Source code for transformers.models.rembert.modeling_tf_rembert

# coding=utf-8
# Copyright 2021 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 RemBERT model. """


import math
from typing import Dict, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...file_utils import (
    DUMMY_INPUTS,
    MULTIPLE_CHOICE_DUMMY_INPUTS,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
)
from ...modeling_tf_outputs import (
    TFBaseModelOutputWithPastAndCrossAttentions,
    TFBaseModelOutputWithPoolingAndCrossAttentions,
    TFCausalLMOutputWithCrossAttentions,
    TFMaskedLMOutput,
    TFMultipleChoiceModelOutput,
    TFQuestionAnsweringModelOutput,
    TFSequenceClassifierOutput,
    TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
    TFCausalLanguageModelingLoss,
    TFMaskedLanguageModelingLoss,
    TFModelInputType,
    TFMultipleChoiceLoss,
    TFPreTrainedModel,
    TFQuestionAnsweringLoss,
    TFSequenceClassificationLoss,
    TFTokenClassificationLoss,
    get_initializer,
    input_processing,
    keras_serializable,
    shape_list,
)
from ...utils import logging
from .configuration_rembert import RemBertConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "RemBertConfig"
_TOKENIZER_FOR_DOC = "RemBertTokenizer"

TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/rembert",
    # See all RemBERT models at https://huggingface.co/models?filter=rembert
]


class TFRemBertEmbeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.vocab_size = config.vocab_size
        self.type_vocab_size = config.type_vocab_size
        self.input_embedding_size = config.input_embedding_size
        self.max_position_embeddings = config.max_position_embeddings
        self.initializer_range = config.initializer_range
        self.embeddings_sum = tf.keras.layers.Add()
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def build(self, input_shape: tf.TensorShape):
        with tf.name_scope("word_embeddings"):
            self.weight = self.add_weight(
                name="weight",
                shape=[self.vocab_size, self.input_embedding_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("token_type_embeddings"):
            self.token_type_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.type_vocab_size, self.input_embedding_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("position_embeddings"):
            self.position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_position_embeddings, self.input_embedding_size],
                initializer=get_initializer(self.initializer_range),
            )

        super().build(input_shape)

    def call(
        self,
        input_ids: tf.Tensor = None,
        position_ids: tf.Tensor = None,
        token_type_ids: tf.Tensor = None,
        inputs_embeds: tf.Tensor = None,
        past_key_values_length=0,
        training: bool = False,
    ) -> tf.Tensor:
        """
        Applies embedding based on inputs tensor.

        Returns:
            final_embeddings (:obj:`tf.Tensor`): output embedding tensor.
        """
        assert not (input_ids is None and inputs_embeds is None)

        if input_ids is not None:
            inputs_embeds = tf.gather(params=self.weight, indices=input_ids)

        input_shape = shape_list(inputs_embeds)[:-1]

        if token_type_ids is None:
            token_type_ids = tf.fill(dims=input_shape, value=0)

        if position_ids is None:
            position_ids = tf.expand_dims(
                tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
            )

        position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
        position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
        token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
        final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds, token_type_embeds])
        final_embeddings = self.LayerNorm(inputs=final_embeddings)
        final_embeddings = self.dropout(inputs=final_embeddings, training=training)

        return final_embeddings


# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->RemBert
class TFRemBertSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number "
                f"of attention heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.sqrt_att_head_size = math.sqrt(self.attention_head_size)

        self.query = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
        )
        self.key = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
        )
        self.value = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)

        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
        # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
        tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))

        # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
        return tf.transpose(tensor, perm=[0, 2, 1, 3])

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        encoder_hidden_states: tf.Tensor,
        encoder_attention_mask: tf.Tensor,
        past_key_value: Tuple[tf.Tensor],
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        batch_size = shape_list(hidden_states)[0]
        mixed_query_layer = self.query(inputs=hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
            value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
            value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
            key_layer = tf.concatenate([past_key_value[0], key_layer], dim=2)
            value_layer = tf.concatenate([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
            value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)

        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)

        if self.is_decoder:
            # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        # (batch size, num_heads, seq_len_q, seq_len_k)
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
        dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
        attention_scores = tf.divide(attention_scores, dk)

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TFRemBertModel call() function)
            attention_scores = tf.add(attention_scores, attention_mask)

        # Normalize the attention scores to probabilities.
        attention_probs = tf.nn.softmax(logits=attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(inputs=attention_probs, training=training)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = tf.multiply(attention_probs, head_mask)

        attention_output = tf.matmul(attention_probs, value_layer)
        attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])

        # (batch_size, seq_len_q, all_head_size)
        attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
        outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->RemBert
class TFRemBertSelfOutput(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->RemBert
class TFRemBertAttention(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.self_attention = TFRemBertSelfAttention(config, name="self")
        self.dense_output = TFRemBertSelfOutput(config, name="output")

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(
        self,
        input_tensor: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        encoder_hidden_states: tf.Tensor,
        encoder_attention_mask: tf.Tensor,
        past_key_value: Tuple[tf.Tensor],
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        self_outputs = self.self_attention(
            hidden_states=input_tensor,
            attention_mask=attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = self.dense_output(
            hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
        )
        # add attentions (possibly with past_key_value) if we output them
        outputs = (attention_output,) + self_outputs[1:]

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->RemBert
class TFRemBertIntermediate(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )

        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = get_tf_activation(config.hidden_act)
        else:
            self.intermediate_act_fn = config.hidden_act

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->RemBert
class TFRemBertOutput(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->RemBert
class TFRemBertLayer(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.attention = TFRemBertAttention(config, name="attention")
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
            self.crossattention = TFRemBertAttention(config, name="crossattention")
        self.intermediate = TFRemBertIntermediate(config, name="intermediate")
        self.bert_output = TFRemBertOutput(config, name="output")

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        encoder_hidden_states: Optional[tf.Tensor],
        encoder_attention_mask: Optional[tf.Tensor],
        past_key_value: Optional[Tuple[tf.Tensor]],
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            input_tensor=hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            past_key_value=self_attn_past_key_value,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers "
                    "by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                input_tensor=attention_output,
                attention_mask=attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
                training=training,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        intermediate_output = self.intermediate(hidden_states=attention_output)
        layer_output = self.bert_output(
            hidden_states=intermediate_output, input_tensor=attention_output, training=training
        )
        outputs = (layer_output,) + outputs  # add attentions if we output them

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

        return outputs


class TFRemBertEncoder(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config

        self.embedding_hidden_mapping_in = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            name="embedding_hidden_mapping_in",
        )
        self.layer = [TFRemBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)]

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        encoder_hidden_states: tf.Tensor,
        encoder_attention_mask: tf.Tensor,
        past_key_values: Tuple[Tuple[tf.Tensor]],
        use_cache: bool,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
        hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states)
        all_hidden_states = (hidden_states,) if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            past_key_value = past_key_values[i] if past_key_values is not None else None

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention and encoder_hidden_states is not None:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
            )

        return TFBaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->RemBert
class TFRemBertPooler(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            activation="tanh",
            name="dense",
        )

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(inputs=first_token_tensor)

        return pooled_output


class TFRemBertLMPredictionHead(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, input_embeddings: tf.keras.layers.Layer, **kwargs):
        super().__init__(**kwargs)

        self.vocab_size = config.vocab_size
        self.initializer_range = config.initializer_range
        self.output_embedding_size = config.output_embedding_size
        self.dense = tf.keras.layers.Dense(
            config.output_embedding_size, kernel_initializer=get_initializer(self.initializer_range), name="dense"
        )
        if isinstance(config.hidden_act, str):
            self.activation = get_tf_activation(config.hidden_act)
        else:
            self.activation = config.hidden_act
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")

    def build(self, input_shape: tf.TensorShape):
        self.decoder = self.add_weight(
            name="decoder/weight",
            shape=[self.vocab_size, self.output_embedding_size],
            initializer=get_initializer(self.initializer_range),
        )
        self.decoder_bias = self.add_weight(
            shape=(self.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias"
        )

        super().build(input_shape)

    def get_output_embeddings(self) -> tf.keras.layers.Layer:
        return self

    def set_output_embeddings(self, value):
        self.decoder = value
        self.decoder.vocab_size = shape_list(value)[0]

    def get_bias(self) -> Dict[str, tf.Variable]:
        return {"decoder_bias": self.decoder_bias}

    def set_bias(self, value: tf.Variable):
        self.decoder_bias = value["decoder_bias"]
        self.vocab_size = shape_list(value["decoder_bias"])[0]

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.activation(hidden_states)
        seq_length = shape_list(tensor=hidden_states)[1]
        hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.output_embedding_size])
        hidden_states = self.LayerNorm(hidden_states)
        hidden_states = tf.matmul(a=hidden_states, b=self.decoder, transpose_b=True)
        hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size])
        hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias)
        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->RemBert
class TFRemBertMLMHead(tf.keras.layers.Layer):
    def __init__(self, config: RemBertConfig, input_embeddings: tf.keras.layers.Layer, **kwargs):
        super().__init__(**kwargs)

        self.predictions = TFRemBertLMPredictionHead(config, input_embeddings, name="predictions")

    def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
        prediction_scores = self.predictions(hidden_states=sequence_output)

        return prediction_scores


@keras_serializable
class TFRemBertMainLayer(tf.keras.layers.Layer):
    config_class = RemBertConfig

    def __init__(self, config: RemBertConfig, add_pooling_layer: bool = True, **kwargs):
        super().__init__(**kwargs)

        self.config = config
        self.is_decoder = config.is_decoder

        self.embeddings = TFRemBertEmbeddings(config, name="embeddings")
        self.encoder = TFRemBertEncoder(config, name="encoder")
        self.pooler = TFRemBertPooler(config, name="pooler") if add_pooling_layer else None

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.embeddings

    def set_input_embeddings(self, value: tf.Variable):
        self.embeddings.weight = value
        self.embeddings.vocab_size = shape_list(value)[0]

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        raise NotImplementedError

    # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
    def call(
        self,
        input_ids: Optional[TFModelInputType] = None,
        attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
        token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
        position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
        head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
        inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
        encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
        encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
        past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
        **kwargs,
    ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
        inputs = input_processing(
            func=self.call,
            config=self.config,
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )

        if not self.config.is_decoder:
            inputs["use_cache"] = False

        if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif inputs["input_ids"] is not None:
            input_shape = shape_list(inputs["input_ids"])
        elif inputs["inputs_embeds"] is not None:
            input_shape = shape_list(inputs["inputs_embeds"])[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape

        if inputs["past_key_values"] is None:
            past_key_values_length = 0
            inputs["past_key_values"] = [None] * len(self.encoder.layer)
        else:
            past_key_values_length = shape_list(inputs["past_key_values"][0][0])[-2]

        if inputs["attention_mask"] is None:
            inputs["attention_mask"] = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)

        if inputs["token_type_ids"] is None:
            inputs["token_type_ids"] = tf.fill(dims=input_shape, value=0)

        embedding_output = self.embeddings(
            input_ids=inputs["input_ids"],
            position_ids=inputs["position_ids"],
            token_type_ids=inputs["token_type_ids"],
            inputs_embeds=inputs["inputs_embeds"],
            past_key_values_length=past_key_values_length,
            training=inputs["training"],
        )

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        attention_mask_shape = shape_list(inputs["attention_mask"])

        mask_seq_length = seq_length + past_key_values_length
        # Copied from `modeling_tf_t5.py`
        # Provided a padding mask of dimensions [batch_size, mask_seq_length]
        # - if the model is a decoder, apply a causal mask in addition to the padding mask
        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
        if self.is_decoder:
            seq_ids = tf.range(mask_seq_length)
            causal_mask = tf.less_equal(
                tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
                seq_ids[None, :, None],
            )
            causal_mask = tf.cast(causal_mask, dtype=inputs["attention_mask"].dtype)
            extended_attention_mask = causal_mask * inputs["attention_mask"][:, None, :]
            attention_mask_shape = shape_list(extended_attention_mask)
            extended_attention_mask = tf.reshape(
                extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
            )
        else:
            extended_attention_mask = tf.reshape(
                inputs["attention_mask"], (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
        one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
        ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
        extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)

        # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
        if self.is_decoder and inputs["encoder_attention_mask"] is not None:
            # If a 2D ou 3D attention mask is provided for the cross-attention
            # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
            # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
            inputs["encoder_attention_mask"] = tf.cast(
                inputs["encoder_attention_mask"], dtype=extended_attention_mask.dtype
            )
            num_dims_encoder_attention_mask = len(shape_list(inputs["encoder_attention_mask"]))
            if num_dims_encoder_attention_mask == 3:
                encoder_extended_attention_mask = inputs["encoder_attention_mask"][:, None, :, :]
            if num_dims_encoder_attention_mask == 2:
                encoder_extended_attention_mask = inputs["encoder_attention_mask"][:, None, None, :]

            # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
            # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
            # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
            #                                         tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))

            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if inputs["head_mask"] is not None:
            raise NotImplementedError
        else:
            inputs["head_mask"] = [None] * self.config.num_hidden_layers

        encoder_outputs = self.encoder(
            hidden_states=embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=inputs["head_mask"],
            encoder_hidden_states=inputs["encoder_hidden_states"],
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=inputs["past_key_values"],
            use_cache=inputs["use_cache"],
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )

        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None

        if not inputs["return_dict"]:
            return (
                sequence_output,
                pooled_output,
            ) + encoder_outputs[1:]

        return TFBaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


class TFRemBertPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = RemBertConfig
    base_model_prefix = "rembert"

    @property
    def dummy_inputs(self):
        """
        Dummy inputs to build the network.

        Returns:
            :obj:`Dict[str, tf.Tensor]`: The dummy inputs.
        """
        dummy = {"input_ids": tf.constant(DUMMY_INPUTS)}
        # Add `encoder_hidden_states` to make the cross-attention layers' weights initialized
        if self.config.add_cross_attention:
            batch_size, seq_len = tf.constant(DUMMY_INPUTS).shape
            shape = (batch_size, seq_len) + (self.config.hidden_size,)
            h = tf.random.uniform(shape=shape)
            dummy["encoder_hidden_states"] = h

        return dummy


REMBERT_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
    generic methods the library implements for all its model (such as downloading or saving, resizing the input
    embeddings, pruning heads etc.)

    This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
    it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
    and behavior.

    .. note::

        TF 2.0 models accepts two formats as inputs:

        - having all inputs as keyword arguments (like PyTorch models), or
        - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
        the tensors in the first argument of the model call function: :obj:`model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
        the first positional argument :

        - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
          :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`

    Args:
        config (:class:`~transformers.RemBertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

REMBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`np.ndarray`, :obj:`tf.Tensor`, :obj:`List[tf.Tensor]` :obj:`Dict[str, tf.Tensor]` or :obj:`Dict[str, np.ndarray]` and each example must have the shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.BertTokenizer`. See
            :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`__
        position_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`__
        head_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
            config will be used instead.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This
            argument can be used in eager mode, in graph mode the value will always be set to True.
        training (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""


[docs]@add_start_docstrings( "The bare RemBERT Model transformer outputing raw hidden-states without any specific head on top.", REMBERT_START_DOCSTRING, ) class TFRemBertModel(TFRemBertPreTrainedModel): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.rembert = TFRemBertMainLayer(config, name="rembert")
[docs] @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None, encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.rembert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], encoder_hidden_states=inputs["encoder_hidden_states"], encoder_attention_mask=inputs["encoder_attention_mask"], past_key_values=inputs["past_key_values"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertModel.serving_output def serving_output( self, output: TFBaseModelOutputWithPoolingAndCrossAttentions ) -> TFBaseModelOutputWithPoolingAndCrossAttentions: output_cache = self.config.use_cache and self.config.is_decoder pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None if not (self.config.output_attentions and self.config.add_cross_attention): cross_attns = None return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, past_key_values=pkv, hidden_states=hs, attentions=attns, cross_attentions=cross_attns, )
[docs]@add_start_docstrings("""RemBERT Model with a `language modeling` head on top. """, REMBERT_START_DOCSTRING) class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFRemBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.mlm = TFRemBertMLMHead(config, input_embeddings=self.rembert.embeddings, name="mlm___cls") def get_lm_head(self) -> tf.keras.layers.Layer: return self.mlm.predictions
[docs] @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.rembert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=inputs["training"]) loss = ( None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=prediction_scores) ) if not inputs["return_dict"]: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """RemBERT Model with a `language modeling` head on top for CLM fine-tuning. """, REMBERT_START_DOCSTRING ) class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFRemBertForCausalLM` as a standalone, add `is_decoder=True.`") self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.mlm = TFRemBertMLMHead(config, input_embeddings=self.rembert.embeddings, name="mlm___cls") def get_lm_head(self) -> tf.keras.layers.Layer: return self.mlm.predictions # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, inputs, past=None, attention_mask=None, **model_kwargs): # cut decoder_input_ids if past is used if past: inputs = tf.expand_dims(inputs[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "past_key_values": past, "use_cache": model_kwargs["use_cache"], }
[docs] @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None, encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., config.vocab_size - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.rembert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], encoder_hidden_states=inputs["encoder_hidden_states"], encoder_attention_mask=inputs["encoder_attention_mask"], past_key_values=inputs["past_key_values"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.mlm(sequence_output=sequence_output, training=inputs["training"]) loss = None if inputs["labels"] is not None: # shift labels to the left and cut last logit token logits = logits[:, :-1] labels = inputs["labels"][:, 1:] loss = self.compute_loss(labels=labels, logits=logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.serving_output def serving_output(self, output: TFCausalLMOutputWithCrossAttentions) -> TFCausalLMOutputWithCrossAttentions: output_cache = self.config.use_cache and self.config.is_decoder pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None if not (self.config.output_attentions and self.config.add_cross_attention): cross_attns = None return TFCausalLMOutputWithCrossAttentions( logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns, cross_attentions=cross_attns )
[docs]@add_start_docstrings( """ RemBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, REMBERT_START_DOCSTRING, ) class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.rembert = TFRemBertMainLayer(config, name="rembert") self.dropout = tf.keras.layers.Dropout(rate=config.classifier_dropout_prob) self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", )
[docs] @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.rembert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=inputs["training"]) logits = self.classifier(inputs=pooled_output) loss = None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ RemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, REMBERT_START_DOCSTRING, ) class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.rembert = TFRemBertMainLayer(config, name="rembert") self.dropout = tf.keras.layers.Dropout(rate=config.classifier_dropout_prob) self.classifier = tf.keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self) -> Dict[str, tf.Tensor]: """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
[docs] @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = ( tf.reshape(tensor=inputs["input_ids"], shape=(-1, seq_length)) if inputs["input_ids"] is not None else None ) flat_attention_mask = ( tf.reshape(tensor=inputs["attention_mask"], shape=(-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=inputs["token_type_ids"], shape=(-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(tensor=inputs["position_ids"], shape=(-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs["inputs_embeds"], shape=(-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.rembert( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, head_mask=inputs["head_mask"], inputs_embeds=flat_inputs_embeds, output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=inputs["training"]) logits = self.classifier(inputs=pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
@tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) def serving(self, inputs: Dict[str, tf.Tensor]) -> TFMultipleChoiceModelOutput: output = self.call(input_ids=inputs) return self.serving_output(output) def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ RemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, REMBERT_START_DOCSTRING, ) class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" )
[docs] @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.rembert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=inputs["training"]) logits = self.classifier(inputs=sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ RemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, REMBERT_START_DOCSTRING, ) class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.rembert = TFRemBertMainLayer(config, add_pooling_layer=False, name="rembert") self.qa_outputs = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" )
[docs] @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="rembert", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: Optional[TFModelInputType] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) outputs = self.rembert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels=labels, logits=(start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )