HubertΒΆ
OverviewΒΆ
Hubert was proposed in HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
The abstract from the paper is the following:
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
Tips:
Hubert is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
Hubert model was fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using
Wav2Vec2CTCTokenizer
.
This model was contributed by patrickvonplaten.
HubertConfigΒΆ
-
class
transformers.
HubertConfig
(vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.1, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-05, feat_extract_norm='group', feat_extract_activation='gelu', conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_feature_prob=0.0, mask_feature_length=10, ctc_loss_reduction='sum', ctc_zero_infinity=False, gradient_checkpointing=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs)[source]ΒΆ This is the configuration class to store the configuration of a
HubertModel
. It is used to instantiate an Hubert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Hubert facebook/hubert-base-ls960 architecture.Configuration objects inherit from
PretrainedConfig
and can be used to control the model outputs. Read the documentation fromPretrainedConfig
for more information.- Parameters
vocab_size (
int
, optional, defaults to 32) β Vocabulary size of the Hubert model. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingHubertModel
. Vocabulary size of the model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method ofHubertModel
.hidden_size (
int
, optional, defaults to 768) β Dimensionality of the encoder layers and the pooler layer.num_hidden_layers (
int
, optional, defaults to 12) β Number of hidden layers in the Transformer encoder.num_attention_heads (
int
, optional, defaults to 12) β Number of attention heads for each attention layer in the Transformer encoder.intermediate_size (
int
, optional, defaults to 3072) β Dimensionality of the βintermediateβ (i.e., feed-forward) layer in the Transformer encoder.hidden_act (
str
orfunction
, optional, defaults to"gelu"
) β The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported.hidden_dropout_prob (
float
, optional, defaults to 0.1) β The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.attention_probs_dropout_prob (
float
, optional, defaults to 0.1) β The dropout ratio for the attention probabilities.initializer_range (
float
, optional, defaults to 0.02) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) β The epsilon used by the layer normalization layers.feat_extract_norm (
str
, optional, defaults to"group"
) β The norm to be applied to 1D convolutional layers in feature extractor. One of"group"
for group normalization of only the first 1D convolutional layer or"layer"
for layer normalization of all 1D convolutional layers.feat_extract_dropout (
float
, optional, defaults to 0.0) β The dropout probabilitiy for all 1D convolutional layers in feature extractor.feat_extract_activation (
str, `optional
, defaults to"gelu"
) β The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported.conv_dim (
Tuple[int]
, optional, defaults to(512, 512, 512, 512, 512, 512, 512)
) β A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature extractor. The length of conv_dim defines the number of 1D convolutional layers.conv_stride (
Tuple[int]
, optional, defaults to(5, 2, 2, 2, 2, 2, 2)
) β A tuple of integers defining the stride of each 1D convolutional layer in the feature extractor. The length of conv_stride defines the number of convolutional layers and has to match the the length of conv_dim.conv_kernel (
Tuple[int]
, optional, defaults to(10, 3, 3, 3, 3, 3, 3)
) β A tuple of integers defining the kernel size of each 1D convolutional layer in the feature extractor. The length of conv_kernel defines the number of convolutional layers and has to match the the length of conv_dim.conv_bias (
bool
, optional, defaults toFalse
) β Whether the 1D convolutional layers have a bias.num_conv_pos_embeddings (
int
, optional, defaults to 128) β Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer.num_conv_pos_embedding_groups (
int
, optional, defaults to 16) β Number of groups of 1D convolutional positional embeddings layer.do_stable_layer_norm (
bool
, optional, defaults toFalse
) β Whether do apply stable layer norm architecture of the Transformer encoder.do_stable_layer_norm is True
corresponds to applying layer norm before the attention layer, whereasdo_stable_layer_norm is False
corresponds to applying layer norm after the attention layer.apply_spec_augment (
bool
, optional, defaults toTrue
) β Whether to apply SpecAugment data augmentation to the outputs of the feature extractor. For reference see SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.mask_time_prob (
float
