FlauBERTΒΆ
OverviewΒΆ
The FlauBERT model was proposed in the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le et al. Itβs a transformer model pretrained using a masked language modeling (MLM) objective (like BERT).
The abstract from the paper is the following:
Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pretraining approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.
This model was contributed by formiel. The original code can be found here.
FlaubertConfigΒΆ
-
class
transformers.
FlaubertConfig
(layerdrop=0.0, pre_norm=False, pad_token_id=2, bos_token_id=0, **kwargs)[source]ΒΆ This is the configuration class to store the configuration of a
FlaubertModel
or aTFFlaubertModel
. It is used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.Configuration objects inherit from
PretrainedConfig
and can be used to control the model outputs. Read the documentation fromPretrainedConfig
for more information.- Parameters
pre_norm (
bool
, optional, defaults toFalse
) β Whether to apply the layer normalization before or after the feed forward layer following the attention in each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)layerdrop (
float
, optional, defaults to 0.0) β Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with Structured Dropout. ICLR 2020)vocab_size (
int
, optional, defaults to 30145) β Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingFlaubertModel
orTFFlaubertModel
.emb_dim (
int
, optional, defaults to 2048) β Dimensionality of the encoder layers and the pooler layer.n_layer (
int
, optional, defaults to 12) β Number of hidden layers in the Transformer encoder.n_head (
int
, optional, defaults to 16) β Number of attention heads for each attention layer in the Transformer encoder.dropout (
float
, optional, defaults to 0.1) β The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_dropout (
float
, optional, defaults to 0.1) β The dropout probability for the attention mechanismgelu_activation (
bool
, optional, defaults toTrue
) β Whether or not to use a gelu activation instead of relu.sinusoidal_embeddings (
bool
, optional, defaults toFalse
) β Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.causal (
bool
, optional, defaults toFalse
) β Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in order to only attend to the left-side context instead if a bidirectional context.asm (
bool
, optional, defaults toFalse
) β Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction layer.n_langs (
int
, optional, defaults to 1) β The number of languages the model handles. Set to 1 for monolingual models.use_lang_emb (
bool
, optional, defaults toTrue
) β Whether to use language embeddings. Some models use additional language embeddings, see the multilingual models page for information on how to use them.max_position_embeddings (
int
, optional, defaults to 512) β The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).embed_init_std (
float
, optional, defaults to 2048^-0.5) β The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.init_std (
int
, optional, defaults to 50257) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the embedding matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) β The epsilon used by the layer normalization layers.bos_index (
int
, optional, defaults to 0) β The index of the beginning of sentence token in the vocabulary.eos_index (
int
, optional, defaults to 1) β The index of the end of sentence token in the vocabulary.pad_index (
int
, optional, defaults to 2) β The index of the padding token in the vocabulary.unk_index (
int
, optional, defaults to 3) β The index of the unknown token in the vocabulary.mask_index (
int
, optional, defaults to 5) β The index of the masking token in the vocabulary.is_encoder (
bool
, optional, defaults toTrue
) β Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.summary_type (
string
, optional, defaults to βfirstβ) βArgument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
"last"
: Take the last token hidden state (like XLNet)."first"
: Take the first token hidden state (like BERT)."mean"
: Take the mean of all tokens hidden states."cls_index"
: Supply a Tensor of classification token position (like GPT/GPT-2)."attn"
: Not implemented now, use multi-head attention.
summary_use_proj (
bool
, optional, defaults toTrue
) βArgument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (
str
, optional) βArgument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass
"tanh"
for a tanh activation to the output, any other value will result in no activation.summary_proj_to_labels (
bool
, optional, defaults toTrue
) βUsed in the sequence classification and multiple choice models.
Whether the projection outputs should have
config.num_labels
orconfig.hidden_size
classes.summary_first_dropout (
float
, optional, defaults to 0.1) βUsed in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (
int
, optional, defaults to 5) β Used in the SQuAD evaluation script.end_n_top (
int
, optional, defaults to 5) β Used in the SQuAD evaluation script.mask_token_id (
int
, optional, defaults to 0) β Model agnostic parameter to identify masked tokens when generating text in an MLM context.lang_id (
int
, optional, defaults to 1) β The ID of the language used by the model. This parameter is used when generating text in a given language.
FlaubertTokenizerΒΆ
-
class
transformers.
FlaubertTokenizer
(do_lowercase=False, **kwargs)[source]ΒΆ Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
Moses preprocessing and tokenization.
Normalizing all inputs text.
The arguments
special_tokens
and the functionset_special_tokens
, can be used to add additional symbols (like β__classify__β) to a vocabulary.The argument
do_lowercase
controls lower casing (automatically set for pretrained vocabularies).
This tokenizer inherits from
XLMTokenizer
. Please check the superclass for usage examples and documentation regarding arguments.
FlaubertModelΒΆ
-
class
transformers.
FlaubertModel
(config)[source]ΒΆ The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
FlaubertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
FlaubertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also useattention_mask
for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
:cache (
Dict[str, torch.FloatTensor]
, optional) β Dictionary strings totorch.FloatTensor
that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
BaseModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (FlaubertConfig
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
BaseModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import FlaubertTokenizer, FlaubertModel >>> import torch >>> tokenizer = FlaubertTokenizer.from_pretrained('flaubert/flaubert_base_cased') >>> model = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
FlaubertWithLMHeadModelΒΆ
-
class
transformers.
FlaubertWithLMHeadModel
(config)[source]ΒΆ The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
This class overrides
XLMWithLMHeadModel
. Please check the superclass for the appropriate documentation alongside usage examples.-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)ΒΆ The
XLMWithLMHeadModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
XLMTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, torch.FloatTensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) β Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can setlabels = input_ids
Indices are selected in[-100, 0, ..., config.vocab_size]
All labels set to-100
are ignored (masked), the loss is only computed for labels in[0, ..., config.vocab_size]
- Returns
A
MaskedLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Masked language modeling (MLM) loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MaskedLMOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') >>> inputs = tokenizer("The capital of France is <special1>.", return_tensors="pt") >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
FlaubertForSequenceClassificationΒΆ
-
class
transformers.
FlaubertForSequenceClassification
(config)[source]ΒΆ Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
This class overrides
XLMForSequenceClassification
. Please check the superclass for the appropriate documentation alongside usage examples.-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)ΒΆ The
XLMForSequenceClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
XLMTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, torch.FloatTensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
- Returns
A
SequenceClassifierOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
SequenceClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import XLMTokenizer, XLMForSequenceClassification >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
FlaubertForMultipleChoiceΒΆ
-
class
transformers.
FlaubertForMultipleChoice
(config)[source]ΒΆ Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
This class overrides
XLMForMultipleChoice
. Please check the superclass for the appropriate documentation alongside usage examples.-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)ΒΆ The
XLMForMultipleChoice
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
XLMTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, torch.FloatTensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
wherenum_choices
is the size of the second dimension of the input tensors. (Seeinput_ids
above)
- Returns
A
MultipleChoiceModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
torch.FloatTensor
of shape (1,), optional, returned whenlabels
is provided) β Classification loss.logits (
torch.FloatTensor
of shape(batch_size, num_choices)
) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MultipleChoiceModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import XLMTokenizer, XLMForMultipleChoice >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = XLMForMultipleChoice.from_pretrained('xlm-mlm-en-2048') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
FlaubertForTokenClassificationΒΆ
-
class
transformers.
FlaubertForTokenClassification
(config)[source]ΒΆ Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
This class overrides
XLMForTokenClassification
. Please check the superclass for the appropriate documentation alongside usage examples.-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)ΒΆ The
XLMForTokenClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
XLMTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, torch.FloatTensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) β Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
- Returns
A
TokenClassifierOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) β Classification scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TokenClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import XLMTokenizer, XLMForTokenClassification >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = XLMForTokenClassification.from_pretrained('xlm-mlm-en-2048') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
FlaubertForQuestionAnsweringSimpleΒΆ
-
class
transformers.
FlaubertForQuestionAnsweringSimple
(config)[source]ΒΆ Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
This class overrides
XLMForQuestionAnsweringSimple
. Please check the superclass for the appropriate documentation alongside usage examples.-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)ΒΆ The
XLMForQuestionAnsweringSimple
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
XLMTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, torch.FloatTensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
QuestionAnsweringModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Span-start scores (before SoftMax).end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Span-end scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
QuestionAnsweringModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import XLMTokenizer, XLMForQuestionAnsweringSimple >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = XLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors='pt') >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits
FlaubertForQuestionAnsweringΒΆ
-
class
transformers.
FlaubertForQuestionAnswering
(config)[source]ΒΆ Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
This class overrides
XLMForQuestionAnswering
. Please check the superclass for the appropriate documentation alongside usage examples.-
forward
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, is_impossible=None, cls_index=None, p_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None)ΒΆ The
XLMForQuestionAnswering
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
XLMTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
torch.LongTensor
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, torch.FloatTensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.is_impossible (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels whether a question has an answer or no answer (SQuAD 2.0)cls_index (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for position (index) of the classification token to use as input for computing plausibility of the answer.p_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) β Optional mask of tokens which canβt be in answers (e.g. [CLS], [PAD], β¦). 1.0 means token should be masked. 0.0 mean token is not masked.
- Returns
A
XLMForQuestionAnsweringOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned if bothstart_positions
andend_positions
are provided) β Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.start_top_log_probs (
torch.FloatTensor
of shape(batch_size, config.start_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for the top config.start_n_top start token possibilities (beam-search).start_top_index (
torch.LongTensor
of shape(batch_size, config.start_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Indices for the top config.start_n_top start token possibilities (beam-search).end_top_log_probs (
torch.FloatTensor
of shape(batch_size, config.start_n_top * config.end_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for the topconfig.start_n_top * config.end_n_top
end token possibilities (beam-search).end_top_index (
torch.LongTensor
of shape(batch_size, config.start_n_top * config.end_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Indices for the topconfig.start_n_top * config.end_n_top
end token possibilities (beam-search).cls_logits (
torch.FloatTensor
of shape(batch_size,)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for theis_impossible
label of the answers.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048') >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss
- Return type
XLMForQuestionAnsweringOutput
ortuple(torch.FloatTensor)
TFFlaubertModelΒΆ
-
class
transformers.
TFFlaubertModel
(*args, **kwargs)[source]ΒΆ The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]ΒΆ The
TFFlaubertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
FlaubertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
tf.Tensor
orNumpy array
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in[0, ..., input_ids.size(-1)]
:cache (
Dict[str, tf.Tensor]
, optional) βDictionary string to
tf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFBaseModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (FlaubertConfig
) and inputs.last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(tf.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFBaseModelOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import FlaubertTokenizer, TFFlaubertModel >>> import tensorflow as tf >>> tokenizer = FlaubertTokenizer.from_pretrained('flaubert/flaubert_base_cased') >>> model = TFFlaubertModel.from_pretrained('flaubert/flaubert_base_cased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFFlaubertWithLMHeadModelΒΆ
-
class
transformers.
TFFlaubertWithLMHeadModel
(*args, **kwargs)[source]ΒΆ The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]ΒΆ The
TFFlaubertWithLMHeadModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
FlaubertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
tf.Tensor
orNumpy array
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in[0, ..., input_ids.size(-1)]
:cache (
Dict[str, tf.Tensor]
, optional) βDictionary string to
tf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFFlaubertWithLMHeadModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (FlaubertConfig
) and inputs.logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFFlaubertWithLMHeadModelOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import FlaubertTokenizer, TFFlaubertWithLMHeadModel >>> import tensorflow as tf >>> tokenizer = FlaubertTokenizer.from_pretrained('flaubert/flaubert_base_cased') >>> model = TFFlaubertWithLMHeadModel.from_pretrained('flaubert/flaubert_base_cased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> logits = outputs.logits
TFFlaubertForSequenceClassificationΒΆ
-
class
transformers.
