BigBirdΒΆ

OverviewΒΆ

The BigBird model was proposed in Big Bird: Transformers for Longer Sequences by Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it has been shown that applying sparse, global, and random attention approximates full attention, while being computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context, BigBird has shown improved performance on various long document NLP tasks, such as question answering and summarization, compared to BERT or RoBERTa.

The abstract from the paper is the following:

Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.

Tips:

  • For an in-detail explanation on how BigBird’s attention works, see this blog post.

  • BigBird comes with 2 implementations: original_full & block_sparse. For the sequence length < 1024, using original_full is advised as there is no benefit in using block_sparse attention.

  • The code currently uses window size of 3 blocks and 2 global blocks.

  • Sequence length must be divisible by block size.

  • Current implementation supports only ITC.

  • Current implementation doesn’t support num_random_blocks = 0

This model was contributed by vasudevgupta. The original code can be found here.

BigBirdConfigΒΆ

class transformers.BigBirdConfig(vocab_size=50358, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu_new', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=4096, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, sep_token_id=66, attention_type='block_sparse', use_bias=True, rescale_embeddings=False, block_size=64, num_random_blocks=3, gradient_checkpointing=False, **kwargs)[source]ΒΆ

This is the configuration class to store the configuration of a BigBirdModel. It is used to instantiate an BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BigBird google/bigbird-roberta-base architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 50358) – Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling BigBirdModel.

  • hidden_size (int, optional, defaults to 768) – Dimension of the encoder layers and the pooler layer.

  • num_hidden_layers (int, optional, defaults to 12) – Number of hidden layers in the Transformer encoder.

  • num_attention_heads (int, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.

  • intermediate_size (int, optional, defaults to 3072) – Dimension of the β€œintermediate” (i.e., feed-forward) layer in the Transformer encoder.

  • hidden_act (str or function, optional, defaults to "gelu_new") – The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

  • hidden_dropout_prob (float, optional, defaults to 0.1) – The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_probs_dropout_prob (float, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.

  • max_position_embeddings (int, optional, defaults to 4096) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 1024 or 2048 or 4096).

  • type_vocab_size (int, optional, defaults to 2) – The vocabulary size of the token_type_ids passed when calling BigBirdModel.

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) – The epsilon used by the layer normalization layers.

  • use_cache (bool, optional, defaults to True) – Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

  • attention_type (str, optional, defaults to "block_sparse") – Whether to use block sparse attention (with n complexity) as introduced in paper or original attention layer (with n^2 complexity). Possible values are "original_full" and "block_sparse".

  • use_bias (bool, optional, defaults to True) – Whether to use bias in query, key, value.

  • rescale_embeddings (bool, optional, defaults to False) – Whether to rescale embeddings with (hidden_size ** 0.5).

  • block_size (int, optional, defaults to 64) – Size of each block. Useful only when attention_type == "block_sparse".

  • num_random_blocks (int, optional, defaults to 3) – Each query is going to attend these many number of random blocks. Useful only when attention_type == "block_sparse".

  • gradient_checkpointing (bool, optional, defaults to False) – If True, use gradient checkpointing to save memory at the expense of slower backward pass.

  • Example:: –

  • from transformers import BigBirdModel (>>>) –

  • BigBirdConfig –

  • # Initializing a BigBird google/bigbird-roberta-base style configuration (>>>) –

  • configuration = BigBirdConfig() (>>>) –

  • # Initializing a model from the google/bigbird-roberta-base style configuration (>>>) –

  • model = BigBirdModel (>>>) –

  • # Accessing the model configuration (>>>) –

  • configuration = model.config (>>>) –

BigBirdTokenizerΒΆ

class transformers.BigBirdTokenizer(vocab_file, unk_token='<unk>', bos_token='<s>', eos_token='</s>', pad_token='<pad>', sep_token='[SEP]', mask_token='[MASK]', cls_token='[CLS]', sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs)[source]ΒΆ

Construct a BigBird tokenizer. Based on SentencePiece.

This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

Parameters
  • vocab_file (str) – SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.

  • eos_token (str, optional, defaults to "</s>") – The end of sequence token.

  • bos_token (str, optional, defaults to "<s>") – The begin of sequence token.

  • unk_token (str, optional, defaults to "<unk>") – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • pad_token (str, optional, defaults to "<pad>") – The token used for padding, for example when batching sequences of different lengths.

  • sep_token (str, optional, defaults to "[SEP]") – The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • cls_token (str, optional, defaults to "[CLS]") – The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "[MASK]") – The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • sp_model_kwargs (dict, optional) –

    Will be passed to the SentencePieceProcessor.__init__() method. The Python wrapper for SentencePiece can be used, among other things, to set:

    • enable_sampling: Enable subword regularization.

    • nbest_size: Sampling parameters for unigram. Invalid for BPE-Dropout.

      • nbest_size = {0,1}: No sampling is performed.

      • nbest_size > 1: samples from the nbest_size results.

      • nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.

    • alpha: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.

build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None)List[int][source]ΒΆ

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Big Bird sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of input IDs with the appropriate special tokens.

Return type

List[int]

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None)List[int][source]ΒΆ

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If token_ids_1 is None, this method only returns the first portion of the mask (0s).

Parameters
  • token_ids_0 (List[int]) – List of IDs.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of token type IDs according to the given sequence(s).

Return type

List[int]

get_special_tokens_mask(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False)List[int][source]ΒΆ

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

Parameters
  • token_ids_0 (List[int]) – List of IDs.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) – Whether or not the token list is already formatted with special tokens for the model.

Returns

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Return type

List[int]

save_vocabulary(save_directory: str, filename_prefix: Optional[str] = None)Tuple[str][source]ΒΆ

Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use _save_pretrained() to save the whole state of the tokenizer.

Parameters
  • save_directory (str) – The directory in which to save the vocabulary.

  • filename_prefix (str, optional) – An optional prefix to add to the named of the saved files.

Returns

Paths to the files saved.

Return type

Tuple(str)

BigBirdTokenizerFastΒΆ

class transformers.BigBirdTokenizerFast(vocab_file=None, tokenizer_file=None, unk_token='<unk>', bos_token='<s>', eos_token='</s>', pad_token='<pad>', sep_token='[SEP]', mask_token='[MASK]', cls_token='[CLS]', **kwargs)[source]ΒΆ

Construct a β€œfast” BigBird tokenizer (backed by HuggingFace’s tokenizers library). Based on Unigram. This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods

Parameters
  • vocab_file (str) – SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.

  • bos_token (str, optional, defaults to "[CLS]") –

    The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    Note

    When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the cls_token.

  • eos_token (str, optional, defaults to "[SEP]") – The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the sep_token.

  • unk_token (str, optional, defaults to "<unk>") – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • sep_token (str, optional, defaults to "[SEP]") – The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (str, optional, defaults to "<pad>") – The token used for padding, for example when batching sequences of different lengths.

  • cls_token (str, optional, defaults to "[CLS]") – The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "[MASK]") – The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None)List[int][source]ΒΆ

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An BigBird sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

list of input IDs with the appropriate special tokens.

Return type

List[int]

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None)List[int][source]ΒΆ

Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

if token_ids_1 is None, only returns the first portion of the mask (0s).

Parameters
  • token_ids_0 (List[int]) – List of ids.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of token type IDs according to the given sequence(s).

Return type

List[int]

get_special_tokens_mask(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False)List[int][source]ΒΆ

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

Parameters
  • token_ids_0 (List[int]) – List of ids.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) – Set to True if the token list is already formatted with special tokens for the model

Returns

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Return type

List[int]

save_vocabulary(save_directory: str, filename_prefix: Optional[str] = None)Tuple[str][source]ΒΆ

Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use _save_pretrained() to save the whole state of the tokenizer.

Parameters
  • save_directory (str) – The directory in which to save the vocabulary.

  • filename_prefix (str, optional) – An optional prefix to add to the named of the saved files.

Returns

Paths to the files saved.

Return type

Tuple(str)

slow_tokenizer_classΒΆ

alias of transformers.models.big_bird.tokenization_big_bird.BigBirdTokenizer

BigBird specific outputsΒΆ

class transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput(loss: Optional[torch.FloatTensor] = None, prediction_logits: Optional[torch.FloatTensor] = None, seq_relationship_logits: Optional[torch.FloatTensor] = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ

Output type of BigBirdForPreTraining.

Parameters
  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

BigBirdModelΒΆ

class transformers.BigBirdModel(config, add_pooling_layer=True)[source]ΒΆ

The bare BigBird Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set to True. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder argument and add_cross_attention set to True; an encoder_hidden_states is then expected as an input to the forward pass.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) – Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

Returns

A BaseModelOutputWithPoolingAndCrossAttentions or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True and config.add_cross_attention=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and optionally if config.is_encoder_decoder=True 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Return type

BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, BigBirdModel
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = BigBirdModel.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BigBirdForPreTrainingΒΆ

class transformers.BigBirdForPreTraining(config)[source]ΒΆ
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForPreTraining forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape batch_size, sequence_length) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape batch_size, sequence_length, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape batch_size, sequence_length, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape batch_size, sequence_length, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • next_sentence_label (torch.LongTensor of shape (batch_size,), optional) –

    Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be added to masked_lm loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]:

    • 0 indicates sequence B is a continuation of sequence A,

    • 1 indicates sequence B is a random sequence.

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

A BigBirdForPreTrainingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForPreTraining
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('bigbird-roberta-base')
>>> model = BigBirdForPreTraining.from_pretrained('bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

Return type

BigBirdForPreTrainingOutput or tuple(torch.FloatTensor)

BigBirdForCausalLMΒΆ

class transformers.BigBirdForCausalLM(config)[source]ΒΆ

BigBird Model with a language modeling head on top for CLM fine-tuning. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForCausalLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape batch_size, sequence_length) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape batch_size, sequence_length, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape batch_size, sequence_length, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape batch_size, sequence_length, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) – Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels n [0, ..., config.vocab_size].

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

Returns

A CausalLMOutputWithCrossAttentions or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of torch.FloatTensor tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True.

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForCausalLM, BigBirdConfig
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> config = BigBirdConfig.from_pretrained("google/bigbird-base")
>>> config.is_decoder = True
>>> model = BigBirdForCausalLM.from_pretrained('google/bigbird-roberta-base', config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

Return type

CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

BigBirdForMaskedLMΒΆ

class transformers.BigBirdForMaskedLM(config)[source]ΒΆ

BigBird Model with a language modeling head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

Returns

A MaskedLMOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Masked language modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MaskedLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForMaskedLM
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = BigBirdForMaskedLM.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForSequenceClassificationΒΆ

class transformers.BigBirdForSequenceClassification(config)[source]ΒΆ

BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape batch_size, sequence_length) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape batch_size, sequence_length, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape batch_size, sequence_length, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape batch_size, sequence_length, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A SequenceClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

SequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForSequenceClassification
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = BigBirdForSequenceClassification.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForMultipleChoiceΒΆ

class transformers.BigBirdForMultipleChoice(config)[source]ΒΆ

BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForMultipleChoice forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape batch_size, num_choices, sequence_length) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape batch_size, num_choices, sequence_length, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape batch_size, num_choices, sequence_length, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape batch_size, num_choices, sequence_length, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

A MultipleChoiceModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MultipleChoiceModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForMultipleChoice
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = BigBirdForMultipleChoice.from_pretrained('google/bigbird-roberta-base')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors='pt', padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForTokenClassificationΒΆ

class transformers.BigBirdForTokenClassification(config)[source]ΒΆ

BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForTokenClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

A TokenClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TokenClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForTokenClassification
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = BigBirdForTokenClassification.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForQuestionAnsweringΒΆ

class transformers.BigBirdForQuestionAnswering(config, add_pooling_layer=False)[source]ΒΆ

BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, question_lengths=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BigBirdForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

A BigBirdForQuestionAnsweringModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) – Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) – Span-end scores (before SoftMax).

  • pooler_output (torch.FloatTensor of shape (batch_size, 1)) – pooler output from BigBigModel

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

BigBirdForQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, BigBirdForQuestionAnswering
>>> import torch

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-base-trivia-itc')
>>> model = BigBirdForQuestionAnswering.from_pretrained('google/bigbird-base-trivia-itc')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='pt')
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

FlaxBigBirdModelΒΆ

class transformers.FlaxBigBirdModel(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBigBirdPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxBaseModelOutputWithPooling or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • last_hidden_state (jax_xla.DeviceArray of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (jax_xla.DeviceArray of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdModel

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdModel.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxBigBirdForPreTrainingΒΆ

class transformers.FlaxBigBirdForPreTraining(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

BigBird Model with two heads on top as done during the pretraining: a masked language modeling head and a next sentence prediction (classification) head.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBigBirdPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxBigBirdForPreTrainingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • prediction_logits (jax_xla.DeviceArray of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (jax_xla.DeviceArray of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxBigBirdForPreTrainingOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdForPreTraining

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdForPreTraining.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FlaxBigBirdForMaskedLMΒΆ

class transformers.FlaxBigBirdForMaskedLM(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

BigBird Model with a language modeling head on top.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBigBirdPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxMaskedLMOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxMaskedLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdForMaskedLM

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdForMaskedLM.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors='jax')

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForSequenceClassificationΒΆ

class transformers.FlaxBigBirdForSequenceClassification(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBigBirdPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxSequenceClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdForSequenceClassification

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdForSequenceClassification.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')

>>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits

FlaxBigBirdForMultipleChoiceΒΆ

class transformers.FlaxBigBirdForMultipleChoice(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBigBirdPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxMultipleChoiceModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdForMultipleChoice

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdForMultipleChoice.from_pretrained('google/bigbird-roberta-base')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors='jax', padding=True)
>>> outputs = model(**{k: v[None, :] for k,v in encoding.items()})

>>> logits = outputs.logits

FlaxBigBirdForTokenClassificationΒΆ

class transformers.FlaxBigBirdForTokenClassification(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBigBirdPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxTokenClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdForTokenClassification

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdForTokenClassification.from_pretrained('google/bigbird-roberta-base')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForQuestionAnsweringΒΆ

class transformers.FlaxBigBirdForQuestionAnswering(config: transformers.models.big_bird.configuration_big_bird.BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BigBirdConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, question_lengths=None, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)[source]ΒΆ

The FlaxBigBirdForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BigBirdTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxBigBirdForQuestionAnsweringModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BigBirdConfig) and inputs.

  • start_logits (jax_xla.DeviceArray of shape (batch_size, sequence_length)) – Span-start scores (before SoftMax).

  • end_logits (jax_xla.DeviceArray of shape (batch_size, sequence_length)) – Span-end scores (before SoftMax).

  • pooled_output (jax_xla.DeviceArray of shape (batch_size, hidden_size)) – pooled_output returned by FlaxBigBirdModel.

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxBigBirdForQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BigBirdTokenizer, FlaxBigBirdForQuestionAnswering

>>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
>>> model = FlaxBigBirdForQuestionAnswering.from_pretrained('google/bigbird-roberta-base')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='jax')

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits