SqueezeBERT¶
Overview¶
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, Kurt W. Keutzer. It’s a bidirectional transformer similar to the BERT model. The key difference between the BERT architecture and the SqueezeBERT architecture is that SqueezeBERT uses grouped convolutions instead of fully-connected layers for the Q, K, V and FFN layers.
The abstract from the paper is the following:
Humans read and write hundreds of billions of messages every day. Further, due to the availability of large datasets, large computing systems, and better neural network models, natural language processing (NLP) technology has made significant strides in understanding, proofreading, and organizing these messages. Thus, there is a significant opportunity to deploy NLP in myriad applications to help web users, social networks, and businesses. In particular, we consider smartphones and other mobile devices as crucial platforms for deploying NLP models at scale. However, today’s highly-accurate NLP neural network models such as BERT and RoBERTa are extremely computationally expensive, with BERT-base taking 1.7 seconds to classify a text snippet on a Pixel 3 smartphone. In this work, we observe that methods such as grouped convolutions have yielded significant speedups for computer vision networks, but many of these techniques have not been adopted by NLP neural network designers. We demonstrate how to replace several operations in self-attention layers with grouped convolutions, and we use this technique in a novel network architecture called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive accuracy on the GLUE test set. The SqueezeBERT code will be released.
Tips:
SqueezeBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left.
SqueezeBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard.
For best results when finetuning on sequence classification tasks, it is recommended to start with the squeezebert/squeezebert-mnli-headless checkpoint.
This model was contributed by forresti.
SqueezeBertConfig¶
-
class
transformers.
SqueezeBertConfig
(vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=768, q_groups=4, k_groups=4, v_groups=4, post_attention_groups=1, intermediate_groups=4, output_groups=4, **kwargs)[source]¶ This is the configuration class to store the configuration of a
SqueezeBertModel
. It is used to instantiate a SqueezeBERT model according to the specified arguments, defining the model architecture.Configuration objects inherit from
PretrainedConfig
and can be used to control the model outputs. Read the documentation fromPretrainedConfig
for more information.- Parameters
vocab_size (
int
, optional, defaults to 30522) – Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingSqueezeBertModel
.hidden_size (
int
, optional, defaults to 768) – Dimensionality of the encoder layers and the pooler layer.num_hidden_layers (
int
, optional, defaults to 12) – Number of hidden layers in the Transformer encoder.num_attention_heads (
int
, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.intermediate_size (
int
, optional, defaults to 3072) – Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.hidden_act (
str
orCallable
, optional, defaults to"gelu"
) – The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"silu"
and"gelu_new"
are supported.hidden_dropout_prob (
float
, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_probs_dropout_prob (
float
, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.max_position_embeddings (
int
, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).type_vocab_size (
int
, optional, defaults to 2) – The vocabulary size of thetoken_type_ids
passed when callingBertModel
orTFBertModel
.initializer_range (
float
, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) –pad_token_id (
int
, optional, defaults to 0) – The ID of the token in the word embedding to use as padding.embedding_size (
int
, optional, defaults to 768) – The dimension of the word embedding vectors.q_groups (
int
, optional, defaults to 4) – The number of groups in Q layer.k_groups (
int
, optional, defaults to 4) – The number of groups in K layer.v_groups (
int
, optional, defaults to 4) – The number of groups in V layer.post_attention_groups (
int
, optional, defaults to 1) – The number of groups in the first feed forward network layer.intermediate_groups (
int
, optional, defaults to 4) – The number of groups in the second feed forward network layer.output_groups (
int
, optional, defaults to 4) – The number of groups in the third feed forward network layer.
Examples:
>>> from transformers import SqueezeBertModel, SqueezeBertConfig >>> # Initializing a SqueezeBERT configuration >>> configuration = SqueezeBertConfig() >>> # Initializing a model from the configuration above >>> model = SqueezeBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained checkpoints.
SqueezeBertTokenizer¶
-
class
transformers.
SqueezeBertTokenizer
(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]¶ Constructs a SqueezeBert tokenizer.
BertTokenizer
and runs end-to-end tokenization: punctuation splitting + wordpiece.Refer to superclass
BertTokenizer
for usage examples and documentation concerning parameters.-
build_inputs_with_special_tokens
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]¶ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
single sequence:
[CLS] X [SEP]
pair of sequences:
[CLS] A [SEP] B [SEP]
- Parameters
token_ids_0 (
List[int]
) – List of IDs to which the special tokens will be added.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of input IDs with the appropriate special tokens.
- Return type
List[int]
-
create_token_type_ids_from_sequences
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]¶ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |
If
token_ids_1
isNone
, this method only returns the first portion of the mask (0s).- Parameters
token_ids_0 (
List[int]
) – List of IDs.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of token type IDs according to the given sequence(s).
- Return type
List[int]
-
get_special_tokens_mask
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) → List[int]¶ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer
prepare_for_model
method.- Parameters
token_ids_0 (
List[int]
) – List of IDs.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.already_has_special_tokens (
bool
, optional, defaults toFalse
) – Whether or not the token list is already formatted with special tokens for the model.
- Returns
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- Return type
List[int]
-
save_vocabulary
(save_directory: str, filename_prefix: Optional[str] = None) → Tuple[str]¶ Save only the vocabulary of the tokenizer (vocabulary + added tokens).
This method won’t save the configuration and special token mappings of the tokenizer. Use
_save_pretrained()
to save the whole state of the tokenizer.- Parameters
save_directory (
str
) – The directory in which to save the vocabulary.filename_prefix (
str
, optional) – An optional prefix to add to the named of the saved files.
- Returns
Paths to the files saved.
- Return type
Tuple(str)
-
SqueezeBertTokenizerFast¶
-
class
transformers.
SqueezeBertTokenizerFast
(vocab_file, tokenizer_file=None, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]¶ Constructs a “Fast” SqueezeBert tokenizer (backed by HuggingFace’s tokenizers library).
SqueezeBertTokenizerFast
is identical toBertTokenizerFast
and runs end-to-end tokenization: punctuation splitting + wordpiece.Refer to superclass
BertTokenizerFast
for usage examples and documentation concerning parameters.-
slow_tokenizer_class
¶ alias of
transformers.models.squeezebert.tokenization_squeezebert.SqueezeBertTokenizer
-
SqueezeBertModel¶
-
class
transformers.
SqueezeBertModel
(config)[source]¶ The bare SqueezeBERT Model transformer outputting raw hidden-states without any specific head on top.
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the squeezebert/squeezebert-mnli-headless checkpoint as a starting point.
- Parameters
config (
SqueezeBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
Hierarchy:
Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm
Data layouts:
Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if :obj:`output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
SqueezeBertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
SqueezeBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape((batch_size, sequence_length))
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape((batch_size, sequence_length), hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
BaseModelOutputWithPooling
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (SqueezeBertConfig
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
BaseModelOutputWithPooling
ortuple(torch.FloatTensor)
Example:
>>> from transformers import SqueezeBertTokenizer, SqueezeBertModel >>> import torch >>> tokenizer = SqueezeBertTokenizer.from_pretrained('squeezebert/squeezebert-uncased') >>> model = SqueezeBertModel.from_pretrained('squeezebert/squeezebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
SqueezeBertForMaskedLM¶
-
class
transformers.
SqueezeBertForMaskedLM
(config)[source]¶ SqueezeBERT Model with a language modeling head on top.
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the squeezebert/squeezebert-mnli-headless checkpoint as a starting point.
- Parameters
config (
SqueezeBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
Hierarchy:
Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm
Data layouts:
Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if :obj:`output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
SqueezeBertForMaskedLM
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
SqueezeBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape((batch_size, sequence_length))
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape((batch_size, sequence_length), hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
- Returns
A
MaskedLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (SqueezeBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Masked language modeling (MLM) loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MaskedLMOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import SqueezeBertTokenizer, SqueezeBertForMaskedLM >>> import torch >>> tokenizer = SqueezeBertTokenizer.from_pretrained('squeezebert/squeezebert-uncased') >>> model = SqueezeBertForMaskedLM.from_pretrained('squeezebert/squeezebert-uncased') >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
SqueezeBertForSequenceClassification¶
-
class
transformers.
SqueezeBertForSequenceClassification
(config)[source]¶ SqueezeBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the squeezebert/squeezebert-mnli-headless checkpoint as a starting point.
- Parameters
config (
SqueezeBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
Hierarchy:
Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm
Data layouts:
Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if :obj:`output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
SqueezeBertForSequenceClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
SqueezeBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape((batch_size, sequence_length))
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape((batch_size, sequence_length), hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
- Returns
A
SequenceClassifierOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (SqueezeBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) – Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
SequenceClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import SqueezeBertTokenizer, SqueezeBertForSequenceClassification >>> import torch >>> tokenizer = SqueezeBertTokenizer.from_pretrained('squeezebert/squeezebert-uncased') >>> model = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
SqueezeBertForMultipleChoice¶
-
class
transformers.
SqueezeBertForMultipleChoice
(config)[source]¶ SqueezeBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the squeezebert/squeezebert-mnli-headless checkpoint as a starting point.
- Parameters
config (
SqueezeBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
Hierarchy:
Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm
Data layouts:
Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if :obj:`output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
SqueezeBertForMultipleChoice
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape((batch_size, num_choices, sequence_length))
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
SqueezeBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape((batch_size, num_choices, sequence_length))
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape((batch_size, num_choices, sequence_length))
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape((batch_size, num_choices, sequence_length))
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape((batch_size, num_choices, sequence_length), hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
where num_choices is the size of the second dimension of the input tensors. (see input_ids above)
- Returns
A
MultipleChoiceModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (SqueezeBertConfig
) and inputs.loss (
torch.FloatTensor
of shape (1,), optional, returned whenlabels
is provided) – Classification loss.logits (
torch.FloatTensor
of shape(batch_size, num_choices)
) – num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MultipleChoiceModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import SqueezeBertTokenizer, SqueezeBertForMultipleChoice >>> import torch >>> tokenizer = SqueezeBertTokenizer.from_pretrained('squeezebert/squeezebert-uncased') >>> model = SqueezeBertForMultipleChoice.from_pretrained('squeezebert/squeezebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
SqueezeBertForTokenClassification¶
-
class
transformers.
SqueezeBertForTokenClassification
(config)[source]¶ SqueezeBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the squeezebert/squeezebert-mnli-headless checkpoint as a starting point.
- Parameters
config (
SqueezeBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
Hierarchy:
Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm
Data layouts:
Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if :obj:`output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
SqueezeBertForTokenClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
SqueezeBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape((batch_size, sequence_length))
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape((batch_size, sequence_length), hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
- Returns
A
TokenClassifierOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (SqueezeBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Classification loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) – Classification scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TokenClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import SqueezeBertTokenizer, SqueezeBertForTokenClassification >>> import torch >>> tokenizer = SqueezeBertTokenizer.from_pretrained('squeezebert/squeezebert-uncased') >>> model = SqueezeBertForTokenClassification.from_pretrained('squeezebert/squeezebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
SqueezeBertForQuestionAnswering¶
-
class
transformers.
SqueezeBertForQuestionAnswering
(config)[source]¶ SqueezeBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).
The SqueezeBERT model was proposed in SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the squeezebert/squeezebert-mnli-headless checkpoint as a starting point.
- Parameters
config (
SqueezeBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
Hierarchy:
Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm
Data layouts:
Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if :obj:`output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
SqueezeBertForQuestionAnswering
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
SqueezeBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape((batch_size, sequence_length))
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape((batch_size, sequence_length))
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape((batch_size, sequence_length), hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
QuestionAnsweringModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (SqueezeBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) – Span-start scores (before SoftMax).end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) – Span-end scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
QuestionAnsweringModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import SqueezeBertTokenizer, SqueezeBertForQuestionAnswering >>> import torch >>> tokenizer = SqueezeBertTokenizer.from_pretrained('squeezebert/squeezebert-uncased') >>> model = SqueezeBertForQuestionAnswering.from_pretrained('squeezebert/squeezebert-uncased') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors='pt') >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits