BERTΒΆ

OverviewΒΆ

The BERT model was proposed in BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It’s a bidirectional transformer pretrained using a combination of masked language modeling objective and next sentence prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia.

The abstract from the paper is the following:

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.

BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Tips:

  • BERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left.

  • BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives. It is efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.

This model was contributed by thomwolf. The original code can be found here.

BertConfigΒΆ

class transformers.BertConfig(vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, gradient_checkpointing=False, position_embedding_type='absolute', use_cache=True, **kwargs)[source]ΒΆ

This is the configuration class to store the configuration of a BertModel or a TFBertModel. It is used to instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT bert-base-uncased architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 30522) – Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling BertModel or TFBertModel.

  • hidden_size (int, optional, defaults to 768) – Dimensionality of the encoder layers and the pooler layer.

  • num_hidden_layers (int, optional, defaults to 12) – Number of hidden layers in the Transformer encoder.

  • num_attention_heads (int, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.

  • intermediate_size (int, optional, defaults to 3072) – Dimensionality of the β€œintermediate” (often named feed-forward) layer in the Transformer encoder.

  • hidden_act (str or Callable, optional, defaults to "gelu") – The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

  • hidden_dropout_prob (float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_probs_dropout_prob (float, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.

  • max_position_embeddings (int, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • type_vocab_size (int, optional, defaults to 2) – The vocabulary size of the token_type_ids passed when calling BertModel or TFBertModel.

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) – The epsilon used by the layer normalization layers.

  • gradient_checkpointing (bool, optional, defaults to False) – If True, use gradient checkpointing to save memory at the expense of slower backward pass.

  • position_embedding_type (str, optional, defaults to "absolute") – Type of position embedding. Choose one of "absolute", "relative_key", "relative_key_query". For positional embeddings use "absolute". For more information on "relative_key", please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on "relative_key_query", please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

  • use_cache (bool, optional, defaults to True) – Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

Examples:

>>> from transformers import BertModel, BertConfig

>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()

>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = BertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BertTokenizerΒΆ

class transformers.BertTokenizer(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]ΒΆ

Construct a BERT tokenizer. Based on WordPiece.

This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

Parameters
  • vocab_file (str) – File containing the vocabulary.

  • do_lower_case (bool, optional, defaults to True) – Whether or not to lowercase the input when tokenizing.

  • do_basic_tokenize (bool, optional, defaults to True) – Whether or not to do basic tokenization before WordPiece.

  • never_split (Iterable, optional) – Collection of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True

  • unk_token (str, optional, defaults to "[UNK]") – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • sep_token (str, optional, defaults to "[SEP]") – The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (str, optional, defaults to "[PAD]") – The token used for padding, for example when batching sequences of different lengths.

  • cls_token (str, optional, defaults to "[CLS]") – The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "[MASK]") – The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • tokenize_chinese_chars (bool, optional, defaults to True) –

    Whether or not to tokenize Chinese characters.

    This should likely be deactivated for Japanese (see this issue).

  • strip_accents – (bool, optional): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for lowercase (as in the original BERT).

build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]ΒΆ

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of input IDs with the appropriate special tokens.

Return type

List[int]

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]ΒΆ

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

Parameters
  • token_ids_0 (List[int]) – List of IDs.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of token type IDs according to the given sequence(s).

Return type

List[int]

get_special_tokens_mask(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) → List[int][source]ΒΆ

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

Parameters
  • token_ids_0 (List[int]) – List of IDs.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) – Whether or not the token list is already formatted with special tokens for the model.

Returns

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Return type

List[int]

save_vocabulary(save_directory: str, filename_prefix: Optional[str] = None) → Tuple[str][source]ΒΆ

Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use _save_pretrained() to save the whole state of the tokenizer.

Parameters
  • save_directory (str) – The directory in which to save the vocabulary.

  • filename_prefix (str, optional) – An optional prefix to add to the named of the saved files.

Returns

Paths to the files saved.

Return type

Tuple(str)

BertTokenizerFastΒΆ

class transformers.BertTokenizerFast(vocab_file, tokenizer_file=None, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]ΒΆ

Construct a β€œfast” BERT tokenizer (backed by HuggingFace’s tokenizers library). Based on WordPiece.

This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

Parameters
  • vocab_file (str) – File containing the vocabulary.

  • do_lower_case (bool, optional, defaults to True) – Whether or not to lowercase the input when tokenizing.

  • unk_token (str, optional, defaults to "[UNK]") – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • sep_token (str, optional, defaults to "[SEP]") – The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (str, optional, defaults to "[PAD]") – The token used for padding, for example when batching sequences of different lengths.

  • cls_token (str, optional, defaults to "[CLS]") – The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "[MASK]") – The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • clean_text (bool, optional, defaults to True) – Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one.

  • tokenize_chinese_chars (bool, optional, defaults to True) – Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this issue).

  • strip_accents – (bool, optional): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for lowercase (as in the original BERT).

  • wordpieces_prefix – (str, optional, defaults to "##"): The prefix for subwords.

build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)[source]ΒΆ

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of input IDs with the appropriate special tokens.

Return type

List[int]

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]ΒΆ

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

Parameters
  • token_ids_0 (List[int]) – List of IDs.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of token type IDs according to the given sequence(s).

Return type

List[int]

save_vocabulary(save_directory: str, filename_prefix: Optional[str] = None) → Tuple[str][source]ΒΆ

Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use _save_pretrained() to save the whole state of the tokenizer.

Parameters
  • save_directory (str) – The directory in which to save the vocabulary.

  • filename_prefix (str, optional) – An optional prefix to add to the named of the saved files.

Returns

Paths to the files saved.

Return type

Tuple(str)

slow_tokenizer_classΒΆ

alias of transformers.models.bert.tokenization_bert.BertTokenizer

Bert specific outputsΒΆ

class transformers.models.bert.modeling_bert.BertForPreTrainingOutput(loss: Optional[torch.FloatTensor] = None, prediction_logits: torch.FloatTensor = None, seq_relationship_logits: torch.FloatTensor = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ

Output type of BertForPreTraining.

Parameters
  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

class transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput(loss: Optional[tensorflow.python.framework.ops.Tensor] = None, prediction_logits: tensorflow.python.framework.ops.Tensor = None, seq_relationship_logits: tensorflow.python.framework.ops.Tensor = None, hidden_states: Optional[Union[Tuple[tensorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor]] = None, attentions: Optional[Union[Tuple[tensorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor]] = None)[source]ΒΆ

Output type of TFBertForPreTraining.

Parameters
  • prediction_logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (tf.Tensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

BertModelΒΆ

class transformers.BertModel(config, add_pooling_layer=True)[source]ΒΆ

The bare Bert Model transformer outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set to True. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder argument and add_cross_attention set to True; an encoder_hidden_states is then expected as an input to the forward pass.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) –

    Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

Returns

A BaseModelOutputWithPoolingAndCrossAttentions or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True and config.add_cross_attention=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and optionally if config.is_encoder_decoder=True 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Return type

BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, BertModel
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertModel.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BertForPreTrainingΒΆ

class transformers.BertForPreTraining(config)[source]ΒΆ

Bert Model with two heads on top as done during the pretraining: a masked language modeling head and a next sentence prediction (classification) head.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertForPreTraining forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • next_sentence_label (torch.LongTensor of shape (batch_size,), optional) –

    Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]:

    • 0 indicates sequence B is a continuation of sequence A,

    • 1 indicates sequence B is a random sequence.

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

A BertForPreTrainingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Example:

>>> from transformers import BertTokenizer, BertForPreTraining
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

Return type

BertForPreTrainingOutput or tuple(torch.FloatTensor)

BertLMHeadModelΒΆ

class transformers.BertLMHeadModel(config)[source]ΒΆ

Bert Model with a language modeling head on top for CLM fine-tuning.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertLMHeadModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels n [0, ..., config.vocab_size]

  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) –

    Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

Returns

A CausalLMOutputWithCrossAttentions or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of torch.FloatTensor tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True.

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Example:

>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> config = BertConfig.from_pretrained("bert-base-cased")
>>> config.is_decoder = True
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

Return type

CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

BertForMaskedLMΒΆ

class transformers.BertForMaskedLM(config)[source]ΒΆ

Bert Model with a language modeling head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

Returns

A MaskedLMOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Masked language modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MaskedLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, BertForMaskedLM
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForMaskedLM.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

BertForNextSentencePredictionΒΆ

class transformers.BertForNextSentencePrediction(config)[source]ΒΆ

Bert Model with a next sentence prediction (classification) head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]ΒΆ

The BertForNextSentencePrediction forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) –

    Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring). Indices should be in [0, 1]:

    • 0 indicates sequence B is a continuation of sequence A,

    • 1 indicates sequence B is a random sequence.

Returns

A NextSentencePredictorOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when next_sentence_label is provided) – Next sequence prediction (classification) loss.

  • logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Example:

>>> from transformers import BertTokenizer, BertForNextSentencePrediction
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random

Return type

NextSentencePredictorOutput or tuple(torch.FloatTensor)

BertForSequenceClassificationΒΆ

class transformers.BertForSequenceClassification(config)[source]ΒΆ

Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A SequenceClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

SequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, BertForSequenceClassification
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

BertForMultipleChoiceΒΆ

class transformers.BertForMultipleChoice(config)[source]ΒΆ

Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertForMultipleChoice forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

A MultipleChoiceModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MultipleChoiceModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, BertForMultipleChoice
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForMultipleChoice.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

BertForTokenClassificationΒΆ

class transformers.BertForTokenClassification(config)[source]ΒΆ

Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertForTokenClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

A TokenClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TokenClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, BertForTokenClassification
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForTokenClassification.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

BertForQuestionAnsweringΒΆ

class transformers.BertForQuestionAnswering(config)[source]ΒΆ

Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The BertForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

A QuestionAnsweringModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) – Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) – Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, BertForQuestionAnswering
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='pt')
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

TFBertModelΒΆ

class transformers.TFBertModel(*args, **kwargs)[source]ΒΆ

The bare Bert Model transformer outputting raw hidden-states without any specific head on top.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

A TFBaseModelOutputWithPooling or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (tf.Tensor of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

    This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFBaseModelOutputWithPooling or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertModel
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertModel.from_pretrained('bert-base-cased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFBertForPreTrainingΒΆ

class transformers.TFBertForPreTraining(*args, **kwargs)[source]ΒΆ
Bert Model with two heads on top as done during the pretraining:

a masked language modeling head and a next sentence prediction (classification) head.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Args:
config (BertConfig): Model configuration class with all the parameters of the model.

Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, next_sentence_label: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForPreTraining forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • next_sentence_label (torch.LongTensor of shape (batch_size,), optional) –

    Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]:

    • 0 indicates sequence B is a continuation of sequence A,

    • 1 indicates sequence B is a random sequence.

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

A TFBertForPreTrainingOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • prediction_logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (tf.Tensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> import tensorflow as tf
>>> from transformers import BertTokenizer, TFBertForPreTraining

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = TFBertForPreTraining.from_pretrained('bert-base-uncased')
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]  # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2]

Return type

TFBertForPreTrainingOutput or tuple(tf.Tensor)

TFBertModelLMHeadModelΒΆ

class transformers.TFBertLMHeadModel(*args, **kwargs)[source]ΒΆ
call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFCausalLMOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ
labels (tf.Tensor or np.ndarray of shape (batch_size, sequence_length), optional):

Labels for computing the cross entropy classification loss. Indices should be in [0, ..., config.vocab_size - 1].

Returns

A TFCausalLMOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFCausalLMOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertLMHeadModel
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertLMHeadModel.from_pretrained('bert-base-cased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFBertForMaskedLMΒΆ

class transformers.TFBertForMaskedLM(*args, **kwargs)[source]ΒΆ

Bert Model with a language modeling head on top.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFMaskedLMOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor or np.ndarray of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

Returns

A TFMaskedLMOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) – Masked language modeling (MLM) loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFMaskedLMOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertForMaskedLM.from_pretrained('bert-base-cased')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]

>>> outputs = model(inputs)
>>> loss = outputs.loss
>>> logits = outputs.logits

TFBertForNextSentencePredictionΒΆ

class transformers.TFBertForNextSentencePrediction(*args, **kwargs)[source]ΒΆ

Bert Model with a next sentence prediction (classification) head on top.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFNextSentencePredictorOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForNextSentencePrediction forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

A TFNextSentencePredictorOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when next_sentence_label is provided) – Next sentence prediction loss.

  • logits (tf.Tensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> import tensorflow as tf
>>> from transformers import BertTokenizer, TFBertForNextSentencePrediction

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='tf')

>>> logits = model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'])[0]
>>> assert logits[0][0] < logits[0][1] # the next sentence was random

Return type

TFNextSentencePredictorOutput or tuple(tf.Tensor)

TFBertForSequenceClassificationΒΆ

class transformers.TFBertForSequenceClassification(*args, **kwargs)[source]ΒΆ

Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFSequenceClassifierOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor or np.ndarray of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A TFSequenceClassifierOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFSequenceClassifierOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

>>> outputs = model(inputs)
>>> loss = outputs.loss
>>> logits = outputs.logits

TFBertForMultipleChoiceΒΆ

class transformers.TFBertForMultipleChoice(*args, **kwargs)[source]ΒΆ

Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForMultipleChoice forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, num_choices, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor or np.ndarray of shape (batch_size,), optional) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

A TFMultipleChoiceModelOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) – Classification loss.

  • logits (tf.Tensor of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFMultipleChoiceModelOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertForMultipleChoice.from_pretrained('bert-base-cased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFBertForTokenClassificationΒΆ

class transformers.TFBertForTokenClassification(*args, **kwargs)[source]ΒΆ

Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFTokenClassifierOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForTokenClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor or np.ndarray of shape (batch_size, sequence_length), optional) – Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

A TFTokenClassifierOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (n,), optional, where n is the number of unmasked labels, returned when labels is provided) – Classification loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFTokenClassifierOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertForTokenClassification.from_pretrained('bert-base-cased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> input_ids = inputs["input_ids"]
>>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

>>> outputs = model(inputs)
>>> loss = outputs.loss
>>> logits = outputs.logits

TFBertForQuestionAnsweringΒΆ

class transformers.TFBertForQuestionAnswering(*args, **kwargs)[source]ΒΆ

Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids: Optional[Union[List[tensorflow.python.framework.ops.Tensor], List[numpy.ndarray], Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, numpy.ndarray], numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, attention_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, token_type_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, position_ids: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, head_mask: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, inputs_embeds: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, end_positions: Optional[Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]] = None, training: Optional[bool] = False, **kwargs) → Union[transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput, Tuple[tensorflow.python.framework.ops.Tensor]][source]ΒΆ

The TFBertForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] Dict[str, tf.Tensor] or Dict[str, np.ndarray] and each example must have the shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • start_positions (tf.Tensor or np.ndarray of shape (batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (tf.Tensor or np.ndarray of shape (batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

A TFQuestionAnsweringModelOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when start_positions and end_positions are provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (tf.Tensor of shape (batch_size, sequence_length)) – Span-start scores (before SoftMax).

  • end_logits (tf.Tensor of shape (batch_size, sequence_length)) – Span-end scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BertTokenizer, TFBertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> model = TFBertForQuestionAnswering.from_pretrained('bert-base-cased')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> input_dict = tokenizer(question, text, return_tensors='tf')
>>> outputs = model(input_dict)
>>> start_logits = outputs.start_logits
>>> end_logits = outputs.end_logits

>>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
>>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])

FlaxBertModelΒΆ

class transformers.FlaxBertModel(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

The bare Bert Model transformer outputting raw hidden-states without any specific head on top.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxBaseModelOutputWithPooling or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • last_hidden_state (jax_xla.DeviceArray of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (jax_xla.DeviceArray of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertModel

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertModel.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxBertForPreTrainingΒΆ

class transformers.FlaxBertForPreTraining(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model with two heads on top as done during the pretraining: a masked language modeling head and a next sentence prediction (classification) head.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxBertForPreTrainingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • prediction_logits (jax_xla.DeviceArray of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (jax_xla.DeviceArray of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxBertForPreTrainingOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForPreTraining

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForPreTraining.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FlaxBertForMaskedLMΒΆ

class transformers.FlaxBertForMaskedLM(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model with a language modeling head on top.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxMaskedLMOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxMaskedLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForMaskedLM

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForMaskedLM.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors='jax')

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForNextSentencePredictionΒΆ

class transformers.FlaxBertForNextSentencePrediction(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model with a next sentence prediction (classification) head on top.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxNextSentencePredictorOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxNextSentencePredictorOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForNextSentencePrediction

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForNextSentencePrediction.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='jax')

>>> outputs = model(**encoding)
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random

FlaxBertForSequenceClassificationΒΆ

class transformers.FlaxBertForSequenceClassification(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxSequenceClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForSequenceClassification

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForSequenceClassification.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')

>>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits

FlaxBertForMultipleChoiceΒΆ

class transformers.FlaxBertForMultipleChoice(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxMultipleChoiceModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForMultipleChoice

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForMultipleChoice.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='jax', padding=True)
>>> outputs = model(**{k: v[None, :] for k,v in encoding.items()})

>>> logits = outputs.logits

FlaxBertForTokenClassificationΒΆ

class transformers.FlaxBertForTokenClassification(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxTokenClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • logits (jax_xla.DeviceArray of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForTokenClassification

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForTokenClassification.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax')

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForQuestionAnsweringΒΆ

class transformers.FlaxBertForQuestionAnswering(config: transformers.models.bert.configuration_bert.BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]ΒΆ

Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen flax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

__call__(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None)ΒΆ

The FlaxBertPreTrainedModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A FlaxQuestionAnsweringModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (BertConfig) and inputs.

  • start_logits (jax_xla.DeviceArray of shape (batch_size, sequence_length)) – Span-start scores (before SoftMax).

  • end_logits (jax_xla.DeviceArray of shape (batch_size, sequence_length)) – Span-end scores (before SoftMax).

  • hidden_states (tuple(jax_xla.DeviceArray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of jax_xla.DeviceArray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jax_xla.DeviceArray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of jax_xla.DeviceArray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import BertTokenizer, FlaxBertForQuestionAnswering

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = FlaxBertForQuestionAnswering.from_pretrained('bert-base-uncased')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='jax')

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits