# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import numpy as np
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import jaxlib.xla_extension as jax_xla
from flax.core.frozen_dict import FrozenDict
from flax.linen.attention import dot_product_attention_weights
from jax import lax
from jax.random import PRNGKey
from ...file_utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import logging
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
_TOKENIZER_FOR_DOC = "ElectraTokenizer"
@flax.struct.dataclass
class FlaxElectraForPreTrainingOutput(ModelOutput):
"""
Output type of :class:`~transformers.ElectraForPreTraining`.
Args:
logits (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(jax_xla.DeviceArray)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`jax_xla.DeviceArray` (one for the output of the embeddings + one for the output of each
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(jax_xla.DeviceArray)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`jax_xla.DeviceArray` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: jax_xla.DeviceArray = None
hidden_states: Optional[Tuple[jax_xla.DeviceArray]] = None
attentions: Optional[Tuple[jax_xla.DeviceArray]] = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading, saving and converting weights from
PyTorch models)
This model is also a Flax Linen `flax.nn.Module
<https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax
Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__
- `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__
- `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__
- `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__
Parameters:
config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`numpy.ndarray` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`numpy.ndarray` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`numpy.ndarray` of shape :obj:`({0})`, `optional`):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
1]``:
- 0 corresponds to a `sentence A` token,
- 1 corresponds to a `sentence B` token.
`What are token type IDs? <../glossary.html#token-type-ids>`__
position_ids (:obj:`numpy.ndarray` of shape :obj:`({0})`, `optional`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
config.max_position_embeddings - 1]``.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
class FlaxElectraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra
class FlaxElectraSelfAttention(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`\
: {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range, self.dtype),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range, self.dtype),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range, self.dtype),
)
def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, -1e10).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra
class FlaxElectraSelfOutput(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range, self.dtype),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra
class FlaxElectraAttention(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxElectraSelfAttention(self.config, dtype=self.dtype)
self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype)
def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra
class FlaxElectraIntermediate(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range, self.dtype),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra
class FlaxElectraOutput(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range, self.dtype),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra
class FlaxElectraLayer(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxElectraAttention(self.config, dtype=self.dtype)
self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype)
self.output = FlaxElectraOutput(self.config, dtype=self.dtype)
def __call__(self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False):
attention_outputs = self.attention(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra
class FlaxElectraLayerCollection(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra
class FlaxElectraEncoder(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxElectraLayerCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxElectraGeneratorPredictions(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FlaxElectraDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.dense_prediction = nn.Dense(1, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
hidden_states = self.dense_prediction(hidden_states).squeeze(-1)
return hidden_states
class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
base_model_prefix = "electra"
module_class: nn.Module = None
def __init__(
self,
config: ElectraConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
**kwargs
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
return self.module.init(rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False)[
"params"
]
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
params: dict = None,
dropout_rng: PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.ones_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxElectraModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype)
if self.config.embedding_size != self.config.hidden_size:
self.embeddings_project = nn.Dense(self.config.hidden_size)
self.encoder = FlaxElectraEncoder(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
embeddings = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
if hasattr(self, "embeddings_project"):
embeddings = self.embeddings_project(embeddings)
return self.encoder(
embeddings,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
[docs]@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top.",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraModel(FlaxElectraPreTrainedModel):
module_class = FlaxElectraModule
append_call_sample_docstring(
FlaxElectraModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC
)
class FlaxElectraTiedDense(nn.Module):
embedding_size: int
dtype: jnp.dtype = jnp.float32
precision = None
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
bias = self.param("bias", self.bias_init, (self.embedding_size,))
self.bias = jnp.asarray(bias, dtype=self.dtype)
def __call__(self, x, kernel):
y = lax.dot_general(
x,
kernel,
(((x.ndim - 1,), (0,)), ((), ())),
precision=self.precision,
)
return y + self.bias
class FlaxElectraForMaskedLMModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.electra = FlaxElectraModule(config=self.config, dtype=self.dtype)
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config)
if self.config.tie_word_embeddings:
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
else:
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
prediction_scores = self.generator_predictions(hidden_states)
if self.config.tie_word_embeddings:
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
else:
prediction_scores = self.generator_lm_head(prediction_scores)
if not return_dict:
return (prediction_scores,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
append_call_sample_docstring(
FlaxElectraForMaskedLM, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC
)
class FlaxElectraForPreTrainingModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.electra = FlaxElectraModule(config=self.config, dtype=self.dtype)
self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.discriminator_predictions(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxElectraForPreTrainingOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[docs]@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
It is recommended to load the discriminator checkpoint into that model.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForPreTrainingModule
FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example::
>>> from transformers import ElectraTokenizer, FlaxElectraForPreTraining
>>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator')
>>> model = FlaxElectraForPreTraining.from_pretrained('google/electra-small-discriminator')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
"""
overwrite_call_docstring(
FlaxElectraForPreTraining,
ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
)
class FlaxElectraForTokenClassificationModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.electra = FlaxElectraModule(config=self.config, dtype=self.dtype)
self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
self.classifier = nn.Dense(self.config.num_labels)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[docs]@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForTokenClassificationModule
append_call_sample_docstring(
FlaxElectraForTokenClassification,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
def identity(x, **kwargs):
return x
class FlaxElectraSequenceSummary(nn.Module):
r"""
Compute a single vector summary of a sequence hidden states.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
:obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
- **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
output, another string or :obj:`None` will add no activation.
- **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
activation.
- **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
activation.
"""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.summary = identity
if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj:
if (
hasattr(self.config, "summary_proj_to_labels")
and self.config.summary_proj_to_labels
and self.config.num_labels > 0
):
num_classes = self.config.num_labels
else:
num_classes = self.config.hidden_size
self.summary = nn.Dense(num_classes, dtype=self.dtype)
activation_string = getattr(self.config, "summary_activation", None)
self.activation = ACT2FN[activation_string] if activation_string else lambda x: x
self.first_dropout = identity
if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
self.last_dropout = identity
if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (:obj:`jnp.array` of shape :obj:`[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (:obj:`jnp.array` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`):
Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification
token.
Returns:
:obj:`jnp.array`: The summary of the sequence hidden states.
"""
# NOTE: this doest "first" type summary always
output = hidden_states[:, 0]
output = self.first_dropout(output, deterministic=deterministic)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output, deterministic=deterministic)
return output
class FlaxElectraForMultipleChoiceModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.electra = FlaxElectraModule(config=self.config, dtype=self.dtype)
self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[1:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# adapt docstring slightly for FlaxElectraForMultipleChoice
overwrite_call_docstring(
FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxElectraForMultipleChoice,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraForQuestionAnsweringModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.electra = FlaxElectraModule(config=self.config, dtype=self.dtype)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[docs]@add_start_docstrings(
"""
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForQuestionAnsweringModule
append_call_sample_docstring(
FlaxElectraForQuestionAnswering,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic: bool = True):
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, deterministic=deterministic)
x = self.dense(x)
x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu
x = self.dropout(x, deterministic=deterministic)
x = self.out_proj(x)
return x
class FlaxElectraForSequenceClassificationModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.electra = FlaxElectraModule(config=self.config, dtype=self.dtype)
self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.classifier(hidden_states, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[docs]@add_start_docstrings(
"""
Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForSequenceClassificationModule
append_call_sample_docstring(
FlaxElectraForSequenceClassification,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)