TFFlaubertForSequenceClassification
(*args, **kwargs)[source]ΒΆ Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)ΒΆ The
TFXLMForSequenceClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
tf.Tensor
orNumpy array
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, tf.Tensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensor
of shape(batch_size,)
, optional) β Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
- Returns
A
TFSequenceClassifierOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
tf.Tensor
of shape(batch_size, )
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss.logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSequenceClassifierOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import XLMTokenizer, TFXLMForSequenceClassification >>> import tensorflow as tf >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = TFXLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1 >>> outputs = model(inputs) >>> loss = outputs.loss >>> logits = outputs.logits
TFFlaubertForMultipleChoiceΒΆ
-
class
transformers.
TFFlaubertForMultipleChoice
(*args, **kwargs)[source]ΒΆ Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)ΒΆ The
TFXLMForMultipleChoice
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
tf.Tensor
orNumpy array
of shape(batch_size, num_choices, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
tf.Tensor
orNumpy array
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, tf.Tensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFMultipleChoiceModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
tf.Tensor
of shape (batch_size, ), optional, returned whenlabels
is provided) β Classification loss.logits (
tf.Tensor
of shape(batch_size, num_choices)
) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFMultipleChoiceModelOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import XLMTokenizer, TFXLMForMultipleChoice >>> import tensorflow as tf >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = TFXLMForMultipleChoice.from_pretrained('xlm-mlm-en-2048') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True) >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs.logits
TFFlaubertForTokenClassificationΒΆ
-
class
transformers.
TFFlaubertForTokenClassification
(*args, **kwargs)[source]ΒΆ Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)ΒΆ The
TFXLMForTokenClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
tf.Tensor
orNumpy array
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, tf.Tensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) β Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
- Returns
A
TFTokenClassifierOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of unmasked labels, returned whenlabels
is provided) β Classification loss.logits (
tf.Tensor
of shape(batch_size, sequence_length, config.num_labels)
) β Classification scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFTokenClassifierOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import XLMTokenizer, TFXLMForTokenClassification >>> import tensorflow as tf >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = TFXLMForTokenClassification.from_pretrained('xlm-mlm-en-2048') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> input_ids = inputs["input_ids"] >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1 >>> outputs = model(inputs) >>> loss = outputs.loss >>> logits = outputs.logits
TFFlaubertForQuestionAnsweringSimpleΒΆ
-
class
transformers.
TFFlaubertForQuestionAnsweringSimple
(*args, **kwargs)[source]ΒΆ Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
FlaubertConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs)ΒΆ The
TFXLMForQuestionAnsweringSimple
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) βA parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in
model.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).See usage examples detailed in the multilingual documentation.
token_type_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.lengths (
tf.Tensor
orNumpy array
of shape(batch_size,)
, optional) β Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in[0, ..., input_ids.size(-1)]
.cache (
Dict[str, tf.Tensor]
, optional) βDictionary string to
torch.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
head_mask (
Numpy array
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).start_positions (
tf.Tensor
of shape(batch_size,)
, optional) β Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.end_positions (
tf.Tensor
of shape(batch_size,)
, optional) β Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
TFQuestionAnsweringModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (XLMConfig
) and inputs.loss (
tf.Tensor
of shape(batch_size, )
, optional, returned whenstart_positions
andend_positions
are provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
tf.Tensor
of shape(batch_size, sequence_length)
) β Span-start scores (before SoftMax).end_logits (
tf.Tensor
of shape(batch_size, sequence_length)
) β Span-end scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFQuestionAnsweringModelOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import XLMTokenizer, TFXLMForQuestionAnsweringSimple >>> import tensorflow as tf >>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') >>> model = TFXLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> input_dict = tokenizer(question, text, return_tensors='tf') >>> outputs = model(input_dict) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0]) >>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])