Utilities for Generation¶
This page lists all the utility functions used by generate(),
greedy_search(),
sample(),
beam_search(),
beam_sample(), and
group_beam_search().
Most of those are only useful if you are studying the code of the generate methods in the library.
Generate Outputs¶
The output of generate() is an instance of a subclass of
ModelOutput. This output is a data structure containing all the information returned
by generate(), but that can also be used as tuple or dictionary.
Here’s an example:
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
The generation_output object is a GreedySearchDecoderOnlyOutput, as we can
see in the documentation of that class below, it means it has the following attributes:
sequences: the generated sequences of tokensscores(optional): the prediction scores of the language modelling head, for each generation stephidden_states(optional): the hidden states of the model, for each generation stepattentions(optional): the attention weights of the model, for each generation step
Here we have the scores since we passed along output_scores=True, but we don’t have hidden_states and
attentions because we didn’t pass output_hidden_states=True or output_attentions=True.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get None. Here for instance generation_output.scores are all the generated prediction scores of the
language modeling head, and generation_output.attentions is None.
When using our generation_output object as a tuple, it only keeps the attributes that don’t have None values.
Here, for instance, it has two elements, loss then logits, so
generation_output[:2]
will return the tuple (generation_output.sequences, generation_output.scores) for instance.
When using our generation_output object as a dictionary, it only keeps the attributes that don’t have None
values. Here, for instance, it has two keys that are sequences and scores.
We document here all output types.
GreedySearchOutput¶
- 
class 
transformers.generation_utils.GreedySearchDecoderOnlyOutput(sequences: Optional[torch.LongTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of decoder-only generation models using greedy search.
- Parameters
 sequences (
torch.LongTensorof shape(batch_size, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step.(max_length-input_ids.shape[-1],)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size, config.vocab_size)).attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, num_heads, generated_length, sequence_length).hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, generated_length, hidden_size).
- 
class 
transformers.generation_utils.GreedySearchEncoderDecoderOutput(sequences: Optional[torch.LongTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None, encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
- Parameters
 sequences (
torch.LongTensorof shape(batch_size, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step.(max_length-1,)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size, config.vocab_size)).encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer of the decoder) of shape(batch_size, num_heads, sequence_length, sequence_length).encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).decoder_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, num_heads, generated_length, sequence_length).cross_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, num_heads, generated_length, sequence_length).decoder_hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, generated_length, hidden_size).
- 
class 
transformers.generation_flax_utils.FlaxGreedySearchOutput(sequences: Optional[jaxlib.xla_extension.DeviceArray] = None)[source]¶ Flax Base class for outputs of decoder-only generation models using greedy search.
- Parameters
 sequences (
jax_xla.DeviceArrayof shape(batch_size, max_length)) – The generated sequences.
- 
replace(**updates)¶ “Returns a new object replacing the specified fields with new values.
SampleOutput¶
- 
class 
transformers.generation_utils.SampleDecoderOnlyOutput(sequences: Optional[torch.LongTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of decoder-only generation models using sampling.
- Parameters
 sequences (
torch.LongTensorof shape(batch_size*num_return_sequences, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step.(max_length-input_ids.shape[-1],)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size*num_return_sequences, config.vocab_size)).attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(num_return_sequences*batch_size, num_heads, generated_length, sequence_length).hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(num_return_sequences*batch_size, generated_length, hidden_size).
- 
class 
transformers.generation_utils.SampleEncoderDecoderOutput(sequences: Optional[torch.LongTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None, encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
- Parameters
 sequences (
torch.LongTensorof shape(batch_size*num_return_sequences, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step.(max_length-1,)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size*num_return_sequences, config.vocab_size)).encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer of the decoder) of shape(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length).encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size*num_return_sequences, sequence_length, hidden_size).decoder_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_return_sequences, num_heads, generated_length, sequence_length).cross_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, num_heads, generated_length, sequence_length).decoder_hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_return_sequences, generated_length, hidden_size).
- 
class 
transformers.generation_flax_utils.FlaxSampleOutput(sequences: Optional[jaxlib.xla_extension.DeviceArray] = None)[source]¶ Flax Base class for outputs of decoder-only generation models using sampling.
- Parameters
 sequences (
jax_xla.DeviceArrayof shape(batch_size, max_length)) – The generated sequences.
