Source code for transformers.models.xlnet.configuration_xlnet

# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLNet configuration """

import warnings

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
    "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}


[docs]class XLNetConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~transformers.XLNetModel` or a :class:`~transformers.TFXLNetModel`. It is used to instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the `xlnet-large-cased <https://huggingface.co/xlnet-large-cased>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 32000): Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.XLNetModel` or :class:`~transformers.TFXLNetModel`. d_model (:obj:`int`, `optional`, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. n_layer (:obj:`int`, `optional`, defaults to 24): Number of hidden layers in the Transformer encoder. n_head (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_inner (:obj:`int`, `optional`, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. ff_activation (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. untie_r (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to untie relative position biases attn_type (:obj:`str`, `optional`, defaults to :obj:`"bi"`): The attention type used by the model. Set :obj:`"bi"` for XLNet, :obj:`"uni"` for Transformer-XL. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. dropout (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. mem_len (:obj:`int` or :obj:`None`, `optional`): The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous forward pass won't be re-computed. See the `quickstart <https://huggingface.co/transformers/quickstart.html#using-the-past>`__ for more information. reuse_len (:obj:`int`, `optional`): The number of tokens in the current batch to be cached and reused in the future. bi_data (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use bidirectional input pipeline. Usually set to :obj:`True` during pretraining and :obj:`False` during finetuning. clamp_len (:obj:`int`, `optional`, defaults to -1): Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping. same_length (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the same attention length for each token. summary_type (:obj:`str`, `optional`, defaults to "last"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - :obj:`"last"`: Take the last token hidden state (like XLNet). - :obj:`"first"`: Take the first token hidden state (like BERT). - :obj:`"mean"`: Take the mean of all tokens hidden states. - :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - :obj:`"attn"`: Not implemented now, use multi-head attention. summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (:obj:`str`, `optional`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (:obj:`boo`, `optional`, defaults to :obj:`True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes. summary_last_dropout (:obj:`float`, `optional`, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (:obj:`int`, `optional`, defaults to 5): Used in the SQuAD evaluation script. end_n_top (:obj:`int`, `optional`, defaults to 5): Used in the SQuAD evaluation script. use_mems_eval (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should make use of the recurrent memory mechanism in evaluation mode. use_mems_train (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the model should make use of the recurrent memory mechanism in train mode. .. note:: For pretraining, it is recommended to set ``use_mems_train`` to :obj:`True`. For fine-tuning, it is recommended to set ``use_mems_train`` to :obj:`False` as discussed `here <https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587>`__. If ``use_mems_train`` is set to :obj:`True`, one has to make sure that the train batches are correctly pre-processed, `e.g.` :obj:`batch_1 = [[This line is], [This is the]]` and :obj:`batch_2 = [[ the first line], [ second line]]` and that all batches are of equal size. Examples:: >>> from transformers import XLNetConfig, XLNetModel >>> # Initializing a XLNet configuration >>> configuration = XLNetConfig() >>> # Initializing a model from the configuration >>> model = XLNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "xlnet" keys_to_ignore_at_inference = ["mems"] def __init__( self, vocab_size=32000, d_model=1024, n_layer=24, n_head=16, d_inner=4096, ff_activation="gelu", untie_r=True, attn_type="bi", initializer_range=0.02, layer_norm_eps=1e-12, dropout=0.1, mem_len=512, reuse_len=None, use_mems_eval=True, use_mems_train=False, bi_data=False, clamp_len=-1, same_length=False, summary_type="last", summary_use_proj=True, summary_activation="tanh", summary_last_dropout=0.1, start_n_top=5, end_n_top=5, pad_token_id=5, bos_token_id=1, eos_token_id=2, **kwargs ): """Constructs XLNetConfig.""" super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.d_model = d_model self.n_layer = n_layer self.n_head = n_head assert d_model % n_head == 0 if "d_head" in kwargs: assert ( kwargs["d_head"] == d_model // n_head ), f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" self.d_head = d_model // n_head self.ff_activation = ff_activation self.d_inner = d_inner self.untie_r = untie_r self.attn_type = attn_type self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.dropout = dropout self.mem_len = mem_len self.reuse_len = reuse_len self.bi_data = bi_data self.clamp_len = clamp_len self.same_length = same_length self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.eos_token_id = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval` instead.", FutureWarning, ) use_mems_eval = kwargs["use_cache"] self.use_mems_eval = use_mems_eval self.use_mems_train = use_mems_train @property def max_position_embeddings(self): return -1 @property def n_token(self): # Backward compatibility return self.vocab_size @n_token.setter def n_token(self, value): # Backward compatibility self.vocab_size = value @property def hidden_size(self): return self.d_model @property def num_attention_heads(self): return self.n_head @property def num_hidden_layers(self): return self.n_layer