# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
[docs]class EncoderDecoderConfig(PretrainedConfig):
r"""
:class:`~transformers.EncoderDecoderConfig` is the configuration class to store the configuration of a
:class:`~transformers.EncoderDecoderModel`. It is used to instantiate an Encoder Decoder model according to the
specified arguments, defining the encoder and decoder configs.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
kwargs (`optional`):
Dictionary of keyword arguments. Notably:
- **encoder** (:class:`~transformers.PretrainedConfig`, `optional`) -- An instance of a configuration
object that defines the encoder config.
- **decoder** (:class:`~transformers.PretrainedConfig`, `optional`) -- An instance of a configuration
object that defines the decoder config.
Examples::
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
>>> # Initializing a BERT bert-base-uncased style configuration
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> # Initializing a Bert2Bert model from the bert-base-uncased style configurations
>>> model = EncoderDecoderModel(config=config)
>>> # Accessing the model configuration
>>> config_encoder = model.config.encoder
>>> config_decoder = model.config.decoder
>>> # set decoder config to causal lm
>>> config_decoder.is_decoder = True
>>> config_decoder.add_cross_attention = True
>>> # Saving the model, including its configuration
>>> model.save_pretrained('my-model')
>>> # loading model and config from pretrained folder
>>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained('my-model')
>>> model = EncoderDecoderModel.from_pretrained('my-model', config=encoder_decoder_config)
"""
model_type = "encoder-decoder"
is_composition = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
encoder_config = kwargs.pop("encoder")
encoder_model_type = encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
decoder_model_type = decoder_config.pop("model_type")
from ..auto.configuration_auto import AutoConfig
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
self.is_encoder_decoder = True
[docs] @classmethod
def from_encoder_decoder_configs(
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
) -> PretrainedConfig:
r"""
Instantiate a :class:`~transformers.EncoderDecoderConfig` (or a derived class) from a pre-trained encoder model
configuration and decoder model configuration.
Returns:
:class:`EncoderDecoderConfig`: An instance of a configuration object
"""
logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
[docs] def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig`.
Returns:
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["encoder"] = self.encoder.to_dict()
output["decoder"] = self.decoder.to_dict()
output["model_type"] = self.__class__.model_type
return output