z)',
|
148 |
+
],
|
149 |
+
},
|
150 |
+
|
151 |
+
{
|
152 |
+
'name' : 'kve: Exponentially scaled modified Bessel function of the second kind, $K_v(z)\\, e^{z}$',
|
153 |
+
'snippet' : [
|
154 |
+
'special.kve(v,z)',
|
155 |
+
],
|
156 |
+
},
|
157 |
+
|
158 |
+
{
|
159 |
+
'name' : 'iv: Modified Bessel function of the first kind of real order $v$, $I_v(z)$',
|
160 |
+
'snippet' : [
|
161 |
+
'special.iv(v,z)',
|
162 |
+
],
|
163 |
+
},
|
164 |
+
|
165 |
+
{
|
166 |
+
'name' : 'ive: Exponentially scaled modified Bessel function of the first kind of real order $v$, $I_v(z)\\, e^{-|\\Re{z}|}$',
|
167 |
+
'snippet' : [
|
168 |
+
'special.ive(v,z)',
|
169 |
+
],
|
170 |
+
},
|
171 |
+
|
172 |
+
{
|
173 |
+
'name' : 'hankel1: Hankel function of the first kind, $H^{(1)}_v(z)$',
|
174 |
+
'snippet' : [
|
175 |
+
'special.hankel1(v, z)',
|
176 |
+
],
|
177 |
+
},
|
178 |
+
|
179 |
+
{
|
180 |
+
'name' : 'hankel1e: Exponentially scaled Hankel function of the first kind, $H^{(1)}_v(z)\\, e^{-i\\, z}$',
|
181 |
+
'snippet' : [
|
182 |
+
'special.hankel1e(v, z)',
|
183 |
+
],
|
184 |
+
},
|
185 |
+
|
186 |
+
{
|
187 |
+
'name' : 'hankel2: Hankel function of the second kind, $H^{(2)}_v(z)$',
|
188 |
+
'snippet' : [
|
189 |
+
'special.hankel2(v, z)',
|
190 |
+
],
|
191 |
+
},
|
192 |
+
|
193 |
+
{
|
194 |
+
'name' : 'hankel2e: Exponentially scaled Hankel function of the second kind, $H^{(2)}_v(z)\\, e^{i\\, z}$',
|
195 |
+
'snippet' : [
|
196 |
+
'special.hankel2e(v, z)',
|
197 |
+
],
|
198 |
+
},
|
199 |
+
|
200 |
+
// The following is not an universal function:
|
201 |
+
|
202 |
+
{
|
203 |
+
'name' : 'lmbda: Compute sequence of lambda functions with arbitrary order $v$ and their derivatives',
|
204 |
+
'snippet' : [
|
205 |
+
'special.lmbda(v, x)',
|
206 |
+
],
|
207 |
+
},
|
208 |
+
|
209 |
+
],
|
210 |
+
},
|
211 |
+
|
212 |
+
{
|
213 |
+
'name' : 'Zeros of Bessel Functions',
|
214 |
+
'sub-menu' : [
|
215 |
+
|
216 |
+
// These are not universal functions:
|
217 |
+
|
218 |
+
{
|
219 |
+
'name' : 'jnjnp_zeros: Compute nt (<=1200) zeros of the Bessel functions $J_n$ and $J_n\'$ and arange them in order of their magnitudes',
|
220 |
+
'snippet' : [
|
221 |
+
'special.jnjnp_zeros(nt)',
|
222 |
+
],
|
223 |
+
},
|
224 |
+
|
225 |
+
{
|
226 |
+
'name' : 'jnyn_zeros: Compute nt zeros of the Bessel functions $J_n(x)$, $J_n\'(x)$, $Y_n(x)$, and $Y_n\'(x)$, respectively',
|
227 |
+
'snippet' : [
|
228 |
+
'special.jnyn_zeros(n, nt)',
|
229 |
+
],
|
230 |
+
},
|
231 |
+
|
232 |
+
{
|
233 |
+
'name' : 'jn_zeros: Compute nt zeros of the Bessel function $J_n(x)$',
|
234 |
+
'snippet' : [
|
235 |
+
'special.jn_zeros(n, nt)',
|
236 |
+
],
|
237 |
+
},
|
238 |
+
|
239 |
+
{
|
240 |
+
'name' : 'jnp_zeros: Compute nt zeros of the Bessel function $J_n\'(x)$',
|
241 |
+
'snippet' : [
|
242 |
+
'special.jnp_zeros(n, nt)',
|
243 |
+
],
|
244 |
+
},
|
245 |
+
|
246 |
+
{
|
247 |
+
'name' : 'yn_zeros: Compute nt zeros of the Bessel function $Y_n(x)$',
|
248 |
+
'snippet' : [
|
249 |
+
'special.yn_zeros(n, nt)',
|
250 |
+
],
|
251 |
+
},
|
252 |
+
|
253 |
+
{
|
254 |
+
'name' : 'ynp_zeros: Compute nt zeros of the Bessel function $Y_n\'(x)$',
|
255 |
+
'snippet' : [
|
256 |
+
'special.ynp_zeros(n, nt)',
|
257 |
+
],
|
258 |
+
},
|
259 |
+
|
260 |
+
{
|
261 |
+
'name' : 'y0_zeros: Returns nt (complex or real) zeros of $Y_0(z)$, $z_0$, and the value of $Y_0\'(z_0) = -Y_1(z_0)$ at each zero',
|
262 |
+
'snippet' : [
|
263 |
+
'special.y0_zeros(nt, complex=0)',
|
264 |
+
],
|
265 |
+
},
|
266 |
+
|
267 |
+
{
|
268 |
+
'name' : 'y1_zeros: Returns nt (complex or real) zeros of $Y_1(z)$, $z_1$, and the value of $Y_1\'(z_1) = Y_0(z_1)$ at each zero',
|
269 |
+
'snippet' : [
|
270 |
+
'special.y1_zeros(nt, complex=0)',
|
271 |
+
],
|
272 |
+
},
|
273 |
+
|
274 |
+
{
|
275 |
+
'name' : 'y1p_zeros: Returns nt (complex or real) zeros of $Y_1\'(z)$, $z_1\'$, and the value of $Y_1(z_1\')$ at each zero',
|
276 |
+
'snippet' : [
|
277 |
+
'special.y1p_zeros(nt, complex=0)',
|
278 |
+
],
|
279 |
+
},
|
280 |
+
|
281 |
+
],
|
282 |
+
},
|
283 |
+
|
284 |
+
{
|
285 |
+
'name' : 'Faster versions of common Bessel Functions',
|
286 |
+
'sub-menu' : [
|
287 |
+
|
288 |
+
{
|
289 |
+
'name' : 'j0: Bessel function the first kind of order 0, $J_0(x)$',
|
290 |
+
'snippet' : [
|
291 |
+
'special.j0(x)',
|
292 |
+
],
|
293 |
+
},
|
294 |
+
|
295 |
+
{
|
296 |
+
'name' : 'j1: Bessel function of the first kind of order 1, $J_1(x)$',
|
297 |
+
'snippet' : [
|
298 |
+
'special.j1(x)',
|
299 |
+
],
|
300 |
+
},
|
301 |
+
|
302 |
+
{
|
303 |
+
'name' : 'y0: Bessel function of the second kind of order 0, $Y_0(x)$',
|
304 |
+
'snippet' : [
|
305 |
+
'special.y0(x)',
|
306 |
+
],
|
307 |
+
},
|
308 |
+
|
309 |
+
{
|
310 |
+
'name' : 'y1: Bessel function of the second kind of order 1, $Y_1(x)$',
|
311 |
+
'snippet' : [
|
312 |
+
'special.y1(x)',
|
313 |
+
],
|
314 |
+
},
|
315 |
+
|
316 |
+
{
|
317 |
+
'name' : 'i0: Modified Bessel function of order 0, $I_0(x)$',
|
318 |
+
'snippet' : [
|
319 |
+
'special.i0(x)',
|
320 |
+
],
|
321 |
+
},
|
322 |
+
|
323 |
+
{
|
324 |
+
'name' : 'i0e: Exponentially scaled modified Bessel function of order 0, $I_0(x)\\, e^{-|x|}$',
|
325 |
+
'snippet' : [
|
326 |
+
'special.i0e(x)',
|
327 |
+
],
|
328 |
+
},
|
329 |
+
|
330 |
+
{
|
331 |
+
'name' : 'i1: Modified Bessel function of order 1, $I_1(x)$',
|
332 |
+
'snippet' : [
|
333 |
+
'special.i1(x)',
|
334 |
+
],
|
335 |
+
},
|
336 |
+
|
337 |
+
{
|
338 |
+
'name' : 'i1e: Exponentially scaled modified Bessel function of order 1, $I_1(x)\\, e^{-|x|}$',
|
339 |
+
'snippet' : [
|
340 |
+
'special.i1e(x)',
|
341 |
+
],
|
342 |
+
},
|
343 |
+
|
344 |
+
{
|
345 |
+
'name' : 'k0: Modified Bessel function K of order 0, $K_0(x)$',
|
346 |
+
'snippet' : [
|
347 |
+
'special.k0(x)',
|
348 |
+
],
|
349 |
+
},
|
350 |
+
|
351 |
+
{
|
352 |
+
'name' : 'k0e: Exponentially scaled modified Bessel function K of order 0, $K_0(x)\\, e^{x}$',
|
353 |
+
'snippet' : [
|
354 |
+
'special.k0e(x)',
|
355 |
+
],
|
356 |
+
},
|
357 |
+
|
358 |
+
{
|
359 |
+
'name' : 'k1: Modified Bessel function of the first kind of order 1, $K_1(x)$',
|
360 |
+
'snippet' : [
|
361 |
+
'special.k1(x)',
|
362 |
+
],
|
363 |
+
},
|
364 |
+
|
365 |
+
{
|
366 |
+
'name' : 'k1e: Exponentially scaled modified Bessel function K of order 1, $K_1(x)\\, e^{x}$',
|
367 |
+
'snippet' : [
|
368 |
+
'special.k1e(x)',
|
369 |
+
],
|
370 |
+
},
|
371 |
+
|
372 |
+
],
|
373 |
+
},
|
374 |
+
|
375 |
+
{
|
376 |
+
'name' : 'Integrals of Bessel Functions',
|
377 |
+
'sub-menu' : [
|
378 |
+
|
379 |
+
{
|
380 |
+
'name' : 'itj0y0: Integrals of Bessel functions of order 0: $\\int_0^x J_0(t)\\, dt$, $\\int_0^x Y_0(t)\\, dt$',
|
381 |
+
'snippet' : [
|
382 |
+
'special.itj0y0(x)',
|
383 |
+
],
|
384 |
+
},
|
385 |
+
|
386 |
+
{
|
387 |
+
'name' : 'it2j0y0: Integrals related to Bessel functions of order 0: $\\int_0^x \\frac{1-J_0(t)}{t}\\, dt$, $\\int_x^\\infty \\frac{Y_0(t)}{t}\\, dt$',
|
388 |
+
'snippet' : [
|
389 |
+
'special.it2j0y0(x)',
|
390 |
+
],
|
391 |
+
},
|
392 |
+
|
393 |
+
{
|
394 |
+
'name' : 'iti0k0: Integrals of modified Bessel functions of order 0: $\\int_0^x I_0(t)\\, dt$, $\\int_0^x K_0(t)\\, dt$',
|
395 |
+
'snippet' : [
|
396 |
+
'special.iti0k0(x)',
|
397 |
+
],
|
398 |
+
},
|
399 |
+
|
400 |
+
{
|
401 |
+
'name' : 'it2i0k0: Integrals related to modified Bessel functions of order 0: $\\int_0^x \\frac{I_0(t)-1}{t}\\, dt$, $\\int_x^\\infty \\frac{K_0(t)}{t}\\, dt$',
|
402 |
+
'snippet' : [
|
403 |
+
'special.it2i0k0(x)',
|
404 |
+
],
|
405 |
+
},
|
406 |
+
|
407 |
+
{
|
408 |
+
'name' : 'besselpoly: Weighted integral of a Bessel function, $\\int_0^1 x^\\lambda J_\\nu(2 a x) \\, dx$',
|
409 |
+
'snippet' : [
|
410 |
+
'special.besselpoly(a, lmb, nu)',
|
411 |
+
],
|
412 |
+
},
|
413 |
+
|
414 |
+
],
|
415 |
+
},
|
416 |
+
|
417 |
+
{
|
418 |
+
'name' : 'Derivatives of Bessel Functions',
|
419 |
+
'sub-menu' : [
|
420 |
+
|
421 |
+
{
|
422 |
+
'name' : 'jvp: Return the $n$th derivative of $J_v(z)$ with respect to $z$',
|
423 |
+
'snippet' : [
|
424 |
+
'special.jvp(v, z, n=1)',
|
425 |
+
],
|
426 |
+
},
|
427 |
+
|
428 |
+
{
|
429 |
+
'name' : 'yvp: Return the $n$th derivative of $Y_v(z)$ with respect to $z$',
|
430 |
+
'snippet' : [
|
431 |
+
'special.yvp(v, z, n=1)',
|
432 |
+
],
|
433 |
+
},
|
434 |
+
|
435 |
+
{
|
436 |
+
'name' : 'kvp: Return the $n$th derivative of $K_v(z)$ with respect to $z$',
|
437 |
+
'snippet' : [
|
438 |
+
'special.kvp(v, z, n=1)',
|
439 |
+
],
|
440 |
+
},
|
441 |
+
|
442 |
+
{
|
443 |
+
'name' : 'ivp: Return the $n$th derivative of $I_v(z)$ with respect to $z$',
|
444 |
+
'snippet' : [
|
445 |
+
'special.ivp(v, z, n=1)',
|
446 |
+
],
|
447 |
+
},
|
448 |
+
|
449 |
+
{
|
450 |
+
'name' : 'h1vp: Return the $n$th derivative of $H^{(1)}_v(z)$ with respect to $z$',
|
451 |
+
'snippet' : [
|
452 |
+
'special.h1vp(v, z, n=1)',
|
453 |
+
],
|
454 |
+
},
|
455 |
+
|
456 |
+
{
|
457 |
+
'name' : 'h2vp: Return the $n$th derivative of $H^{(2)}_v(z)$ with respect to z',
|
458 |
+
'snippet' : [
|
459 |
+
'special.h2vp(v, z, n=1)',
|
460 |
+
],
|
461 |
+
},
|
462 |
+
|
463 |
+
],
|
464 |
+
},
|
465 |
+
|
466 |
+
{
|
467 |
+
'name' : 'Spherical Bessel Functions',
|
468 |
+
'sub-menu' : [
|
469 |
+
|
470 |
+
// These are not universal functions:
|
471 |
+
|
472 |
+
{
|
473 |
+
'name' : 'sph_jn: Compute the spherical Bessel function $j_n(z)$ and its derivative for all orders up to and including $n$',
|
474 |
+
'snippet' : [
|
475 |
+
'special.sph_jn(n, z)',
|
476 |
+
],
|
477 |
+
},
|
478 |
+
|
479 |
+
{
|
480 |
+
'name' : 'sph_yn: Compute the spherical Bessel function $y_n(z)$ and its derivative for all orders up to and including $n$',
|
481 |
+
'snippet' : [
|
482 |
+
'special.sph_yn(n, z)',
|
483 |
+
],
|
484 |
+
},
|
485 |
+
|
486 |
+
{
|
487 |
+
'name' : 'sph_jnyn: Compute the spherical Bessel functions, $j_n(z)$ and $y_n(z)$ and their derivatives for all orders up to and including $n$',
|
488 |
+
'snippet' : [
|
489 |
+
'special.sph_jnyn(n, z)',
|
490 |
+
],
|
491 |
+
},
|
492 |
+
|
493 |
+
{
|
494 |
+
'name' : 'sph_in: Compute the spherical Bessel function $i_n(z)$ and its derivative for all orders up to and including $n$',
|
495 |
+
'snippet' : [
|
496 |
+
'special.sph_in(n, z)',
|
497 |
+
],
|
498 |
+
},
|
499 |
+
|
500 |
+
{
|
501 |
+
'name' : 'sph_kn: Compute the spherical Bessel function $k_n(z)$ and its derivative for all orders up to and including $n$',
|
502 |
+
'snippet' : [
|
503 |
+
'special.sph_kn(n, z)',
|
504 |
+
],
|
505 |
+
},
|
506 |
+
|
507 |
+
{
|
508 |
+
'name' : 'sph_inkn: Compute the spherical Bessel functions, $i_n(z)$ and $k_n(z)$ and their derivatives for all orders up to and including $n$',
|
509 |
+
'snippet' : [
|
510 |
+
'special.sph_inkn(n, z)',
|
511 |
+
],
|
512 |
+
},
|
513 |
+
|
514 |
+
],
|
515 |
+
},
|
516 |
+
|
517 |
+
{
|
518 |
+
'name' : 'Riccati-Bessel Functions',
|
519 |
+
'sub-menu' : [
|
520 |
+
|
521 |
+
// These are not universal functions:
|
522 |
+
|
523 |
+
{
|
524 |
+
'name' : 'riccati_jn: Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and including n',
|
525 |
+
'snippet' : [
|
526 |
+
'special.riccati_jn(n, x)',
|
527 |
+
],
|
528 |
+
},
|
529 |
+
|
530 |
+
{
|
531 |
+
'name' : 'riccati_yn: Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to and including n',
|
532 |
+
'snippet' : [
|
533 |
+
'special.riccati_yn(n, x)',
|
534 |
+
],
|
535 |
+
},
|
536 |
+
|
537 |
+
],
|
538 |
+
},
|
539 |
+
],
|
540 |
+
},
|
541 |
+
|
542 |
+
{
|
543 |
+
'name' : 'Struve Functions',
|
544 |
+
'sub-menu' : [
|
545 |
+
|
546 |
+
{
|
547 |
+
'name' : 'struve: Struve function',
|
548 |
+
'snippet' : [
|
549 |
+
'special.struve(v,x)',
|
550 |
+
],
|
551 |
+
},
|
552 |
+
|
553 |
+
{
|
554 |
+
'name' : 'modstruve: Modified Struve function',
|
555 |
+
'snippet' : [
|
556 |
+
'special.modstruve(v, x)',
|
557 |
+
],
|
558 |
+
},
|
559 |
+
|
560 |
+
{
|
561 |
+
'name' : 'itstruve0: Integral of the Struve function of order 0',
|
562 |
+
'snippet' : [
|
563 |
+
'special.itstruve0(x)',
|
564 |
+
],
|
565 |
+
},
|
566 |
+
|
567 |
+
{
|
568 |
+
'name' : 'it2struve0: Integral related to Struve function of order 0',
|
569 |
+
'snippet' : [
|
570 |
+
'special.it2struve0(x)',
|
571 |
+
],
|
572 |
+
},
|
573 |
+
|
574 |
+
{
|
575 |
+
'name' : 'itmodstruve0: Integral of the modified Struve function of order 0',
|
576 |
+
'snippet' : [
|
577 |
+
'special.itmodstruve0(x)',
|
578 |
+
],
|
579 |
+
},
|
580 |
+
|
581 |
+
],
|
582 |
+
},
|
583 |
+
|
584 |
+
{
|
585 |
+
'name' : 'Statistical Functions (see also scipy.stats)',
|
586 |
+
'sub-menu' : [
|
587 |
+
|
588 |
+
// See also
|
589 |
+
// scipy.stats: Friendly versions of these functions.
|
590 |
+
|
591 |
+
{
|
592 |
+
'name' : 'bdtr: Binomial distribution cumulative distribution function',
|
593 |
+
'snippet' : [
|
594 |
+
'special.bdtr(k, n, p)',
|
595 |
+
],
|
596 |
+
},
|
597 |
+
|
598 |
+
{
|
599 |
+
'name' : 'bdtrc: Binomial distribution survival function',
|
600 |
+
'snippet' : [
|
601 |
+
'special.bdtrc(k, n, p)',
|
602 |
+
],
|
603 |
+
},
|
604 |
+
|
605 |
+
{
|
606 |
+
'name' : 'bdtri: Inverse function to bdtr vs',
|
607 |
+
'snippet' : [
|
608 |
+
'special.bdtri(k, n, y)',
|
609 |
+
],
|
610 |
+
},
|
611 |
+
|
612 |
+
{
|
613 |
+
'name' : 'btdtr: Cumulative beta distribution',
|
614 |
+
'snippet' : [
|
615 |
+
'special.btdtr(a,b,x)',
|
616 |
+
],
|
617 |
+
},
|
618 |
+
|
619 |
+
{
|
620 |
+
'name' : 'btdtri: p-th quantile of the beta distribution',
|
621 |
+
'snippet' : [
|
622 |
+
'special.btdtri(a,b,p)',
|
623 |
+
],
|
624 |
+
},
|
625 |
+
|
626 |
+
{
|
627 |
+
'name' : 'fdtr: F cumulative distribution function',
|
628 |
+
'snippet' : [
|
629 |
+
'special.fdtr(dfn, dfd, x)',
|
630 |
+
],
|
631 |
+
},
|
632 |
+
|
633 |
+
{
|
634 |
+
'name' : 'fdtrc: F survival function',
|
635 |
+
'snippet' : [
|
636 |
+
'special.fdtrc(dfn, dfd, x)',
|
637 |
+
],
|
638 |
+
},
|
639 |
+
|
640 |
+
{
|
641 |
+
'name' : 'fdtri: Inverse to fdtr vs x',
|
642 |
+
'snippet' : [
|
643 |
+
'special.fdtri(dfn, dfd, p)',
|
644 |
+
],
|
645 |
+
},
|
646 |
+
|
647 |
+
{
|
648 |
+
'name' : 'gdtr: Gamma distribution cumulative density function',
|
649 |
+
'snippet' : [
|
650 |
+
'special.gdtr(a,b,x)',
|
651 |
+
],
|
652 |
+
},
|
653 |
+
|
654 |
+
{
|
655 |
+
'name' : 'gdtrc: Gamma distribution survival function',
|
656 |
+
'snippet' : [
|
657 |
+
'special.gdtrc(a,b,x)',
|
658 |
+
],
|
659 |
+
},
|
660 |
+
|
661 |
+
{
|
662 |
+
'name' : 'gdtria: Inverse of gdtr vs a',
|
663 |
+
'snippet' : [
|
664 |
+
'special.gdtria(p, b, x)',
|
665 |
+
],
|
666 |
+
},
|
667 |
+
|
668 |
+
{
|
669 |
+
'name' : 'gdtrib: Inverse of gdtr vs b',
|
670 |
+
'snippet' : [
|
671 |
+
'special.gdtrib(a, p, x)',
|
672 |
+
],
|
673 |
+
},
|
674 |
+
|
675 |
+
{
|
676 |
+
'name' : 'gdtrix: Inverse of gdtr vs x',
|
677 |
+
'snippet' : [
|
678 |
+
'special.gdtrix(a, b, p)',
|
679 |
+
],
|
680 |
+
},
|
681 |
+
|
682 |
+
{
|
683 |
+
'name' : 'nbdtr: Negative binomial cumulative distribution function',
|
684 |
+
'snippet' : [
|