- 
replace(**updates)¶ “Returns a new object replacing the specified fields with new values.
BeamSearchOutput¶
- 
class 
transformers.generation_utils.BeamSearchDecoderOnlyOutput(sequences: Optional[torch.LongTensor] = None, sequences_scores: Optional[torch.FloatTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of decoder-only generation models using beam search.
- Parameters
 sequences (
torch.LongTensorof shape(batch_size*num_return_sequences, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.sequences_scores (
torch.FloatTensorof shape(batch_size*num_return_sequences), optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Final beam scores of the generatedsequences.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam .(max_length-input_ids.shape[-1],)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size*num_beams*num_return_sequences, config.vocab_size)).attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams, num_heads, generated_length, sequence_length).hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams*num_return_sequences, generated_length, hidden_size).
- 
class 
transformers.generation_utils.BeamSearchEncoderDecoderOutput(sequences: Optional[torch.LongTensor] = None, sequences_scores: Optional[torch.FloatTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None, encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
- Parameters
 sequences (
torch.LongTensorof shape(batch_size*num_return_sequences, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.sequences_scores (
torch.FloatTensorof shape(batch_size*num_return_sequences), optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Final beam scores of the generatedsequences.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam .(max_length-1,)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size*num_beams, config.vocab_size)).attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) –encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer of the decoder) of shape(batch_size, num_heads, sequence_length, sequence_length).encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size).decoder_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams*num_return_sequences, num_heads, generated_length, sequence_length).cross_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, num_heads, generated_length, sequence_length).decoder_hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams*num_return_sequences, generated_length, hidden_size).
BeamSampleOutput¶
- 
class 
transformers.generation_utils.BeamSampleDecoderOnlyOutput(sequences: Optional[torch.LongTensor] = None, sequences_scores: Optional[torch.FloatTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of decoder-only generation models using beam sample.
- Parameters
 sequences (
torch.LongTensorof shape(batch_size*num_return_sequences, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.sequences_scores (
torch.FloatTensorof shape(batch_size * num_return_sequence), optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Final beam scores of the generatedsequences.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam .(max_length-input_ids.shape[-1],)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size*num_beams*num_return_sequences, config.vocab_size)).attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams, num_heads, generated_length, sequence_length).hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams, generated_length, hidden_size).
- 
class 
transformers.generation_utils.BeamSampleEncoderDecoderOutput(sequences: Optional[torch.LongTensor] = None, sequences_scores: Optional[torch.FloatTensor] = None, scores: Optional[Tuple[torch.FloatTensor]] = None, encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None, encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None, decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None)[source]¶ Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
- Parameters
 sequences (
torch.LongTensorof shape(batch_size*num_beams, sequence_length)) – The generated sequences. The second dimension (sequence_length) is either equal tomax_lengthor shorter if all batches finished early due to theeos_token_id.sequences_scores (
torch.FloatTensorof shape(batch_size * num_return_sequence), optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Final beam scores of the generatedsequences.scores (
tuple(torch.FloatTensor)optional, returned whenoutput_scores=Trueis passed or whenconfig.output_scores=True) – Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam .(max_length-1,)-shaped tuple oftorch.FloatTensorwith each tensor of shape(batch_size*num_beams, config.vocab_size)).encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer of the decoder) of shape(batch_size, num_heads, sequence_length, sequence_length).encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size*num_beams, sequence_length, hidden_size).decoder_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams, num_heads, generated_length, sequence_length).cross_attentions (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_attentions=Trueis passed orconfig.output_attentions=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size, num_heads, generated_length, sequence_length).decoder_hidden_states (
tuple(tuple(torch.FloatTensor)), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) oftorch.FloatTensorof shape(batch_size*num_beams, generated_length, hidden_size).
LogitsProcessor¶
A LogitsProcessor can be used to modify the prediction scores of a language model head for
generation.
- 
class 
transformers.LogitsProcessor[source]¶ Abstract base class for all logit processors that can be applied during generation.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Args:
 - input_ids (
torch.LongTensorof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search
- kwargs:
 Additional logits processor specific kwargs.
- input_ids (
 - Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
 
- 
class 
transformers.LogitsProcessorList(iterable=(), /)[source]¶ This class can be used to create a list of
LogitsProcessororLogitsWarperto subsequently process ascoresinput tensor. This class inherits from list and adds a specific __call__ method to apply eachLogitsProcessororLogitsWarperto the inputs.- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs – Additional logits processor specific kwargs.
- Returns
 The processed prediction scores.
- Return type
 torch.FloatTensorof shape(batch_size, config.vocab_size)
- 
 
- 
class 
transformers.LogitsWarper[source]¶ Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Args:
 - input_ids (
torch.LongTensorof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search
- kwargs:
 Additional logits processor specific kwargs.
- input_ids (
 - Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for warping logits.
- 
 
- 
class 
transformers.MinLengthLogitsProcessor(min_length: int, eos_token_id: int)[source]¶ transformers.LogitsProcessorenforcing a min-length by setting EOS probability to 0.- Parameters
 min_length (
int) – The minimum length below which the score ofeos_token_idis set to-float("Inf").eos_token_id (
int) – The id of the end-of-sequence token.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.TemperatureLogitsWarper(temperature: float)[source]¶ transformers.LogitsWarperfor temperature (exponential scaling output probability distribution).- Parameters
 temperature (
float) – The value used to module the logits distribution.
- 
__call__(input_ids: torch.Tensor, scores: torch.Tensor) → torch.Tensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for warping logits.
- 
class 
transformers.RepetitionPenaltyLogitsProcessor(penalty: float)[source]¶ transformers.LogitsProcessorenforcing an exponential penalty on repeated sequences.- Parameters
 repetition_penalty (
float) – The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.TopPLogitsWarper(top_p: float, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]¶ transformers.LogitsWarperthat performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.- Parameters
 top_p (
float) – If set to < 1, only the most probable tokens with probabilities that add up totop_por higher are kept for generation.filter_value (
float, optional, defaults to-float("Inf")) – All filtered values will be set to this float value.min_tokens_to_keep (
int, optional, defaults to 1) – Minimum number of tokens that cannot be filtered.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for warping logits.
- 
class 
transformers.TopKLogitsWarper(top_k: int, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]¶ transformers.LogitsWarperthat performs top-k, i.e. restricting to the k highest probability elements.- Parameters
 top_k (
int) – The number of highest probability vocabulary tokens to keep for top-k-filtering.filter_value (
float, optional, defaults to-float("Inf")) – All filtered values will be set to this float value.min_tokens_to_keep (
int, optional, defaults to 1) – Minimum number of tokens that cannot be filtered.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for warping logits.
- 
class 
transformers.NoRepeatNGramLogitsProcessor(ngram_size: int)[source]¶ transformers.LogitsProcessorthat enforces no repetition of n-grams. See Fairseq.- Parameters
 ngram_size (
int) – All ngrams of sizengram_sizecan only occur once.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.NoBadWordsLogitsProcessor(bad_words_ids: Iterable[Iterable[int]], eos_token_id: int)[source]¶ transformers.LogitsProcessorthat enforces that specified sequences will never be sampled.- Parameters
 bad_words_ids (
List[List[int]]) – List of list of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, usetokenizer(bad_word, add_prefix_space=True).input_ids.eos_token_id (
int) – The id of the end-of-sequence token.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int)[source]¶ transformers.LogitsProcessorthat enforces constrained generation and is useful for prefix-conditioned constrained generation. See Autoregressive Entity Retrieval for more information.- Parameters
 prefix_allowed_tokens_fn – (
Callable[[int, torch.Tensor], List[int]]): This function constraints the beam search to allowed tokens only at each step. This function takes 2 argumentsinputs_idsand the batch IDbatch_id. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokensinputs_idsand the batch IDbatch_id.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.HammingDiversityLogitsProcessor(diversity_penalty: float, num_beams: int, num_beam_groups: int)[source]¶ transformers.LogitsProcessorthat enforces diverse beam search. Note that this logits processor is only effective fortransformers.PreTrainedModel.group_beam_search(). See Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models for more details.- Parameters
 diversity_penalty (
float) – This value is subtracted from a beam’s score if it generates a token same as any beam from other group at a particular time. Note thatdiversity_penaltyis only effective ifgroup beam searchis enabled.num_beams (
int) – Number of beams used for group beam search. See this paper for more details.num_beam_groups (
int) – Number of groups to dividenum_beamsinto in order to ensure diversity among different groups of beams. See this paper for more details.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor, current_tokens: torch.LongTensor, beam_group_idx: int) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.ForcedBOSTokenLogitsProcessor(bos_token_id: int)[source]¶ LogitsProcessorthat enforces the specified token as the first generated token.- Parameters
 bos_token_id (
int) – The id of the token to force as the first generated token.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.ForcedEOSTokenLogitsProcessor(max_length: int, eos_token_id: int)[source]¶ LogitsProcessorthat enforces the specified token as the last generated token whenmax_lengthis reached.- Parameters
 max_length (
int) – The maximum length of the sequence to be generated.eos_token_id (
int) – The id of the token to force as the last generated token whenmax_lengthis reached.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
class 
transformers.InfNanRemoveLogitsProcessor[source]¶ LogitsProcessorthat removes allnanandinfvalues to avoid the generation method to fail. Note that using the logits processor should only be used if necessary since it can slow down the generation method.max_lengthis reached.- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
- 
 
- 
class 
transformers.FlaxLogitsProcessor[source]¶ Abstract base class for all logit processors that can be applied during generation.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray) → jaxlib.xla_extension.DeviceArray[source]¶ - Args:
 - input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search
- kwargs:
 Additional logits processor specific kwargs.
- input_ids (
 - Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for processing logits.
- 
 
- 
class 
transformers.FlaxLogitsProcessorList(iterable=(), /)[source]¶ This class can be used to create a list of
FlaxLogitsProcessororFlaxLogitsWarperto subsequently process ascoresinput tensor. This class inherits from list and adds a specific __call__ method to apply eachFlaxLogitsProcessororFlaxLogitsWarperto the inputs.- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int, **kwargs) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs – Additional logits processor specific kwargs.
- Returns
 The processed prediction scores.
- Return type
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)
- 
 
- 
class 
transformers.FlaxLogitsWarper[source]¶ Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray) → jaxlib.xla_extension.DeviceArray[source]¶ - Args:
 - input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search
- kwargs:
 Additional logits processor specific kwargs.
- input_ids (
 - Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for warping logits.
- 
 
- 
class 
transformers.FlaxTemperatureLogitsWarper(temperature: float)[source]¶ transformers.LogitsWarperfor temperature (exponential scaling output probability distribution).- Parameters
 temperature (
float) – The value used to module the logits distribution.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for warping logits.
- 
class 
transformers.FlaxTopPLogitsWarper(top_p: float, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]¶ transformers.LogitsWarperthat performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.- Parameters
 top_p (
float) – If set to < 1, only the most probable tokens with probabilities that add up totop_por higher are kept for generation.filter_value (
float, optional, defaults to-float("Inf")) – All filtered values will be set to this float value.min_tokens_to_keep (
int, optional, defaults to 1) – Minimum number of tokens that cannot be filtered.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for warping logits.
- 
class 
transformers.FlaxTopKLogitsWarper(top_k: int, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]¶ transformers.LogitsWarperthat performs top-k, i.e. restricting to the k highest probability elements.- Parameters
 top_k (
int) – The number of highest probability vocabulary tokens to keep for top-k-filtering.filter_value (
float, optional, defaults to-float("Inf")) – All filtered values will be set to this float value.min_tokens_to_keep (
int, optional, defaults to 1) – Minimum number of tokens that cannot be filtered.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for warping logits.
- 
class 
transformers.FlaxForcedBOSTokenLogitsProcessor(bos_token_id: int)[source]¶ FlaxLogitsProcessorthat enforces the specified token as the first generated token.- Parameters
 bos_token_id (
int) – The id of the token to force as the first generated token.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for processing logits.
- 
class 
transformers.FlaxForcedEOSTokenLogitsProcessor(max_length: int, eos_token_id: int)[source]¶ FlaxLogitsProcessorthat enforces the specified token as the last generated token whenmax_lengthis reached.- Parameters
 max_length (
int) – The maximum length of the sequence to be generated.eos_token_id (
int) – The id of the token to force as the last generated token whenmax_lengthis reached.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for processing logits.
- 
class 
transformers.FlaxMinLengthLogitsProcessor(min_length: int, eos_token_id: int)[source]¶ transformers.FlaxLogitsProcessorenforcing a min-length by setting EOS probability to 0.- Parameters
 min_length (
int) – The minimum length below which the score ofeos_token_idis set to-float("Inf").eos_token_id (
int) – The id of the end-of-sequence token.
- 
__call__(input_ids: jaxlib.xla_extension.DeviceArray, scores: jaxlib.xla_extension.DeviceArray, cur_len: int) → jaxlib.xla_extension.DeviceArray[source]¶ - Parameters
 input_ids (
jax_xla.DeviceArrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
jax_xla.DeviceArrayof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam searchkwargs –
Additional logits processor specific kwargs.
- Return:
 jax_xla.DeviceArrayof shape(batch_size, config.vocab_size): The processed prediction scores.
Flax method for processing logits.
StoppingCriteria¶
A StoppingCriteria can be used to change when to stop generation (other than EOS token).
- 
class 
transformers.StoppingCriteria[source]¶ Abstract base class for all stopping criteria that can be applied during generation.
- 
__call__(input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs) → bool[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs – Additional stopping criteria specific kwargs.
- Returns
 bool.Falseindicates we should continue,Trueindicates we should stop.
- 
 
- 
class 
transformers.StoppingCriteriaList(iterable=(), /)[source]¶ - 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) → bool[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs – Additional stopping criteria specific kwargs.
- Returns
 bool.Falseindicates we should continue,Trueindicates we should stop.
- 
 
- 
class 
transformers.MaxLengthCriteria(max_length: int)[source]¶ This class can be used to stop generation whenever the full generated number of tokens exceeds
max_length. Keep in mind for decoder-only type of transformers, this will include the initial prompted tokens.- Parameters
 max_length (
int) – The maximum length that the output sequence can have in number of tokens.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) → bool[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs – Additional stopping criteria specific kwargs.
- Returns
 bool.Falseindicates we should continue,Trueindicates we should stop.
- 
class 
transformers.MaxTimeCriteria(max_time: float, initial_timestamp: Optional[float] = None)[source]¶ This class can be used to stop generation whenever the full generation exceeds some amount of time. By default, the time will start being counted when you initialize this function. You can override this by passing an
initial_time.- Parameters
 max_time (
float) – The maximum allowed time in seconds for the generation.initial_time (
float, optional, defaults totime.time()) – The start of the generation allowed time.
- 
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) → bool[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) – Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs – Additional stopping criteria specific kwargs.
- Returns
 bool.Falseindicates we should continue,Trueindicates we should stop.
BeamSearch¶
- 
class 
transformers.BeamScorer[source]¶ Abstract base class for all beam scorers that are used for
beam_search()andbeam_sample().- 
abstract 
finalize(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, max_length: int, **kwargs) → torch.LongTensor[source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.final_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) – The final scores of all non-finished beams.final_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) – The last tokens to be added to the non-finished beam_hypotheses.final_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) – The beam indices indicating to which beam thefinal_beam_tokensshall be added.pad_token_id (
int, optional) – The id of the padding token.eos_token_id (
int, optional) – The id of the end-of-sequence token.
- Returns
 The generated sequences. The second dimension (sequence_length) is either equal to
max_lengthor shorter if all batches finished early due to theeos_token_id.- Return type
 torch.LongTensorof shape(batch_size * num_return_sequences, sequence_length)
- 
abstract 
process(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, **kwargs) → Tuple[torch.Tensor][source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.next_scores (
torch.FloatTensorof shape(batch_size, 2 * num_beams)) – Current scores of the top2 * num_beamsnon-finished beam hypotheses.next_tokens (
torch.LongTensorof shape(batch_size, 2 * num_beams)) –input_idsof the tokens corresponding to the top2 * num_beamsnon-finished beam hypotheses.next_indices (
torch.LongTensorof shape(batch_size, 2 * num_beams)) – Beam indices indicating to which beam hypothesis thenext_tokenscorrespond.pad_token_id (
int, optional) – The id of the padding token.eos_token_id (
int, optional) – The id of the end-of-sequence token.
- Returns
 A dictionary composed of the fields as defined above:
next_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) – Updated scores of all non-finished beams.next_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) – Next tokens to be added to the non-finished beam_hypotheses.next_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) – Beam indices indicating to which beam the next tokens shall be added.