, optional, defaults to 0.05) β Propability of each feature vector along the time axis to be chosen as the start of the vector span to be masked. Approximatelymask_time_prob * sequence_length // mask_time_length
feature vectors will be masked along the time axis. This is only relevant ifapply_spec_augment is True
.mask_time_length (
int
, optional, defaults to 10) β Length of vector span along the time axis.mask_feature_prob (
float
, optional, defaults to 0.0) β Propability of each feature vector along the feature axis to be chosen as the start of the vector span to be masked. Approximatelymask_time_prob * hidden_size // mask_time_length
feature vectors will be masked along the time axis. This is only relevant ifapply_spec_augment is True
.mask_feature_length (
int
, optional, defaults to 10) β Length of vector span along the feature axis.ctc_loss_reduction (
str
, optional, defaults to"sum"
) β Specifies the reduction to apply to the output oftorch.nn.CTCLoss
. Only relevant when training an instance ofHubertForCTC
.ctc_zero_infinity (
bool
, optional, defaults toFalse
) β Whether to zero infinite losses and the associated gradients oftorch.nn.CTCLoss
. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance ofHubertForCTC
.gradient_checkpointing (
bool
, optional, defaults toFalse
) β If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example:
>>> from transformers import HubertModel, HubertConfig >>> # Initializing a Hubert facebook/hubert-base-ls960 style configuration >>> configuration = HubertConfig() >>> # Initializing a model from the facebook/hubert-base-ls960 style configuration >>> model = HubertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
HubertModelΒΆ
-
class
transformers.
HubertModel
(config: transformers.models.hubert.configuration_hubert.HubertConfig)[source]ΒΆ The bare Hubert Model transformer outputting raw hidden-states without any specific head on top. Hubert was proposed in HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
HubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_values, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
HubertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, theWav2Vec2Processor
should be used for padding and conversion into a tensor of type torch.FloatTensor. Seetransformers.Wav2Vec2Processor.__call__()
for details.attention_mask (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing convolution and attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
Warning
attention_mask
should only be passed if the corresponding processor hasconfig.return_attention_mask == True
. For all models whose processor hasconfig.return_attention_mask == False
, such as hubert-base,attention_mask
should not be passed to avoid degraded performance when doing batched inference. For such modelsinput_values
should simply be padded with 0 and passed withoutattention_mask
. Be aware that these models also yield slightly different results depending on whetherinput_values
is padded or not.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
BaseModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (HubertConfig
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import Wav2Vec2Processor, HubertModel >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state
- Return type
BaseModelOutput
ortuple(torch.FloatTensor)
HubertForCTCΒΆ
-
class
transformers.
HubertForCTC
(config)[source]ΒΆ Hubert Model with a language modeling head on top for Connectionist Temporal Classification (CTC). Hubert was proposed in HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
HubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)[source]ΒΆ The
HubertForCTC
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, theWav2Vec2Processor
should be used for padding and conversion into a tensor of type torch.FloatTensor. Seetransformers.Wav2Vec2Processor.__call__()
for details.attention_mask (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing convolution and attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
Warning
attention_mask
should only be passed if the corresponding processor hasconfig.return_attention_mask == True
. For all models whose processor hasconfig.return_attention_mask == False
, such as hubert-base,attention_mask
should not be passed to avoid degraded performance when doing batched inference. For such modelsinput_values
should simply be padded with 0 and passed withoutattention_mask
. Be aware that these models also yield slightly different results depending on whetherinput_values
is padded or not.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, target_length)
, optional) β Labels for connectionist temporal classification. Note thattarget_length
has to be smaller or equal to the sequence length of the output logits. Indices are selected in[-100, 0, ..., config.vocab_size - 1]
. All labels set to-100
are ignored (masked), the loss is only computed for labels in[0, ..., config.vocab_size - 1]
.
- Returns
A
CausalLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (HubertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Language modeling loss (for next-token prediction).logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> import torch >>> from transformers import Wav2Vec2Processor, HubertForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = torch.argmax(logits, dim=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # compute loss >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" >>> # wrap processor as target processor to encode labels >>> with processor.as_target_processor(): ... labels = processor(target_transcription, return_tensors="pt").input_ids >>> loss = model(input_values, labels=labels).loss
- Return type
CausalLMOutput
ortuple(torch.FloatTensor)
TFHubertModelΒΆ
-
class
transformers.
TFHubertModel
(*args, **kwargs)[source]ΒΆ The bare TFHubert Model transformer outputing raw hidden-states without any specific head on top.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_values
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_values, attention_mask])
ormodel([input_values, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_values": input_values, "token_type_ids": token_type_ids})
- Parameters
config (
HubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_values: tensorflow.python.framework.ops.Tensor, attention_mask: Optional[tensorflow.python.framework.ops.Tensor] = None, token_type_ids: Optional[tensorflow.python.framework.ops.Tensor] = None, position_ids: Optional[tensorflow.python.framework.ops.Tensor] = None, head_mask: Optional[tensorflow.python.framework.ops.Tensor] = None, inputs_embeds: Optional[tensorflow.python.framework.ops.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False) → Union[transformers.modeling_tf_outputs.TFBaseModelOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ The
TFHubertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape({0})
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape({0})
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
np.ndarray
ortf.Tensor
of shape({0})
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
np.ndarray
ortf.Tensor
of shape({0})
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
np.ndarray
ortf.Tensor
of shape({0}, hidden_size)
, optional) β Optionally, instead of passinginput_values
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_values
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFBaseModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (HubertConfig
) and inputs.last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(tf.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import Wav2Vec2Processor, TFHubertModel >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-base-960h") >>> model = TFHubertModel.from_pretrained("facebook/hubert-base-960h") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state
- Return type
TFBaseModelOutput
ortuple(tf.Tensor)
TFHubertForCTCΒΆ
-
class
transformers.
TFHubertForCTC
(*args, **kwargs)[source]ΒΆ TFHubert Model with a language modeling head on top for Connectionist Temporal Classification (CTC).
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_values
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_values, attention_mask])
ormodel([input_values, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_values": input_values, "token_type_ids": token_type_ids})
- Parameters
config (
HubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_values: tensorflow.python.framework.ops.Tensor, attention_mask: Optional[tensorflow.python.framework.ops.Tensor] = None, token_type_ids: Optional[tensorflow.python.framework.ops.Tensor] = None, position_ids: Optional[tensorflow.python.framework.ops.Tensor] = None, head_mask: Optional[tensorflow.python.framework.ops.Tensor] = None, inputs_embeds: Optional[tensorflow.python.framework.ops.Tensor] = None, output_attentions: Optional[bool] = None, labels: Optional[tensorflow.python.framework.ops.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False) → Union[transformers.modeling_tf_outputs.TFCausalLMOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ The
TFHubertForCTC
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
Dict[str, tf.Tensor]
orDict[str, np.ndarray]
and each example must have the shape({0})
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape({0})
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
np.ndarray
ortf.Tensor
of shape({0})
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
np.ndarray
ortf.Tensor
of shape({0})
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
np.ndarray
ortf.Tensor
of shape({0}, hidden_size)
, optional) β Optionally, instead of passinginput_values
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_values
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensor
ornp.ndarray
of shape(batch_size, sequence_length)
, optional) β Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_values
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
- Returns
A
TFCausalLMOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (HubertConfig
) and inputs.loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of non-masked labels, returned whenlabels
is provided) β Language modeling loss (for next-token prediction).logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> import tensorflow as tf >>> from transformers import Wav2Vec2Processor, TFHubertForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-base-960h") >>> model = TFHubertForCTC.from_pretrained("facebook/hubert-base-960h") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = tf.argmax(logits, axis=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # compute loss >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" >>> # wrap processor as target processor to encode labels >>> with processor.as_target_processor(): ... labels = processor(transcription, return_tensors="tf").input_values >>> loss = model(input_values, labels=labels).loss
- Return type
TFCausalLMOutput
ortuple(tf.Tensor)