685 |
+
'special.nbdtr(k, n, p)',
|
686 |
+
],
|
687 |
+
},
|
688 |
+
|
689 |
+
{
|
690 |
+
'name' : 'nbdtrc: Negative binomial survival function',
|
691 |
+
'snippet' : [
|
692 |
+
'special.nbdtrc(k,n,p)',
|
693 |
+
],
|
694 |
+
},
|
695 |
+
|
696 |
+
{
|
697 |
+
'name' : 'nbdtri: Inverse of nbdtr vs p',
|
698 |
+
'snippet' : [
|
699 |
+
'special.nbdtri(k, n, y)',
|
700 |
+
],
|
701 |
+
},
|
702 |
+
|
703 |
+
{
|
704 |
+
'name' : 'ncfdtr: Cumulative distribution function of the non-central $F$ distribution.',
|
705 |
+
'snippet' : [
|
706 |
+
'special.ncfdtr(dfn, dfd, nc, f)',
|
707 |
+
],
|
708 |
+
},
|
709 |
+
|
710 |
+
{
|
711 |
+
'name' : 'ncfdtridfd: Calculate degrees of freedom (denominator) for the noncentral $F$ distribution.',
|
712 |
+
'snippet' : [
|
713 |
+
'special.ncfdtridfd(p, f, dfn, nc)',
|
714 |
+
],
|
715 |
+
},
|
716 |
+
|
717 |
+
{
|
718 |
+
'name' : 'ncfdtridfn: Calculate degrees of freedom (numerator) for the noncentral $F$ distribution.',
|
719 |
+
'snippet' : [
|
720 |
+
'special.ncfdtridfn(p, f, dfd, nc)',
|
721 |
+
],
|
722 |
+
},
|
723 |
+
|
724 |
+
{
|
725 |
+
'name' : 'ncfdtri: Inverse cumulative distribution function of the non-central $F$ distribution.',
|
726 |
+
'snippet' : [
|
727 |
+
'special.ncfdtri(p, dfn, dfd, nc)',
|
728 |
+
],
|
729 |
+
},
|
730 |
+
|
731 |
+
{
|
732 |
+
'name' : 'ncfdtrinc: Calculate non-centrality parameter for non-central $F$ distribution.',
|
733 |
+
'snippet' : [
|
734 |
+
'special.ncfdtrinc(p, f, dfn, dfd)',
|
735 |
+
],
|
736 |
+
},
|
737 |
+
|
738 |
+
{
|
739 |
+
'name' : 'nctdtr: Cumulative distribution function of the non-central $t$ distribution.',
|
740 |
+
'snippet' : [
|
741 |
+
'special.nctdtr(df, nc, t)',
|
742 |
+
],
|
743 |
+
},
|
744 |
+
|
745 |
+
{
|
746 |
+
'name' : 'nctdtridf: Calculate degrees of freedom for non-central $t$ distribution.',
|
747 |
+
'snippet' : [
|
748 |
+
'special.nctdtridf(p, nc, t)',
|
749 |
+
],
|
750 |
+
},
|
751 |
+
|
752 |
+
{
|
753 |
+
'name' : 'nctdtrit: Inverse cumulative distribution function of the non-central $t$ distribution.',
|
754 |
+
'snippet' : [
|
755 |
+
'special.nctdtrit(df, nc, p)',
|
756 |
+
],
|
757 |
+
},
|
758 |
+
|
759 |
+
{
|
760 |
+
'name' : 'nctdtrinc: Calculate non-centrality parameter for non-central $t$ distribution.',
|
761 |
+
'snippet' : [
|
762 |
+
'special.nctdtrinc(df, p, t)',
|
763 |
+
],
|
764 |
+
},
|
765 |
+
|
766 |
+
{
|
767 |
+
'name' : 'nrdtrimn: Calculate mean of normal distribution given other params.',
|
768 |
+
'snippet' : [
|
769 |
+
'special.nrdtrimn(p, x, std)',
|
770 |
+
],
|
771 |
+
},
|
772 |
+
|
773 |
+
{
|
774 |
+
'name' : 'nrdtrisd: Calculate standard deviation of normal distribution given other params.',
|
775 |
+
'snippet' : [
|
776 |
+
'special.nrdtrisd(p, x, mn)',
|
777 |
+
],
|
778 |
+
},
|
779 |
+
|
780 |
+
{
|
781 |
+
'name' : 'pdtr: Poisson cumulative distribution function',
|
782 |
+
'snippet' : [
|
783 |
+
'special.pdtr(k, m)',
|
784 |
+
],
|
785 |
+
},
|
786 |
+
|
787 |
+
{
|
788 |
+
'name' : 'pdtrc: Poisson survival function',
|
789 |
+
'snippet' : [
|
790 |
+
'special.pdtrc(k, m)',
|
791 |
+
],
|
792 |
+
},
|
793 |
+
|
794 |
+
{
|
795 |
+
'name' : 'pdtri: Inverse to pdtr vs m',
|
796 |
+
'snippet' : [
|
797 |
+
'special.pdtri(k,y)',
|
798 |
+
],
|
799 |
+
},
|
800 |
+
|
801 |
+
{
|
802 |
+
'name' : 'stdtr: Student $t$ distribution cumulative density function',
|
803 |
+
'snippet' : [
|
804 |
+
'special.stdtr(df,t)',
|
805 |
+
],
|
806 |
+
},
|
807 |
+
|
808 |
+
{
|
809 |
+
'name' : 'stdtridf: Inverse of stdtr vs df',
|
810 |
+
'snippet' : [
|
811 |
+
'special.stdtridf(p,t)',
|
812 |
+
],
|
813 |
+
},
|
814 |
+
|
815 |
+
{
|
816 |
+
'name' : 'stdtrit: Inverse of stdtr vs t',
|
817 |
+
'snippet' : [
|
818 |
+
'special.stdtrit(df,p)',
|
819 |
+
],
|
820 |
+
},
|
821 |
+
|
822 |
+
{
|
823 |
+
'name' : 'chdtr: Chi square cumulative distribution function',
|
824 |
+
'snippet' : [
|
825 |
+
'special.chdtr(v, x)',
|
826 |
+
],
|
827 |
+
},
|
828 |
+
|
829 |
+
{
|
830 |
+
'name' : 'chdtrc: Chi square survival function',
|
831 |
+
'snippet' : [
|
832 |
+
'special.chdtrc(v,x)',
|
833 |
+
],
|
834 |
+
},
|
835 |
+
|
836 |
+
{
|
837 |
+
'name' : 'chdtri: Inverse to chdtrc',
|
838 |
+
'snippet' : [
|
839 |
+
'special.chdtri(v,p)',
|
840 |
+
],
|
841 |
+
},
|
842 |
+
|
843 |
+
{
|
844 |
+
'name' : 'ndtr: Gaussian cumulative distribution function',
|
845 |
+
'snippet' : [
|
846 |
+
'special.ndtr(x)',
|
847 |
+
],
|
848 |
+
},
|
849 |
+
|
850 |
+
{
|
851 |
+
'name' : 'ndtri: Inverse of ndtr vs x',
|
852 |
+
'snippet' : [
|
853 |
+
'special.ndtri(y)',
|
854 |
+
],
|
855 |
+
},
|
856 |
+
|
857 |
+
{
|
858 |
+
'name' : 'smirnov: Kolmogorov-Smirnov complementary cumulative distribution function',
|
859 |
+
'snippet' : [
|
860 |
+
'special.smirnov(n,e)',
|
861 |
+
],
|
862 |
+
},
|
863 |
+
|
864 |
+
{
|
865 |
+
'name' : 'smirnovi: Inverse to smirnov',
|
866 |
+
'snippet' : [
|
867 |
+
'special.smirnovi(n,y)',
|
868 |
+
],
|
869 |
+
},
|
870 |
+
|
871 |
+
{
|
872 |
+
'name' : 'kolmogorov: Complementary cumulative distribution function of Kolmogorov distribution',
|
873 |
+
'snippet' : [
|
874 |
+
'special.kolmogorov(y)',
|
875 |
+
],
|
876 |
+
},
|
877 |
+
|
878 |
+
{
|
879 |
+
'name' : 'kolmogi: Inverse function to kolmogorov',
|
880 |
+
'snippet' : [
|
881 |
+
'special.kolmogi(p)',
|
882 |
+
],
|
883 |
+
},
|
884 |
+
|
885 |
+
{
|
886 |
+
'name' : 'tklmbda: Tukey-Lambda cumulative distribution function',
|
887 |
+
'snippet' : [
|
888 |
+
'special.tklmbda(x, lmbda)',
|
889 |
+
],
|
890 |
+
},
|
891 |
+
|
892 |
+
{
|
893 |
+
'name' : 'logit: Logit ufunc for ndarrays',
|
894 |
+
'snippet' : [
|
895 |
+
'special.logit(x)',
|
896 |
+
],
|
897 |
+
},
|
898 |
+
|
899 |
+
{
|
900 |
+
'name' : 'expit: Expit ufunc for ndarrays',
|
901 |
+
'snippet' : [
|
902 |
+
'special.expit(x)',
|
903 |
+
],
|
904 |
+
},
|
905 |
+
|
906 |
+
{
|
907 |
+
'name' : 'boxcox: Compute the Box-Cox transformation',
|
908 |
+
'snippet' : [
|
909 |
+
'special.boxcox(x, lmbda)',
|
910 |
+
],
|
911 |
+
},
|
912 |
+
|
913 |
+
{
|
914 |
+
'name' : 'boxcox1p: Compute the Box-Cox transformation of 1 + x',
|
915 |
+
'snippet' : [
|
916 |
+
'special.boxcox1p(x, lmbda)',
|
917 |
+
],
|
918 |
+
},
|
919 |
+
|
920 |
+
],
|
921 |
+
},
|
922 |
+
|
923 |
+
{
|
924 |
+
'name' : 'Information Theory Functions',
|
925 |
+
'sub-menu' : [
|
926 |
+
{
|
927 |
+
'name' : 'entr: Elementwise function for computing entropy.',
|
928 |
+
'snippet' : [
|
929 |
+
'special.entr(x)',
|
930 |
+
],
|
931 |
+
},
|
932 |
+
|
933 |
+
{
|
934 |
+
'name' : 'rel_entr: Elementwise function for computing relative entropy.',
|
935 |
+
'snippet' : [
|
936 |
+
'special.rel_entr(x, y)',
|
937 |
+
],
|
938 |
+
},
|
939 |
+
|
940 |
+
{
|
941 |
+
'name' : 'kl_div: Elementwise function for computing Kullback-Leibler divergence.',
|
942 |
+
'snippet' : [
|
943 |
+
'special.kl_div(x, y)',
|
944 |
+
],
|
945 |
+
},
|
946 |
+
|
947 |
+
{
|
948 |
+
'name' : 'huber: Huber loss function.',
|
949 |
+
'snippet' : [
|
950 |
+
'special.huber(delta, r)',
|
951 |
+
],
|
952 |
+
},
|
953 |
+
|
954 |
+
{
|
955 |
+
'name' : 'pseudo_huber: Pseudo-Huber loss function.',
|
956 |
+
'snippet' : [
|
957 |
+
'special.pseudo_huber(delta, r)',
|
958 |
+
],
|
959 |
+
},
|
960 |
+
],
|
961 |
+
},
|
962 |
+
|
963 |
+
{
|
964 |
+
'name' : 'Gamma and Related Functions',
|
965 |
+
'sub-menu' : [
|
966 |
+
|
967 |
+
{
|
968 |
+
'name' : 'gamma: Gamma function',
|
969 |
+
'snippet' : [
|
970 |
+
'special.gamma(z)',
|
971 |
+
],
|
972 |
+
},
|
973 |
+
|
974 |
+
{
|
975 |
+
'name' : 'gammaln: Logarithm of absolute value of gamma function',
|
976 |
+
'snippet' : [
|
977 |
+
'special.gammaln(z)',
|
978 |
+
],
|
979 |
+
},
|
980 |
+
|
981 |
+
{
|
982 |
+
'name' : 'gammasgn: Sign of the gamma function',
|
983 |
+
'snippet' : [
|
984 |
+
'special.gammasgn(x)',
|
985 |
+
],
|
986 |
+
},
|
987 |
+
|
988 |
+
{
|
989 |
+
'name' : 'gammainc: Incomplete gamma function',
|
990 |
+
'snippet' : [
|
991 |
+
'special.gammainc(a, x)',
|
992 |
+
],
|
993 |
+
},
|
994 |
+
|
995 |
+
{
|
996 |
+
'name' : 'gammaincinv: Inverse to gammainc',
|
997 |
+
'snippet' : [
|
998 |
+
'special.gammaincinv(a, y)',
|
999 |
+
],
|
1000 |
+
},
|
1001 |
+
|
1002 |
+
{
|
1003 |
+
'name' : 'gammaincc: Complemented incomplete gamma integral',
|
1004 |
+
'snippet' : [
|
1005 |
+
'special.gammaincc(a,x)',
|
1006 |
+
],
|
1007 |
+
},
|
1008 |
+
|
1009 |
+
{
|
1010 |
+
'name' : 'gammainccinv: Inverse to gammaincc',
|
1011 |
+
'snippet' : [
|
1012 |
+
'special.gammainccinv(a,y)',
|
1013 |
+
],
|
1014 |
+
},
|
1015 |
+
|
1016 |
+
{
|
1017 |
+
'name' : 'beta: Beta function',
|
1018 |
+
'snippet' : [
|
1019 |
+
'special.beta(a, b)',
|
1020 |
+
],
|
1021 |
+
},
|
1022 |
+
|
1023 |
+
{
|
1024 |
+
'name' : 'betaln: Natural logarithm of absolute value of beta function',
|
1025 |
+
'snippet' : [
|
1026 |
+
'special.betaln(a, b)',
|
1027 |
+
],
|
1028 |
+
},
|
1029 |
+
|
1030 |
+
{
|
1031 |
+
'name' : 'betainc: Incomplete beta integral',
|
1032 |
+
'snippet' : [
|
1033 |
+
'special.betainc(a, b, x)',
|
1034 |
+
],
|
1035 |
+
},
|
1036 |
+
|
1037 |
+
{
|
1038 |
+
'name' : 'betaincinv: Inverse function to beta integral',
|
1039 |
+
'snippet' : [
|
1040 |
+
'special.betaincinv(a, b, y)',
|
1041 |
+
],
|
1042 |
+
},
|
1043 |
+
|
1044 |
+
{
|
1045 |
+
'name' : 'psi: Digamma function',
|
1046 |
+
'snippet' : [
|
1047 |
+
'special.psi(z)',
|
1048 |
+
],
|
1049 |
+
},
|
1050 |
+
|
1051 |
+
{
|
1052 |
+
'name' : 'rgamma: Gamma function inverted',
|
1053 |
+
'snippet' : [
|
1054 |
+
'special.rgamma(z)',
|
1055 |
+
],
|
1056 |
+
},
|
1057 |
+
|
1058 |
+
{
|
1059 |
+
'name' : 'polygamma: Polygamma function which is the $n$th derivative of the digamma (psi) function',
|
1060 |
+
'snippet' : [
|
1061 |
+
'special.polygamma(n, x)',
|
1062 |
+
],
|
1063 |
+
},
|
1064 |
+
|
1065 |
+
{
|
1066 |
+
'name' : 'multigammaln: Returns the log of multivariate gamma, also sometimes called the generalized gamma',
|
1067 |
+
'snippet' : [
|
1068 |
+
'special.multigammaln(a, d)',
|
1069 |
+
],
|
1070 |
+
},
|
1071 |
+
|
1072 |
+
{
|
1073 |
+
'name' : 'digamma: Digamma function',
|
1074 |
+
'snippet' : [
|
1075 |
+
'special.digamma(z)',
|
1076 |
+
],
|
1077 |
+
},
|
1078 |
+
],
|
1079 |
+
},
|
1080 |
+
|
1081 |
+
{
|
1082 |
+
'name' : 'Error Function and Fresnel Integrals',
|
1083 |
+
'sub-menu' : [
|
1084 |
+
|
1085 |
+
{
|
1086 |
+
'name' : 'erf: Returns the error function of complex argument',
|
1087 |
+
'snippet' : [
|
1088 |
+
'special.erf(z)',
|
1089 |
+
],
|
1090 |
+
},
|
1091 |
+
|
1092 |
+
{
|
1093 |
+
'name' : 'erfc: Complementary error function, $1 - \\mathrm{erf}(x)$',
|
1094 |
+
'snippet' : [
|
1095 |
+
'special.erfc(x)',
|
1096 |
+
],
|
1097 |
+
},
|
1098 |
+
|
1099 |
+
{
|
1100 |
+
'name' : 'erfcx: Scaled complementary error function, $\\exp(x^2)\\, \\mathrm{erfc}(x)$',
|
1101 |
+
'snippet' : [
|
1102 |
+
'special.erfcx(x)',
|
1103 |
+
],
|
1104 |
+
},
|
1105 |
+
|
1106 |
+
{
|
1107 |
+
'name' : 'erfi: Imaginary error function, $-i\\, \\mathrm{erf}(i\\, z)$',
|
1108 |
+
'snippet' : [
|
1109 |
+
'special.erfi(z)',
|
1110 |
+
],
|
1111 |
+
},
|
1112 |
+
|
1113 |
+
{
|
1114 |
+
'name' : 'erfinv: Inverse function for erf',
|
1115 |
+
'snippet' : [
|
1116 |
+
'special.erfinv(y)',
|
1117 |
+
],
|
1118 |
+
},
|
1119 |
+
|
1120 |
+
{
|
1121 |
+
'name' : 'erfcinv: Inverse function for erfc',
|
1122 |
+
'snippet' : [
|
1123 |
+
'special.erfcinv(y)',
|
1124 |
+
],
|
1125 |
+
},
|
1126 |
+
|
1127 |
+
{
|
1128 |
+
'name' : 'wofz: Faddeeva function',
|
1129 |
+
'snippet' : [
|
1130 |
+
'special.wofz(z)',
|
1131 |
+
],
|
1132 |
+
},
|
1133 |
+
|
1134 |
+
{
|
1135 |
+
'name' : 'dawsn: Dawson’s integral',
|
1136 |
+
'snippet' : [
|
1137 |
+
'special.dawsn(x)',
|
1138 |
+
],
|
1139 |
+
},
|
1140 |
+
|
1141 |
+
{
|
1142 |
+
'name' : 'fresnel: Fresnel sin and cos integrals',
|
1143 |
+
'snippet' : [
|
1144 |
+
'special.fresnel(z)',
|
1145 |
+
],
|
1146 |
+
},
|
1147 |
+
|
1148 |
+
{
|
1149 |
+
'name' : 'fresnel_zeros: Compute nt complex zeros of the sine and cosine Fresnel integrals S(z) and C(z)',
|
1150 |
+
'snippet' : [
|
1151 |
+
'special.fresnel_zeros(nt)',
|
1152 |
+
],
|
1153 |
+
},
|
1154 |
+
|
1155 |
+
{
|
1156 |
+
'name' : 'modfresnelp: Modified Fresnel positive integrals',
|
1157 |
+
'snippet' : [
|
1158 |
+
'special.modfresnelp(x)',
|
1159 |
+
],
|
1160 |
+
},
|
1161 |
+
|
1162 |
+
{
|
1163 |
+
'name' : 'modfresnelm: Modified Fresnel negative integrals',
|
1164 |
+
'snippet' : [
|
1165 |
+
'special.modfresnelm(x)',
|
1166 |
+
],
|
1167 |
+
},
|
1168 |
+
|
1169 |
+
// These are not universal functions:
|
1170 |
+
|
1171 |
+
{
|
1172 |
+
'name' : 'erf_zeros: Compute nt complex zeros of the error function erf(z)',
|
1173 |
+
'snippet' : [
|
1174 |
+
'special.erf_zeros(nt)',
|
1175 |
+
],
|
1176 |
+
},
|
1177 |
+
|
1178 |
+
{
|
1179 |
+
'name' : 'fresnelc_zeros: Compute nt complex zeros of the cosine Fresnel integral C(z)',
|
1180 |
+
'snippet' : [
|
1181 |
+
'special.fresnelc_zeros(nt)',
|
1182 |
+
],
|
1183 |
+
},
|
1184 |
+
|
1185 |
+
{
|
1186 |
+
'name' : 'fresnels_zeros: Compute nt complex zeros of the sine Fresnel integral S(z)',
|
1187 |
+
'snippet' : [
|
1188 |
+
'special.fresnels_zeros(nt)',
|
1189 |
+
],
|
1190 |
+
},
|
1191 |
+
|
1192 |
+
],
|
1193 |
+
},
|
1194 |
+
|
1195 |
+
{
|
1196 |
+
'name' : 'Legendre Functions',
|
1197 |
+
'sub-menu' : [
|
1198 |
+
|
1199 |
+
{
|
1200 |
+
'name' : 'lpmv: Associated legendre function of integer order',
|
1201 |
+
'snippet' : [
|
1202 |
+
'special.lpmv(m, v, x)',
|
1203 |
+
],
|
1204 |
+
},
|
1205 |
+
|
1206 |
+
{
|
1207 |
+
'name' : 'sph_harm: Spherical harmonic of degree $n \\geq 0$ and order $|m| \\leq n$',
|
1208 |
+
'snippet' : [
|
1209 |
+
'# Note: n >= 0 and |m| <= n; azimuthal angle in [0, 2pi) and polar in [0, pi]',
|
1210 |
+
'special.sph_harm(order_m, degree_n, azimuthal_angle, polar_angle)',
|
1211 |
+
],
|
1212 |
+
},
|
1213 |
+
|
1214 |
+
// These are not universal functions:
|
1215 |
+
|
1216 |
+
{
|
1217 |
+
'name' : 'clpmn: Associated Legendre function of the first kind, $P_{m,n}(z)$',
|
1218 |
+
'snippet' : [
|
1219 |
+
'special.clpmn(m, n, z[, type])',
|
1220 |
+
],
|
1221 |
+
},
|
1222 |
+
|
1223 |
+
{
|
1224 |
+
'name' : 'lpn: Compute sequence of Legendre functions of the first kind (polynomials), $P_n(z)$ and derivatives for all degrees from 0 to $n$ (inclusive)',
|
1225 |
+
'snippet' : [
|
1226 |
+
'special.lpn(n, z)',
|
1227 |
+
],
|
1228 |
+
},
|
1229 |
+
|
1230 |
+
{
|
1231 |
+
'name' : 'lqn: Compute sequence of Legendre functions of the second kind, $Q_n(z)$ and derivatives for all degrees from 0 to $n$ (inclusive)',
|
1232 |
+
'snippet' : [
|
1233 |
+
'special.lqn(n, z)',
|
1234 |
+
],
|
1235 |
+
},
|
1236 |
+
|
1237 |
+
{
|
1238 |
+
'name' : 'lpmn: Associated Legendre function of the first kind, $P_{m,n}(z)$',
|
1239 |
+
'snippet' : [
|
1240 |
+
'special.lpmn(m, n, z)',
|
1241 |
+
],
|
1242 |
+
},
|
1243 |
+
|
1244 |
+
{
|
1245 |
+
'name' : 'lqmn: Associated Legendre functions of the second kind, $Q_{m,n}(z)$ and its derivative, $Q_{m,n}\'(z)$ of order $m$ and degree $n$',
|
1246 |
+
'snippet' : [
|
1247 |
+
'special.lqmn(m, n, z)',
|
1248 |
+
],
|
1249 |
+
},
|
1250 |
+
|
1251 |
+
],
|
1252 |
+
},
|
1253 |
+
|
1254 |
+
{
|
1255 |
+
'name' : 'Ellipsoidal Harmonics',
|
1256 |
+
'sub-menu' : [
|
1257 |
+
{
|
1258 |
+
'name' : 'ellip_harm: Ellipsoidal harmonic functions $E^p_n(l)$',
|
1259 |
+
'snippet' : [
|
1260 |
+
'special.ellip_harm(h2, k2, n, p, s[, signm, signn])',
|
1261 |
+
],
|
1262 |
+
},
|
1263 |
+
|
1264 |
+
{
|
1265 |
+
'name' : 'ellip_harm_2: Ellipsoidal harmonic functions $F^p_n(l)$',
|
1266 |
+
'snippet' : [
|
1267 |
+
'special.ellip_harm_2(h2, k2, n, p, s)',
|
1268 |
+
],
|
1269 |
+
},
|
1270 |
+
|
1271 |
+
{
|
1272 |
+
'name' : 'ellip_normal: Ellipsoidal harmonic normalization constants $\\gamma^p_n$',
|
1273 |
+
'snippet' : [
|
1274 |
+
'special.ellip_normal(h2, k2, n, p)',
|
1275 |
+
],
|
1276 |
+
},
|
1277 |
+
],
|
1278 |
+
},
|
1279 |
+
|
1280 |
+
{
|
1281 |
+
'name' : 'Orthogonal polynomials',
|
1282 |
+
'sub-menu' : [
|
1283 |
+
|
1284 |
+
// The following functions evaluate values of orthogonal polynomials:
|
1285 |
+
{
|
1286 |
+
'name' : 'assoc_laguerre: Returns the $n$th order generalized (associated) Laguerre polynomial.',
|
1287 |
+
'snippet' : [
|
1288 |
+
'special.assoc_laguerre(x, n)',
|
1289 |
+
],
|
1290 |
+
},
|
1291 |
+
|
1292 |
+
{
|
1293 |
+
'name' : 'eval_legendre: Evaluate Legendre polynomial at a point',
|
1294 |
+
'snippet' : [
|
1295 |
+
'special.eval_legendre(n, x)',
|
1296 |
+
],
|
1297 |
+
},
|
1298 |
+
|
1299 |
+
{
|
1300 |
+
'name' : 'eval_chebyt: Evaluate Chebyshev $T$ polynomial at a point',
|
1301 |
+
'snippet' : [
|
1302 |
+
'special.eval_chebyt(n, x)',
|
1303 |
+
],
|
1304 |
+
},
|
1305 |
+
|
1306 |
+
{
|
1307 |
+
'name' : 'eval_chebyu: Evaluate Chebyshev $U$ polynomial at a point',
|
1308 |
+
'snippet' : [
|
1309 |
+
'special.eval_chebyu(n, x)',
|
1310 |
+
],
|
1311 |
+
},
|
1312 |
+
|
1313 |
+
{
|
1314 |
+
'name' : 'eval_chebyc: Evaluate Chebyshev $C$ polynomial at a point',
|
1315 |
+
'snippet' : [
|
1316 |
+
'special.eval_chebyc(n, x)',
|
1317 |
+
],
|
1318 |
+
},
|
1319 |
+
|
1320 |
+
{
|
1321 |
+
'name' : 'eval_chebys: Evaluate Chebyshev $S$ polynomial at a point',
|
1322 |
+
'snippet' : [
|
1323 |
+
'special.eval_chebys(n, x)',
|
1324 |
+
],
|
1325 |
+
},
|
1326 |
+
|
1327 |
+
{
|
1328 |
+
'name' : 'eval_jacobi: Evaluate Jacobi polynomial at a point',
|
1329 |
+
'snippet' : [
|
1330 |
+
'special.eval_jacobi(n, alpha, beta, x)',
|
1331 |
+
],
|
1332 |
+
},
|
1333 |
+
|
1334 |
+
{
|
1335 |
+
'name' : 'eval_laguerre: Evaluate Laguerre polynomial at a point',
|
1336 |
+
'snippet' : [
|
1337 |
+
'special.eval_laguerre(n, x)',
|
1338 |
+
],
|
1339 |
+
},
|
1340 |
+
|
1341 |
+
{
|
1342 |
+
'name' : 'eval_genlaguerre: Evaluate generalized Laguerre polynomial at a point',
|
1343 |
+
'snippet' : [
|
1344 |
+
'special.eval_genlaguerre(n, alpha, x)',
|
1345 |
+
],
|
1346 |
+
},
|
1347 |
+
|
1348 |
+
{
|
1349 |
+
'name' : 'eval_hermite: Evaluate Hermite polynomial at a point',
|
1350 |
+
'snippet' : [
|
1351 |
+
'special.eval_hermite(n, x)',
|
1352 |
+
],
|
1353 |
+
},
|
1354 |
+
|
1355 |
+
{
|
1356 |
+
'name' : 'eval_hermitenorm: Evaluate normalized Hermite polynomial at a point',
|
1357 |
+
'snippet' : [
|
1358 |
+
'special.eval_hermitenorm(n, x)',
|
1359 |
+
],
|
1360 |
+
},
|
1361 |
+
|
1362 |
+
{
|
1363 |
+
'name' : 'eval_gegenbauer: Evaluate Gegenbauer polynomial at a point',
|
1364 |
+
'snippet' : [
|
1365 |
+
'special.eval_gegenbauer(n, alpha, x)',
|
1366 |
+
],
|
1367 |
+
},
|
1368 |
+
|
1369 |
+
{
|
1370 |
+
'name' : 'eval_sh_legendre: Evaluate shifted Legendre polynomial at a point',
|
1371 |
+
'snippet' : [
|
1372 |
+
'special.eval_sh_legendre(n, x)',
|
1373 |
+
],
|
1374 |
+
},
|
1375 |
+
|
1376 |
+
{
|
1377 |
+
'name' : 'eval_sh_chebyt: Evaluate shifted Chebyshev $T$ polynomial at a point',
|
1378 |
+
'snippet' : [
|
1379 |
+
'special.eval_sh_chebyt(n, x)',
|
1380 |
+
],
|
1381 |
+
},
|
1382 |
+
|
1383 |
+
{
|
1384 |
+
'name' : 'eval_sh_chebyu: Evaluate shifted Chebyshev $U$ polynomial at a point',
|
1385 |
+
'snippet' : [
|
1386 |
+
'special.eval_sh_chebyu(n, x)',
|
1387 |
+
],
|
1388 |
+
},
|
1389 |
+
|
1390 |
+
{
|
1391 |
+
'name' : 'eval_sh_jacobi: Evaluate shifted Jacobi polynomial at a point',
|
1392 |
+
'snippet' : [
|
1393 |
+
'special.eval_sh_jacobi(n, p, q, x)',
|
1394 |
+
],
|
1395 |
+
},
|
1396 |
+
|
1397 |
+
{
|
1398 |
+
'name' : 'legendre: Coefficients of the $n$th order Legendre polynomial, $P_n(x)$',
|
1399 |
+
'snippet' : [
|
1400 |
+
'special.legendre(n[, monic])',
|
1401 |
+
],
|
1402 |
+
},
|
1403 |
+
|
1404 |
+
{
|
1405 |
+
'name' : 'chebyt: Coefficients of the $n$th order Chebyshev polynomial of first kind, $T_n(x)$',
|
1406 |
+
'snippet' : [
|
1407 |
+
'special.chebyt(n[, monic])',
|
1408 |
+
],
|
1409 |
+
},
|
1410 |
+
|
1411 |
+
{
|
1412 |
+
'name' : 'chebyu: Coefficients of the $n$th order Chebyshev polynomial of second kind, $U_n(x)$',
|
1413 |
+
'snippet' : [
|
1414 |
+
'special.chebyu(n[, monic])',
|
1415 |
+
],
|
1416 |
+
},
|
1417 |
+
|
1418 |
+
{
|
1419 |
+
'name' : 'chebyc: Coefficients of the $n$th order Chebyshev polynomial of first kind, $C_n(x)$',
|
1420 |
+
'snippet' : [
|
1421 |
+
'special.chebyc(n[, monic])',
|
1422 |
+
],
|
1423 |
+
},
|
1424 |
+
|
1425 |
+
{
|
1426 |
+
'name' : 'chebys: Coefficients of the $n$th order Chebyshev polynomial of second kind, $S_n$(x)',
|
1427 |
+
'snippet' : [
|
1428 |
+
'special.chebys(n[, monic])',
|
1429 |
+
],
|
1430 |
+
},
|
1431 |
+
|
1432 |
+
{
|
1433 |
+
'name' : 'jacobi: Coefficients of the $n$th order Jacobi polynomial, $P^(\\alpha,\\beta)_n(x)$ orthogonal over [-1,1] with weighting function $(1-x)^\\alpha (1+x)^\\beta$ with $\\alpha,\\beta > -1$',
|
1434 |
+
'snippet' : [
|
1435 |
+
'special.jacobi(n, alpha, beta[, monic])',
|
1436 |
+
],
|
1437 |
+
},
|
1438 |
+
|
1439 |
+
{
|
1440 |
+
'name' : 'laguerre: Coefficients of the $n$th order Laguerre polynoimal, $L_n(x)$',
|
1441 |
+
'snippet' : [
|
1442 |
+
'special.laguerre(n[, monic])',
|
1443 |
+
],
|
1444 |
+
},
|
1445 |
+
|
1446 |
+
{
|
1447 |
+
'name' : 'genlaguerre: Coefficients of the $n$th order generalized (associated) Laguerre polynomial,',
|
1448 |
+
'snippet' : [
|
1449 |
+
'special.genlaguerre(n, alpha[, monic])',
|
1450 |
+
],
|
1451 |
+
},
|
1452 |
+
|
1453 |
+
{
|
1454 |
+
'name' : 'hermite: Coefficients of the $n$th order Hermite polynomial, $H_n(x)$, orthogonal over',
|
1455 |
+
'snippet' : [
|
1456 |
+
'special.hermite(n[, monic])',
|
1457 |
+
],
|
1458 |
+
},
|
1459 |
+
|
1460 |
+
{
|
1461 |
+
'name' : 'hermitenorm: Coefficients of the $n$th order normalized Hermite polynomial, $He_n(x)$, orthogonal',
|
1462 |
+
'snippet' : [
|
1463 |
+
'special.hermitenorm(n[, monic])',
|
1464 |
+
],
|
1465 |
+
},
|
1466 |
+
|
1467 |
+
{
|
1468 |
+
'name' : 'gegenbauer: Coefficients of the $n$th order Gegenbauer (ultraspherical) polynomial,',
|
1469 |
+
'snippet' : [
|
1470 |
+
'special.gegenbauer(n, alpha[, monic])',
|
1471 |
+
],
|
1472 |
+
},
|
1473 |
+
|
1474 |
+
{
|
1475 |
+
'name' : 'sh_legendre: Coefficients of the $n$th order shifted Legendre polynomial, $P^\\ast_n(x)$',
|
1476 |
+
'snippet' : [
|
1477 |
+
'special.sh_legendre(n[, monic])',
|
1478 |
+
],
|
1479 |
+
},
|
1480 |
+
|
1481 |
+
{
|
1482 |
+
'name' : 'sh_chebyt: Coefficients of $n$th order shifted Chebyshev polynomial of first kind, $T_n(x)$',
|
1483 |
+
'snippet' : [
|
1484 |
+
'special.sh_chebyt(n[, monic])',
|
1485 |
+
],
|
1486 |
+
},
|
1487 |
+
|
1488 |
+
{
|
1489 |
+
'name' : 'sh_chebyu: Coefficients of the $n$th order shifted Chebyshev polynomial of second kind, $U_n(x)$',
|
1490 |
+
'snippet' : [
|
1491 |
+
'special.sh_chebyu(n[, monic])',
|
1492 |
+
],
|
1493 |
+
},
|
1494 |
+
|
1495 |
+
{
|
1496 |
+
'name' : 'sh_jacobi: Coefficients of the $n$th order Jacobi polynomial, $G_n(p,q,x)$ orthogonal over [0,1] with weighting function $(1-x)^{p-q} x^{q-1}$ with $p>q-1$ and $q > 0$',
|
1497 |
+
'snippet' : [
|
1498 |
+
'special.sh_jacobi(n, p, q[, monic])',
|
1499 |
+
],
|
1500 |
+
},
|
1501 |
+
|
1502 |
+
],
|
1503 |
+
},
|
1504 |
+
|
1505 |
+
{
|
1506 |
+
'name' : 'Hypergeometric Functions',
|
1507 |
+
'sub-menu' : [
|
1508 |
+
|
1509 |
+
{
|
1510 |
+
'name' : 'hyp2f1: Gauss hypergeometric function ${}_2F_1(a, b; c; z)$',
|
1511 |
+
'snippet' : [
|
1512 |
+
'special.hyp2f1(a, b, c, z)',
|
1513 |
+
],
|
1514 |
+
},
|
1515 |
+
|
1516 |
+
{
|
1517 |
+
'name' : 'hyp1f1: Confluent hypergeometric function ${}_1F_1(a, b; x)$',
|
1518 |
+
'snippet' : [
|
1519 |
+
'special.hyp1f1(a, b, x)',
|
1520 |
+
],
|
1521 |
+
},
|
1522 |
+
|
1523 |
+
{
|
1524 |
+
'name' : 'hyperu: Confluent hypergeometric function $U(a, b, x)$ of the second kind',
|
1525 |
+
'snippet' : [
|
1526 |
+
'special.hyperu(a, b, x)',
|
1527 |
+
],
|
1528 |
+
},
|
1529 |
+
|
1530 |
+
{
|
1531 |
+
'name' : 'hyp0f1: Confluent hypergeometric limit function ${}_0F_1$',
|
1532 |
+
'snippet' : [
|
1533 |
+
'special.hyp0f1(v, z)',
|
1534 |
+
],
|
1535 |
+
},
|
1536 |
+
|
1537 |
+
{
|
1538 |
+
'name' : 'hyp2f0: Hypergeometric function ${}_2F_0$ in $y$ and an error estimate',
|
1539 |
+
'snippet' : [
|
1540 |
+
'special.hyp2f0(a, b, x, type)',
|
1541 |
+
],
|
1542 |
+
},
|
1543 |
+
|
1544 |
+
{
|
1545 |
+
'name' : 'hyp1f2: Hypergeometric function ${}_1F_2$ and error estimate',
|
1546 |
+
'snippet' : [
|
1547 |
+
'special.hyp1f2(a, b, c, x)',
|
1548 |
+
],
|
1549 |
+
},
|
1550 |
+
|
1551 |
+
{
|
1552 |
+
'name' : 'hyp3f0: Hypergeometric function ${}_3F_0$ in $y$ and an error estimate',
|
1553 |
+
'snippet' : [
|
1554 |
+
'special.hyp3f0(a, b, c, x)',
|
1555 |
+
],
|
1556 |
+
},
|
1557 |
+
|
1558 |
+
],
|
1559 |
+
},
|
1560 |
+
|
1561 |
+
{
|
1562 |
+
'name' : 'Parabolic Cylinder Functions',
|
1563 |
+
'sub-menu' : [
|
1564 |
+
|
1565 |
+
{
|
1566 |
+
'name' : 'pbdv: Parabolic cylinder function $D$',
|
1567 |
+
'snippet' : [
|
1568 |
+
'special.pbdv(v, x)',
|
1569 |
+
],
|
1570 |
+
},
|
1571 |
+
|
1572 |
+
{
|
1573 |
+
'name' : 'pbvv: Parabolic cylinder function $V$',
|
1574 |
+
'snippet' : [
|
1575 |
+
'special.pbvv(v,x)',
|
1576 |
+
],
|
1577 |
+
},
|
1578 |
+
|
1579 |
+
{
|
1580 |
+
'name' : 'pbwa: Parabolic cylinder function $W$',
|
1581 |
+
'snippet' : [
|
1582 |
+
'special.pbwa(a,x)',
|
1583 |
+
],
|
1584 |
+
},
|
1585 |
+
|
1586 |
+
// These are not universal functions:
|
1587 |
+
|
1588 |
+
{
|
1589 |
+
'name' : 'pbdv_seq: $D_{v_0}(x), ..., D_v(x)$ and $D_{v_0}\'(x), ..., D_v\'(x)$ with $v_0=v-\\lfloor v \\rfloor$',
|
1590 |
+
'snippet' : [
|
1591 |
+
'special.pbdv_seq(v, x)',
|
1592 |
+
],
|
1593 |
+
},
|
1594 |
+
|
1595 |
+
{
|
1596 |
+
'name' : 'pbvv_seq: $V_{v_0}(x), ..., V_v(x)$ and $V_{v_0}\'(x), ..., V_v\'(x)$ with $v_0=v-\\lfloor v \\rfloor$',
|
1597 |
+
'snippet' : [
|
1598 |
+
'special.pbvv_seq(v, x)',
|
1599 |
+
],
|
1600 |
+
},
|
1601 |
+
|
1602 |
+
{
|
1603 |
+
'name' : 'pbdn_seq: $D_0(x), ..., D_n(x)$ and $D_0\'(x), ..., D_n\'(x)$',
|
1604 |
+
'snippet' : [
|
1605 |
+
'special.pbdn_seq(n, z)',
|
1606 |
+
],
|
1607 |
+
},
|
1608 |
+
|
1609 |
+
],
|
1610 |
+
},
|
1611 |
+
|
1612 |
+
{
|
1613 |
+
'name' : 'Mathieu and Related Functions',
|
1614 |
+
'sub-menu' : [
|
1615 |
+
|
1616 |
+
{
|
1617 |
+
'name' : 'mathieu_a: Characteristic value of even Mathieu functions',
|
1618 |
+
'snippet' : [
|
1619 |
+
'special.mathieu_a(m,q)',
|
1620 |
+
],
|
1621 |
+
},
|
1622 |
+
|
1623 |
+
{
|
1624 |
+
'name' : 'mathieu_b: Characteristic value of odd Mathieu functions',
|
1625 |
+
'snippet' : [
|
1626 |
+
'special.mathieu_b(m,q)',
|
1627 |
+
],
|
1628 |
+
},
|
1629 |
+
|
1630 |
+
// These are not universal functions:
|
1631 |
+
|
1632 |
+
{
|
1633 |
+
'name' : 'mathieu_even_coef: Compute expansion coefficients for even Mathieu functions and modified Mathieu functions',
|
1634 |
+
'snippet' : [
|
1635 |
+
'special.mathieu_even_coef(m, q)',
|
1636 |
+
],
|
1637 |
+
},
|
1638 |
+
|
1639 |
+
{
|
1640 |
+
'name' : 'mathieu_odd_coef: Compute expansion coefficients for even Mathieu functions and modified Mathieu functions',
|
1641 |
+
'snippet' : [
|
1642 |
+
'special.mathieu_odd_coef(m, q)',
|
1643 |
+
],
|
1644 |
+
},
|
1645 |
+
|
1646 |
+
// The following return both function and first derivative:
|
1647 |
+
|
1648 |
+
{
|
1649 |
+
'name' : 'mathieu_cem: Even Mathieu function and its derivative',
|
1650 |
+
'snippet' : [
|
1651 |
+
'special.mathieu_cem(m,q,x)',
|
1652 |
+
],
|
1653 |
+
},
|
1654 |
+
|
1655 |
+
{
|
1656 |
+
'name' : 'mathieu_sem: Odd Mathieu function and its derivative',
|
1657 |
+
'snippet' : [
|
1658 |
+
'special.mathieu_sem(m, q, x)',
|
1659 |
+
],
|
1660 |
+
},
|
1661 |
+
|
1662 |
+
{
|
1663 |
+
'name' : 'mathieu_modcem1: Even modified Mathieu function of the first kind and its derivative',
|
1664 |
+
'snippet' : [
|
1665 |
+
'special.mathieu_modcem1(m, q, x)',
|
1666 |
+
],
|
1667 |
+
},
|
1668 |
+
|
1669 |
+
{
|
1670 |
+
'name' : 'mathieu_modcem2: Even modified Mathieu function of the second kind and its derivative',
|
1671 |
+
'snippet' : [
|
1672 |
+
'special.mathieu_modcem2(m, q, x)',
|
1673 |
+
],
|
1674 |
+
},
|
1675 |
+
|
1676 |
+
{
|
1677 |
+
'name' : 'mathieu_modsem1: Odd modified Mathieu function of the first kind and its derivative',
|
1678 |
+
'snippet' : [
|
1679 |
+
'special.mathieu_modsem1(m,q,x)',
|
1680 |
+
],
|
1681 |
+
},
|
1682 |
+
|
1683 |
+
{
|
1684 |
+
'name' : 'mathieu_modsem2: Odd modified Mathieu function of the second kind and its derivative',
|
1685 |
+
'snippet' : [
|
1686 |
+
'special.mathieu_modsem2(m, q, x)',
|
1687 |
+
],
|
1688 |
+
},
|
1689 |
+
|
1690 |
+
],
|
1691 |
+
},
|
1692 |
+
|
1693 |
+
{
|
1694 |
+
'name' : 'Spheroidal Wave Functions',
|
1695 |
+
'sub-menu' : [
|
1696 |
+
|
1697 |
+
{
|
1698 |
+
'name' : 'pro_ang1: Prolate spheroidal angular function of the first kind and its derivative',
|
1699 |
+
'snippet' : [
|
1700 |
+
'special.pro_ang1(m,n,c,x)',
|
1701 |
+
],
|
1702 |
+
},
|
1703 |
+
|
1704 |
+
{
|
1705 |
+
'name' : 'pro_rad1: Prolate spheroidal radial function of the first kind and its derivative',
|
1706 |
+
'snippet' : [
|
1707 |
+
'special.pro_rad1(m,n,c,x)',
|
1708 |
+
],
|
1709 |
+
},
|
1710 |
+
|
1711 |
+
{
|
1712 |
+
'name' : 'pro_rad2: Prolate spheroidal radial function of the secon kind and its derivative',
|
1713 |
+
'snippet' : [
|
1714 |
+
'special.pro_rad2(m,n,c,x)',
|
1715 |
+
],
|
1716 |
+
},
|
1717 |
+
|
1718 |
+
{
|
1719 |
+
'name' : 'obl_ang1: Oblate spheroidal angular function of the first kind and its derivative',
|
1720 |
+
'snippet' : [
|
1721 |
+
'special.obl_ang1(m, n, c, x)',
|
1722 |
+
],
|
1723 |
+
},
|
1724 |
+
|
1725 |
+
{
|
1726 |
+
'name' : 'obl_rad1: Oblate spheroidal radial function of the first kind and its derivative',
|
1727 |
+
'snippet' : [
|
1728 |
+
'special.obl_rad1(m,n,c,x)',
|
1729 |
+
],
|
1730 |
+
},
|
1731 |
+
|
1732 |
+
{
|
1733 |
+
'name' : 'obl_rad2: Oblate spheroidal radial function of the second kind and its derivative',
|
1734 |
+
'snippet' : [
|
1735 |
+
'special.obl_rad2(m,n,c,x)',
|
1736 |
+
],
|
1737 |
+
},
|
1738 |
+
|
1739 |
+
{
|
1740 |
+
'name' : 'pro_cv: Characteristic value of prolate spheroidal function',
|
1741 |
+
'snippet' : [
|
1742 |
+
'special.pro_cv(m,n,c)',
|
1743 |
+
],
|
1744 |
+
},
|
1745 |
+
|
1746 |
+
{
|
1747 |
+
'name' : 'obl_cv: Characteristic value of oblate spheroidal function',
|
1748 |
+
'snippet' : [
|
1749 |
+
'special.obl_cv(m, n, c)',
|
1750 |
+
],
|
1751 |
+
},
|
1752 |
+
|
1753 |
+
{
|
1754 |
+
'name' : 'pro_cv_seq: Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n’=m..n and spheroidal parameter c',
|
1755 |
+
'snippet' : [
|
1756 |
+
'special.pro_cv_seq(m, n, c)',
|
1757 |
+
],
|
1758 |
+
},
|
1759 |
+
|
1760 |
+
{
|
1761 |
+
'name' : 'obl_cv_seq: Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n’=m..n and spheroidal parameter c',
|
1762 |
+
'snippet' : [
|
1763 |
+
'special.obl_cv_seq(m, n, c)',
|
1764 |
+
],
|
1765 |
+
},
|
1766 |
+
|
1767 |
+
// The following functions require pre-computed characteristic value:
|
1768 |
+
|
1769 |
+
{
|
1770 |
+
'name' : 'pro_ang1_cv: Prolate spheroidal angular function pro_ang1 for precomputed characteristic value',
|
1771 |
+
'snippet' : [
|
1772 |
+
'special.pro_ang1_cv(m,n,c,cv,x)',
|
1773 |
+
],
|
1774 |
+
},
|
1775 |
+
|
1776 |
+
{
|
1777 |
+
'name' : 'pro_rad1_cv: Prolate spheroidal radial function pro_rad1 for precomputed characteristic value',
|
1778 |
+
'snippet' : [
|
1779 |
+
'special.pro_rad1_cv(m,n,c,cv,x)',
|
1780 |
+
],
|
1781 |
+
},
|
1782 |
+
|
1783 |
+
{
|
1784 |
+
'name' : 'pro_rad2_cv: Prolate spheroidal radial function pro_rad2 for precomputed characteristic value',
|
1785 |
+
'snippet' : [
|
1786 |
+
'special.pro_rad2_cv(m,n,c,cv,x)',
|
1787 |
+
],
|
1788 |
+
},
|
1789 |
+
|
1790 |
+
{
|
1791 |
+
'name' : 'obl_ang1_cv: Oblate spheroidal angular function obl_ang1 for precomputed characteristic value',
|
1792 |
+
'snippet' : [
|
1793 |
+
'special.obl_ang1_cv(m, n, c, cv, x)',
|
1794 |
+
],
|
1795 |
+
},
|
1796 |
+
|
1797 |
+
{
|
1798 |
+
'name' : 'obl_rad1_cv: Oblate spheroidal radial function obl_rad1 for precomputed characteristic value',
|
1799 |
+
'snippet' : [
|
1800 |
+
'special.obl_rad1_cv(m,n,c,cv,x)',
|
1801 |
+
],
|
1802 |
+
},
|
1803 |
+
|
1804 |
+
{
|
1805 |
+
'name' : 'obl_rad2_cv: Oblate spheroidal radial function obl_rad2 for precomputed characteristic value',
|
1806 |
+
'snippet' : [
|
1807 |
+
'special.obl_rad2_cv(m,n,c,cv,x)',
|
1808 |
+
],
|
1809 |
+
},
|
1810 |
+
|
1811 |
+
],
|
1812 |
+
},
|
1813 |
+
|
1814 |
+
{
|
1815 |
+
'name' : 'Kelvin Functions',
|
1816 |
+
'sub-menu' : [
|
1817 |
+
|
1818 |
+
{
|
1819 |
+
'name' : 'kelvin: Kelvin functions as complex numbers',
|
1820 |
+
'snippet' : [
|
1821 |
+
'special.kelvin(x)',
|
1822 |
+
],
|
1823 |
+
},
|
1824 |
+
|
1825 |
+
{
|
1826 |
+
'name' : 'kelvin_zeros: Compute nt zeros of all the Kelvin functions returned in a length 8 tuple of arrays of length nt',
|
1827 |
+
'snippet' : [
|
1828 |
+
'special.kelvin_zeros(nt)',
|
1829 |
+
],
|
1830 |
+
},
|
1831 |
+
|
1832 |
+
{
|
1833 |
+
'name' : 'ber: Kelvin function ber',
|
1834 |
+
'snippet' : [
|
1835 |
+
'special.ber(x)',
|
1836 |
+
],
|
1837 |
+
},
|
1838 |
+
|
1839 |
+
{
|
1840 |
+
'name' : 'bei: Kelvin function bei',
|
1841 |
+
'snippet' : [
|
1842 |
+
'special.bei(x)',
|
1843 |
+
],
|
1844 |
+
},
|
1845 |
+
|
1846 |
+
{
|
1847 |
+
'name' : 'berp: Derivative of the Kelvin function ber',
|
1848 |
+
'snippet' : [
|
1849 |
+
'special.berp(x)',
|
1850 |
+
],
|
1851 |
+
},
|
1852 |
+
|
1853 |
+
{
|
1854 |
+
'name' : 'beip: Derivative of the Kelvin function bei',
|
1855 |
+
'snippet' : [
|
1856 |
+
'special.beip(x)',
|
1857 |
+
],
|
1858 |
+
},
|
1859 |
+
|
1860 |
+
{
|
1861 |
+
'name' : 'ker: Kelvin function ker',
|
1862 |
+
'snippet' : [
|
1863 |
+
'special.ker(x)',
|
1864 |
+
],
|
1865 |
+
},
|
1866 |
+
|
1867 |
+
{
|
1868 |
+
'name' : 'kei: Kelvin function ker',
|
1869 |
+
'snippet' : [
|
1870 |
+
'special.kei(x)',
|
1871 |
+
],
|
1872 |
+
},
|
1873 |
+
|
1874 |
+
{
|
1875 |
+
'name' : 'kerp: Derivative of the Kelvin function ker',
|
1876 |
+
'snippet' : [
|
1877 |
+
'special.kerp(x)',
|
1878 |
+
],
|
1879 |
+
},
|
1880 |
+
|
1881 |
+
{
|
1882 |
+
'name' : 'keip: Derivative of the Kelvin function kei',
|
1883 |
+
'snippet' : [
|
1884 |
+
'special.keip(x)',
|
1885 |
+
],
|
1886 |
+
},
|
1887 |
+
|
1888 |
+
// These are not universal functions:
|
1889 |
+
|
1890 |
+
{
|
1891 |
+
'name' : 'ber_zeros: Compute nt zeros of the Kelvin function ber x',
|
1892 |
+
'snippet' : [
|
1893 |
+
'special.ber_zeros(nt)',
|
1894 |
+
],
|
1895 |
+
},
|
1896 |
+
|
1897 |
+
{
|
1898 |
+
'name' : 'bei_zeros: Compute nt zeros of the Kelvin function bei x',
|
1899 |
+
'snippet' : [
|
1900 |
+
'special.bei_zeros(nt)',
|
1901 |
+
],
|
1902 |
+
},
|
1903 |
+
|
1904 |
+
{
|
1905 |
+
'name' : 'berp_zeros: Compute nt zeros of the Kelvin function ber’ x',
|
1906 |
+
'snippet' : [
|
1907 |
+
'special.berp_zeros(nt)',
|
1908 |
+
],
|
1909 |
+
},
|
1910 |
+
|
1911 |
+
{
|
1912 |
+
'name' : 'beip_zeros: Compute nt zeros of the Kelvin function bei’ x',
|
1913 |
+
'snippet' : [
|
1914 |
+
'special.beip_zeros(nt)',
|
1915 |
+
],
|
1916 |
+
},
|
1917 |
+
|
1918 |
+
{
|
1919 |
+
'name' : 'ker_zeros: Compute nt zeros of the Kelvin function ker x',
|
1920 |
+
'snippet' : [
|
1921 |
+
'special.ker_zeros(nt)',
|
1922 |
+
],
|
1923 |
+
},
|
1924 |
+
|
1925 |
+
{
|
1926 |
+
'name' : 'kei_zeros: Compute nt zeros of the Kelvin function kei x',
|
1927 |
+
'snippet' : [
|
1928 |
+
'special.kei_zeros(nt)',
|
1929 |
+
],
|
1930 |
+
},
|
1931 |
+
|
1932 |
+
{
|
1933 |
+
'name' : 'kerp_zeros: Compute nt zeros of the Kelvin function ker’ x',
|
1934 |
+
'snippet' : [
|
1935 |
+
'special.kerp_zeros(nt)',
|
1936 |
+
],
|
1937 |
+
},
|
1938 |
+
|
1939 |
+
{
|
1940 |
+
'name' : 'keip_zeros: Compute nt zeros of the Kelvin function kei’ x',
|
1941 |
+
'snippet' : [
|
1942 |
+
'special.keip_zeros(nt)',
|
1943 |
+
],
|
1944 |
+
},
|
1945 |
+
|
1946 |
+
],
|
1947 |
+
},
|
1948 |
+
|
1949 |
+
{
|
1950 |
+
'name' : 'Combinatorics',
|
1951 |
+
'sub-menu' : [
|
1952 |
+
{
|
1953 |
+
'name' : 'comb: The number of combinations of N things taken k at a time',
|
1954 |
+
'snippet' : [
|
1955 |
+
'special.comb(N, k, exact=False, repetition=False)',
|
1956 |
+
],
|
1957 |
+
},
|
1958 |
+
|
1959 |
+
{
|
1960 |
+
'name' : 'perm: Permutations of N things taken k at a time, i.e., k-permutations of N',
|
1961 |
+
'snippet' : [
|
1962 |
+
'special.perm(N, k, exact=False)',
|
1963 |
+
],
|
1964 |
+
},
|
1965 |
+
],
|
1966 |
+
},
|
1967 |
+
|
1968 |
+
{
|
1969 |
+
'name' : 'Other Special Functions',
|
1970 |
+
'sub-menu' : [
|
1971 |
+
{
|
1972 |
+
'name' : 'agm: Arithmetic, Geometric Mean',
|
1973 |
+
'snippet' : [
|
1974 |
+
'special.agm(a, b)',
|
1975 |
+
],
|
1976 |
+
},
|
1977 |
+
|
1978 |
+
{
|
1979 |
+
'name' : 'bernoulli: Return an array of the Bernoulli numbers $B_0$, ..., $B_n$ (inclusive)',
|
1980 |
+
'snippet' : [
|
1981 |
+
'special.bernoulli(n)',
|
1982 |
+
],
|
1983 |
+
},
|
1984 |
+
|
1985 |
+
{
|
1986 |
+
'name' : 'binom: Binomial coefficient',
|
1987 |
+
'snippet' : [
|
1988 |
+
'special.binom(n, k)',
|
1989 |
+
],
|
1990 |
+
},
|
1991 |
+
|
1992 |
+
{
|
1993 |
+
'name' : 'diric: Returns the periodic sinc function, also called the Dirichlet function',
|
1994 |
+
'snippet' : [
|
1995 |
+
'special.diric(x, n)',
|
1996 |
+
],
|
1997 |
+
},
|
1998 |
+
|
1999 |
+
{
|
2000 |
+
'name' : 'euler: Return an array of the Euler numbers $E_0$, ..., $E_n$ (inclusive)',
|
2001 |
+
'snippet' : [
|
2002 |
+
'special.euler(n)',
|
2003 |
+
],
|
2004 |
+
},
|
2005 |
+
|
2006 |
+
{
|
2007 |
+
'name' : 'expn: Exponential integral $E_n$',
|
2008 |
+
'snippet' : [
|
2009 |
+
'special.expn(n, x)',
|
2010 |
+
],
|
2011 |
+
},
|
2012 |
+
|
2013 |
+
{
|
2014 |
+
'name' : 'exp1: Exponential integral $E_1$ of complex argument $z$',
|
2015 |
+
'snippet' : [
|
2016 |
+
'special.exp1(z)',
|
2017 |
+
],
|
2018 |
+
},
|
2019 |
+
|
2020 |
+
{
|
2021 |
+
'name' : 'expi: Exponential integral $\\mathrm{Ei}$',
|
2022 |
+
'snippet' : [
|
2023 |
+
'special.expi(x)',
|
2024 |
+
],
|
2025 |
+
},
|
2026 |
+
|
2027 |
+
{
|
2028 |
+
'name' : 'factorial: The factorial function, $n! = \\Gamma(n+1)$',
|
2029 |
+
'snippet' : [
|
2030 |
+
'special.factorial(n, exact=False)',
|
2031 |
+
],
|
2032 |
+
},
|
2033 |
+
|
2034 |
+
{
|
2035 |
+
'name' : 'factorial2: Double factorial $n!!$',
|
2036 |
+
'snippet' : [
|
2037 |
+
'special.factorial2(n, exact=False)',
|
2038 |
+
],
|
2039 |
+
},
|
2040 |
+
|
2041 |
+
{
|
2042 |
+
'name' : 'factorialk: $n(!!...!)$ = multifactorial of order $k$',
|
2043 |
+
'snippet' : [
|
2044 |
+
'special.factorialk(n, k, exact=False)',
|
2045 |
+
],
|
2046 |
+
},
|
2047 |
+
|
2048 |
+
{
|
2049 |
+
'name' : 'shichi: Hyperbolic sine and cosine integrals',
|
2050 |
+
'snippet' : [
|
2051 |
+
'special.shichi(x)',
|
2052 |
+
],
|
2053 |
+
},
|
2054 |
+
|
2055 |
+
{
|
2056 |
+
'name' : 'sici: Sine and cosine integrals',
|
2057 |
+
'snippet' : [
|
2058 |
+
'special.sici(x)',
|
2059 |
+
],
|
2060 |
+
},
|
2061 |
+
|
2062 |
+
{
|
2063 |
+
'name' : 'spence: Dilogarithm integral',
|
2064 |
+
'snippet' : [
|
2065 |
+
'special.spence(x)',
|
2066 |
+
],
|
2067 |
+
},
|
2068 |
+
|
2069 |
+
{
|
2070 |
+
'name' : 'lambertw: Lambert $W$ function [R497]',
|
2071 |
+
'snippet' : [
|
2072 |
+
'special.lambertw(z[, k, tol])',
|
2073 |
+
],
|
2074 |
+
},
|
2075 |
+
|
2076 |
+
{
|
2077 |
+
'name' : 'zeta: Hurwitz $\\zeta$ function',
|
2078 |
+
'snippet' : [
|
2079 |
+
'special.zeta(x, q)',
|
2080 |
+
],
|
2081 |
+
},
|
2082 |
+
|
2083 |
+
{
|
2084 |
+
'name' : 'zetac: Riemann $\\zeta$ function minus 1',
|
2085 |
+
'snippet' : [
|
2086 |
+
'special.zetac(x)',
|
2087 |
+
],
|
2088 |
+
},
|
2089 |
+
|
2090 |
+
],
|
2091 |
+
},
|
2092 |
+
|
2093 |
+
{
|
2094 |
+
'name' : 'Convenience Functions',
|
2095 |
+
'sub-menu' : [
|
2096 |
+
|
2097 |
+
{
|
2098 |
+
'name' : 'cbrt: $\\sqrt[3]{x}$',
|
2099 |
+
'snippet' : [
|
2100 |
+
'special.cbrt(x)',
|
2101 |
+
],
|
2102 |
+
},
|
2103 |
+
|
2104 |
+
{
|
2105 |
+
'name' : 'exp10: $10^x$',
|
2106 |
+
'snippet' : [
|
2107 |
+
'special.exp10(x)',
|
2108 |
+
],
|
2109 |
+
},
|
2110 |
+
|
2111 |
+
{
|
2112 |
+
'name' : 'exp2: $2^x$',
|
2113 |
+
'snippet' : [
|
2114 |
+
'special.exp2(x)',
|
2115 |
+
],
|
2116 |
+
},
|
2117 |
+
|
2118 |
+
{
|
2119 |
+
'name' : 'radian: Convert from degrees to radians',
|
2120 |
+
'snippet' : [
|
2121 |
+
'special.radian(d, m, s)',
|
2122 |
+
],
|
2123 |
+
},
|
2124 |
+
|
2125 |
+
{
|
2126 |
+
'name' : 'cosdg: Cosine of the angle given in degrees',
|
2127 |
+
'snippet' : [
|
2128 |
+
'special.cosdg(x)',
|
2129 |
+
],
|
2130 |
+
},
|
2131 |
+
|
2132 |
+
{
|
2133 |
+
'name' : 'sindg: Sine of angle given in degrees',
|
2134 |
+
'snippet' : [
|
2135 |
+
'special.sindg(x)',
|
2136 |
+
],
|
2137 |
+
},
|
2138 |
+
|
2139 |
+
{
|
2140 |
+
'name' : 'tandg: Tangent of angle given in degrees',
|
2141 |
+
'snippet' : [
|
2142 |
+
'special.tandg(x)',
|
2143 |
+
],
|
2144 |
+
},
|
2145 |
+
|
2146 |
+
{
|
2147 |
+
'name' : 'cotdg: Cotangent of the angle given in degrees',
|
2148 |
+
'snippet' : [
|
2149 |
+
'special.cotdg(x)',
|
2150 |
+
],
|
2151 |
+
},
|
2152 |
+
|
2153 |
+
{
|
2154 |
+
'name' : 'log1p: Calculates $\\log(1+x)$ for use when $x$ is near zero',
|
2155 |
+
'snippet' : [
|
2156 |
+
'special.log1p(x)',
|
2157 |
+
],
|
2158 |
+
},
|
2159 |
+
|
2160 |
+
{
|
2161 |
+
'name' : 'expm1: $\\exp(x) - 1$ for use when $x$ is near zero',
|
2162 |
+
'snippet' : [
|
2163 |
+
'special.expm1(x)',
|
2164 |
+
],
|
2165 |
+
},
|
2166 |
+
|
2167 |
+
{
|
2168 |
+
'name' : 'cosm1: $\\cos(x) - 1$ for use when $x$ is near zero',
|
2169 |
+
'snippet' : [
|
2170 |
+
'special.cosm1(x)',
|
2171 |
+
],
|
2172 |
+
},
|
2173 |
+
|
2174 |
+
{
|
2175 |
+
'name' : 'round: Round to nearest integer',
|
2176 |
+
'snippet' : [
|
2177 |
+
'special.round(x)',
|
2178 |
+
],
|
2179 |
+
},
|
2180 |
+
|
2181 |
+
{
|
2182 |
+
'name' : 'xlogy: Compute $x\\, \\log(y)$ so that the result is 0 if $x$ = 0',
|
2183 |
+
'snippet' : [
|
2184 |
+
'special.xlogy(x, y)',
|
2185 |
+
],
|
2186 |
+
},
|
2187 |
+
|
2188 |
+
{
|
2189 |
+
'name' : 'xlog1py: Compute $x\\, \\log(1+y)$ so that the result is 0 if $x$ = 0',
|
2190 |
+
'snippet' : [
|
2191 |
+
'special.xlog1py(x, y)',
|
2192 |
+
],
|
2193 |
+
},
|
2194 |
+
],
|
2195 |
+
},
|
2196 |
+
|
2197 |
+
],
|
2198 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/sympy_assumptions.js
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
define({
|
2 |
+
'name' : 'List of assumptions',
|
3 |
+
'sub-menu' : [
|
4 |
+
{
|
5 |
+
'name' : 'Bounded',
|
6 |
+
'snippet' : ['Q.bounded(x)',],
|
7 |
+
},
|
8 |
+
{
|
9 |
+
'name' : 'Commutative',
|
10 |
+
'snippet' : ['Q.commutative(x)',],
|
11 |
+
},
|
12 |
+
{
|
13 |
+
'name' : 'Complex',
|
14 |
+
'snippet' : ['Q.complex(x)',],
|
15 |
+
},
|
16 |
+
{
|
17 |
+
'name' : 'Imaginary',
|
18 |
+
'snippet' : ['Q.imaginary(x)',],
|
19 |
+
},
|
20 |
+
{
|
21 |
+
'name' : 'Real',
|
22 |
+
'snippet' : ['Q.real(x)',],
|
23 |
+
},
|
24 |
+
{
|
25 |
+
'name' : 'Extended real',
|
26 |
+
'snippet' : ['Q.extended_real(x)',],
|
27 |
+
},
|
28 |
+
{
|
29 |
+
'name' : 'Integer',
|
30 |
+
'snippet' : ['Q.integer(x)',],
|
31 |
+
},
|
32 |
+
{
|
33 |
+
'name' : 'Odd',
|
34 |
+
'snippet' : ['Q.odd(x)',],
|
35 |
+
},
|
36 |
+
{
|
37 |
+
'name' : 'Even',
|
38 |
+
'snippet' : ['Q.even(x)',],
|
39 |
+
},
|
40 |
+
{
|
41 |
+
'name' : 'Prime',
|
42 |
+
'snippet' : ['Q.prime(x)',],
|
43 |
+
},
|
44 |
+
{
|
45 |
+
'name' : 'Composite',
|
46 |
+
'snippet' : ['Q.composite(x)',],
|
47 |
+
},
|
48 |
+
{
|
49 |
+
'name' : 'Zero',
|
50 |
+
'snippet' : ['Q.zero(x)',],
|
51 |
+
},
|
52 |
+
{
|
53 |
+
'name' : 'Nonzero',
|
54 |
+
'snippet' : ['Q.nonzero(x)',],
|
55 |
+
},
|
56 |
+
{
|
57 |
+
'name' : 'Rational',
|
58 |
+
'snippet' : ['Q.rational(x)',],
|
59 |
+
},
|
60 |
+
{
|
61 |
+
'name' : 'Algebraic',
|
62 |
+
'snippet' : ['Q.algebraic(x)',],
|
63 |
+
},
|
64 |
+
{
|
65 |
+
'name' : 'Transcendental',
|
66 |
+
'snippet' : ['Q.transcendental(x)',],
|
67 |
+
},
|
68 |
+
{
|
69 |
+
'name' : 'Irrational',
|
70 |
+
'snippet' : ['Q.irrational(x)',],
|
71 |
+
},
|
72 |
+
{
|
73 |
+
'name' : 'Finite',
|
74 |
+
'snippet' : ['Q.finite(x)',],
|
75 |
+
},
|
76 |
+
{
|
77 |
+
'name' : 'Infinite',
|
78 |
+
'snippet' : ['Q.infinite(x)',],
|
79 |
+
},
|
80 |
+
{
|
81 |
+
'name' : 'Infinitesimal',
|
82 |
+
'snippet' : ['Q.infinitesimal(x)',],
|
83 |
+
},
|
84 |
+
{
|
85 |
+
'name' : 'Negative',
|
86 |
+
'snippet' : ['Q.negative(x)',],
|
87 |
+
},
|
88 |
+
{
|
89 |
+
'name' : 'Nonnegative',
|
90 |
+
'snippet' : ['Q.nonnegative(x)',],
|
91 |
+
},
|
92 |
+
{
|
93 |
+
'name' : 'Positive',
|
94 |
+
'snippet' : ['Q.positive(x)',],
|
95 |
+
},
|
96 |
+
{
|
97 |
+
'name' : 'Nonpositive',
|
98 |
+
'snippet' : ['Q.nonpositive(x)',],
|
99 |
+
},
|
100 |
+
{
|
101 |
+
'name' : 'Hermitian',
|
102 |
+
'snippet' : ['Q.hermitian(x)',],
|
103 |
+
},
|
104 |
+
{
|
105 |
+
'name' : 'Antihermitian',
|
106 |
+
'snippet' : ['Q.antihermitian(x)',],
|
107 |
+
},
|
108 |
+
],
|
109 |
+
});
|