- Return type
 UserDict
- 
abstract 
 
- 
class 
transformers.BeamSearchScorer(batch_size: int, num_beams: int, device: torch.device, length_penalty: Optional[float] = 1.0, do_early_stopping: Optional[bool] = False, num_beam_hyps_to_keep: Optional[int] = 1, num_beam_groups: Optional[int] = 1, **kwargs)[source]¶ transformers.BeamScorerimplementing standard beam search decoding.Adapted in part from Facebook’s XLM beam search code.
Reference for the diverse beam search algorithm and implementation Ashwin Kalyan’s DBS implementation
- Parameters
 batch_size (
int) – Batch Size ofinput_idsfor which standard beam search decoding is run in parallel.max_length (
int) – The maximum length of the sequence to be generated.num_beams (
int) – Number of beams for beam search.device (
torch.device) – Defines the device type (e.g.,"cpu"or"cuda") on which this instance ofBeamSearchScorerwill be allocated.length_penalty (
float, optional, defaults to 1.0) – Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences.do_early_stopping (
bool, optional, defaults toFalse) – Whether to stop the beam search when at leastnum_beamssentences are finished per batch or not.num_beam_hyps_to_keep (
int, optional, defaults to 1) – The number of beam hypotheses that shall be returned upon callingfinalize().num_beam_groups (
int) – Number of groups to dividenum_beamsinto in order to ensure diversity among different groups of beams. See this paper for more details.
- 
finalize(input_ids: torch.LongTensor, final_beam_scores: torch.FloatTensor, final_beam_tokens: torch.LongTensor, final_beam_indices: torch.LongTensor, max_length: int, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None) → Tuple[torch.LongTensor][source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.final_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) – The final scores of all non-finished beams.final_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) – The last tokens to be added to the non-finished beam_hypotheses.final_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) – The beam indices indicating to which beam thefinal_beam_tokensshall be added.pad_token_id (
int, optional) – The id of the padding token.eos_token_id (
int, optional) – The id of the end-of-sequence token.
- Returns
 The generated sequences. The second dimension (sequence_length) is either equal to
max_lengthor shorter if all batches finished early due to theeos_token_id.- Return type
 torch.LongTensorof shape(batch_size * num_return_sequences, sequence_length)
- 
process(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None) → Tuple[torch.Tensor][source]¶ - Parameters
 input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.next_scores (
torch.FloatTensorof shape(batch_size, 2 * num_beams)) – Current scores of the top2 * num_beamsnon-finished beam hypotheses.next_tokens (
torch.LongTensorof shape(batch_size, 2 * num_beams)) –input_idsof the tokens corresponding to the top2 * num_beamsnon-finished beam hypotheses.next_indices (
torch.LongTensorof shape(batch_size, 2 * num_beams)) – Beam indices indicating to which beam hypothesis thenext_tokenscorrespond.pad_token_id (
int, optional) – The id of the padding token.eos_token_id (
int, optional) – The id of the end-of-sequence token.
- Returns
 A dictionary composed of the fields as defined above:
next_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) – Updated scores of all non-finished beams.next_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) – Next tokens to be added to the non-finished beam_hypotheses.next_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) – Beam indices indicating to which beam the next tokens shall be added.
- Return type
 UserDict
Utilities¶
- 
transformers.top_k_top_p_filtering(logits: torch.FloatTensor, top_k: int = 0, top_p: float = 1.0, filter_value: float = - inf, min_tokens_to_keep: int = 1) → torch.FloatTensor[source]¶ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
- Parameters
 logits – logits distribution shape (batch size, vocabulary size)
top_k > 0 (if) – keep only top k tokens with highest probability (top-k filtering).
top_p < 1.0 (if) – keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
sure we keep at least min_tokens_to_keep per batch example in the output (Make) –
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
- 
transformers.tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=- inf, min_tokens_to_keep=1)[source]¶ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
- Parameters
 logits – logits distribution shape (batch size, vocabulary size)
top_k > 0 (if) – keep only top k tokens with highest probability (top-k filtering).
top_p < 1.0 (if) – keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
sure we keep at least min_tokens_to_keep per batch example in the output (Make) –
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317